Sentence Similarity
Transformers
Safetensors
English
llama
feature-extraction
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
text-reranking
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
custom_code
text-generation-inference
Create modeling_llama_encoder.py
Browse files- modeling_llama_encoder.py +200 -0
modeling_llama_encoder.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple, Union
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import LlamaModel, LlamaPreTrainedModel
|
| 4 |
+
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm, LlamaConfig, LlamaMLP, LlamaAttention, LlamaFlashAttention2, LlamaSdpaAttention
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
from torch import nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 9 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 10 |
+
from .attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_attention_mask
|
| 11 |
+
|
| 12 |
+
logger = logging.get_logger(__name__)
|
| 13 |
+
|
| 14 |
+
class ModifiedLlamaAttention(LlamaAttention):
|
| 15 |
+
|
| 16 |
+
def __init__(self, *args, **kwargs):
|
| 17 |
+
super().__init__(*args, **kwargs)
|
| 18 |
+
self.is_causal = False
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ModifiedLlamaFlashAttention2(LlamaFlashAttention2):
|
| 22 |
+
|
| 23 |
+
def __init__(self, *args, **kwargs):
|
| 24 |
+
super().__init__(*args, **kwargs)
|
| 25 |
+
self.is_causal = False
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class ModifiedLlamaSdpaAttention(LlamaSdpaAttention):
|
| 29 |
+
|
| 30 |
+
def __init__(self, *args, **kwargs):
|
| 31 |
+
super().__init__(*args, **kwargs)
|
| 32 |
+
self.is_causal = False
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
LLAMA_ATTENTION_CLASSES = {
|
| 36 |
+
"eager": ModifiedLlamaAttention,
|
| 37 |
+
"flash_attention_2": ModifiedLlamaFlashAttention2,
|
| 38 |
+
"sdpa": ModifiedLlamaSdpaAttention,
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class ModifiedLlamaDecoderLayer(LlamaDecoderLayer):
|
| 43 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
| 44 |
+
nn.Module.__init__(self)
|
| 45 |
+
self.hidden_size = config.hidden_size
|
| 46 |
+
|
| 47 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 48 |
+
|
| 49 |
+
self.mlp = LlamaMLP(config)
|
| 50 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 51 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class LlamaEncoderModel(LlamaModel):
|
| 55 |
+
def __init__(self, config):
|
| 56 |
+
LlamaPreTrainedModel.__init__(self, config)
|
| 57 |
+
self.padding_idx = config.pad_token_id
|
| 58 |
+
self.vocab_size = config.vocab_size
|
| 59 |
+
|
| 60 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 61 |
+
self.layers = nn.ModuleList(
|
| 62 |
+
[ModifiedLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 63 |
+
)
|
| 64 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
| 65 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
| 66 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 67 |
+
|
| 68 |
+
self.gradient_checkpointing = False
|
| 69 |
+
# Initialize weights and apply final processing
|
| 70 |
+
self.post_init()
|
| 71 |
+
|
| 72 |
+
def forward(
|
| 73 |
+
self,
|
| 74 |
+
input_ids: torch.LongTensor = None,
|
| 75 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 76 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 77 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 78 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 79 |
+
use_cache: Optional[bool] = None,
|
| 80 |
+
output_attentions: Optional[bool] = None,
|
| 81 |
+
output_hidden_states: Optional[bool] = None,
|
| 82 |
+
return_dict: Optional[bool] = None,
|
| 83 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 84 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 85 |
+
output_hidden_states = (
|
| 86 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 87 |
+
)
|
| 88 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 89 |
+
|
| 90 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 91 |
+
|
| 92 |
+
# retrieve input_ids and inputs_embeds
|
| 93 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 94 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 95 |
+
elif input_ids is not None:
|
| 96 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 97 |
+
elif inputs_embeds is not None:
|
| 98 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 99 |
+
else:
|
| 100 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 101 |
+
|
| 102 |
+
if self.gradient_checkpointing and self.training:
|
| 103 |
+
if use_cache:
|
| 104 |
+
logger.warning_once(
|
| 105 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 106 |
+
)
|
| 107 |
+
use_cache = False
|
| 108 |
+
|
| 109 |
+
past_key_values_length = 0
|
| 110 |
+
if use_cache:
|
| 111 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
| 112 |
+
if use_legacy_cache:
|
| 113 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 114 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
| 115 |
+
|
| 116 |
+
if position_ids is None:
|
| 117 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 118 |
+
position_ids = torch.arange(
|
| 119 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 120 |
+
)
|
| 121 |
+
position_ids = position_ids.unsqueeze(0)
|
| 122 |
+
|
| 123 |
+
if inputs_embeds is None:
|
| 124 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 125 |
+
|
| 126 |
+
if self._use_flash_attention_2:
|
| 127 |
+
# 2d mask is passed through the layers
|
| 128 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
| 129 |
+
elif self._use_sdpa and not output_attentions:
|
| 130 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
| 131 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
| 132 |
+
attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
| 133 |
+
attention_mask,
|
| 134 |
+
(batch_size, seq_length),
|
| 135 |
+
inputs_embeds,
|
| 136 |
+
past_key_values_length,
|
| 137 |
+
)
|
| 138 |
+
else:
|
| 139 |
+
# 4d mask is passed through the layers
|
| 140 |
+
attention_mask = _prepare_4d_attention_mask(
|
| 141 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# embed positions
|
| 145 |
+
hidden_states = inputs_embeds
|
| 146 |
+
|
| 147 |
+
# decoder layers
|
| 148 |
+
all_hidden_states = () if output_hidden_states else None
|
| 149 |
+
all_self_attns = () if output_attentions else None
|
| 150 |
+
next_decoder_cache = None
|
| 151 |
+
|
| 152 |
+
for decoder_layer in self.layers:
|
| 153 |
+
if output_hidden_states:
|
| 154 |
+
all_hidden_states += (hidden_states,)
|
| 155 |
+
|
| 156 |
+
if self.gradient_checkpointing and self.training:
|
| 157 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 158 |
+
decoder_layer.__call__,
|
| 159 |
+
hidden_states,
|
| 160 |
+
attention_mask,
|
| 161 |
+
position_ids,
|
| 162 |
+
past_key_values,
|
| 163 |
+
output_attentions,
|
| 164 |
+
use_cache,
|
| 165 |
+
)
|
| 166 |
+
else:
|
| 167 |
+
layer_outputs = decoder_layer(
|
| 168 |
+
hidden_states,
|
| 169 |
+
attention_mask=attention_mask,
|
| 170 |
+
position_ids=position_ids,
|
| 171 |
+
past_key_value=past_key_values,
|
| 172 |
+
output_attentions=output_attentions,
|
| 173 |
+
use_cache=use_cache,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
hidden_states = layer_outputs[0]
|
| 177 |
+
|
| 178 |
+
if use_cache:
|
| 179 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 180 |
+
|
| 181 |
+
if output_attentions:
|
| 182 |
+
all_self_attns += (layer_outputs[1],)
|
| 183 |
+
|
| 184 |
+
hidden_states = self.norm(hidden_states)
|
| 185 |
+
|
| 186 |
+
# add hidden states from the last decoder layer
|
| 187 |
+
if output_hidden_states:
|
| 188 |
+
all_hidden_states += (hidden_states,)
|
| 189 |
+
|
| 190 |
+
next_cache = None
|
| 191 |
+
if use_cache:
|
| 192 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
| 193 |
+
if not return_dict:
|
| 194 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 195 |
+
return BaseModelOutputWithPast(
|
| 196 |
+
last_hidden_state=hidden_states,
|
| 197 |
+
past_key_values=next_cache,
|
| 198 |
+
hidden_states=all_hidden_states,
|
| 199 |
+
attentions=all_self_attns,
|
| 200 |
+
)
|