Model save
Browse files
README.md
CHANGED
|
@@ -23,7 +23,7 @@ model-index:
|
|
| 23 |
metrics:
|
| 24 |
- name: Accuracy
|
| 25 |
type: accuracy
|
| 26 |
-
value: 0.
|
| 27 |
---
|
| 28 |
|
| 29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 33 |
|
| 34 |
This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset.
|
| 35 |
It achieves the following results on the evaluation set:
|
| 36 |
-
- Loss: 0.
|
| 37 |
-
- Accuracy: 0.
|
| 38 |
|
| 39 |
## Model description
|
| 40 |
|
|
@@ -54,80 +54,25 @@ More information needed
|
|
| 54 |
|
| 55 |
The following hyperparameters were used during training:
|
| 56 |
- learning_rate: 5e-05
|
| 57 |
-
- train_batch_size:
|
| 58 |
-
- eval_batch_size:
|
| 59 |
- seed: 42
|
| 60 |
- gradient_accumulation_steps: 4
|
| 61 |
-
- total_train_batch_size:
|
| 62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 63 |
- lr_scheduler_type: linear
|
| 64 |
- lr_scheduler_warmup_ratio: 0.1
|
| 65 |
-
- num_epochs:
|
| 66 |
|
| 67 |
### Training results
|
| 68 |
|
| 69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 71 |
-
|
|
| 72 |
-
|
|
| 73 |
-
|
|
| 74 |
-
| 0.
|
| 75 |
-
| 0.
|
| 76 |
-
| 0.494 | 6.0 | 18 | 0.1527 | 0.9457 |
|
| 77 |
-
| 0.2024 | 7.0 | 21 | 0.3323 | 0.9022 |
|
| 78 |
-
| 0.2024 | 8.0 | 24 | 0.1520 | 0.9457 |
|
| 79 |
-
| 0.2024 | 9.0 | 27 | 0.1572 | 0.9457 |
|
| 80 |
-
| 0.1419 | 10.0 | 30 | 0.1814 | 0.9348 |
|
| 81 |
-
| 0.1419 | 11.0 | 33 | 0.1778 | 0.9348 |
|
| 82 |
-
| 0.1419 | 12.0 | 36 | 0.1505 | 0.9348 |
|
| 83 |
-
| 0.1419 | 13.0 | 39 | 0.1891 | 0.9457 |
|
| 84 |
-
| 0.1053 | 14.0 | 42 | 0.7274 | 0.7935 |
|
| 85 |
-
| 0.1053 | 15.0 | 45 | 0.2669 | 0.9348 |
|
| 86 |
-
| 0.1053 | 16.0 | 48 | 0.2240 | 0.9348 |
|
| 87 |
-
| 0.3044 | 17.0 | 51 | 0.3497 | 0.8913 |
|
| 88 |
-
| 0.3044 | 18.0 | 54 | 0.2208 | 0.9348 |
|
| 89 |
-
| 0.3044 | 19.0 | 57 | 0.1733 | 0.9565 |
|
| 90 |
-
| 0.151 | 20.0 | 60 | 0.2038 | 0.9239 |
|
| 91 |
-
| 0.151 | 21.0 | 63 | 0.1282 | 0.9565 |
|
| 92 |
-
| 0.151 | 22.0 | 66 | 0.3231 | 0.9239 |
|
| 93 |
-
| 0.151 | 23.0 | 69 | 0.1565 | 0.9565 |
|
| 94 |
-
| 0.0875 | 24.0 | 72 | 0.1981 | 0.9457 |
|
| 95 |
-
| 0.0875 | 25.0 | 75 | 0.1974 | 0.9457 |
|
| 96 |
-
| 0.0875 | 26.0 | 78 | 0.2045 | 0.9457 |
|
| 97 |
-
| 0.0851 | 27.0 | 81 | 0.1841 | 0.9457 |
|
| 98 |
-
| 0.0851 | 28.0 | 84 | 0.2061 | 0.9565 |
|
| 99 |
-
| 0.0851 | 29.0 | 87 | 0.2077 | 0.9457 |
|
| 100 |
-
| 0.046 | 30.0 | 90 | 0.2199 | 0.9565 |
|
| 101 |
-
| 0.046 | 31.0 | 93 | 0.2038 | 0.9565 |
|
| 102 |
-
| 0.046 | 32.0 | 96 | 0.2077 | 0.9457 |
|
| 103 |
-
| 0.046 | 33.0 | 99 | 0.1877 | 0.9565 |
|
| 104 |
-
| 0.0533 | 34.0 | 102 | 0.2383 | 0.9348 |
|
| 105 |
-
| 0.0533 | 35.0 | 105 | 0.2571 | 0.9239 |
|
| 106 |
-
| 0.0533 | 36.0 | 108 | 0.2330 | 0.9565 |
|
| 107 |
-
| 0.0451 | 37.0 | 111 | 0.2420 | 0.9457 |
|
| 108 |
-
| 0.0451 | 38.0 | 114 | 0.2882 | 0.9239 |
|
| 109 |
-
| 0.0451 | 39.0 | 117 | 0.2386 | 0.9457 |
|
| 110 |
-
| 0.0401 | 40.0 | 120 | 0.2513 | 0.9348 |
|
| 111 |
-
| 0.0401 | 41.0 | 123 | 0.2672 | 0.9348 |
|
| 112 |
-
| 0.0401 | 42.0 | 126 | 0.2950 | 0.9457 |
|
| 113 |
-
| 0.0401 | 43.0 | 129 | 0.3232 | 0.9457 |
|
| 114 |
-
| 0.0329 | 44.0 | 132 | 0.3712 | 0.9239 |
|
| 115 |
-
| 0.0329 | 45.0 | 135 | 0.3529 | 0.9348 |
|
| 116 |
-
| 0.0329 | 46.0 | 138 | 0.2905 | 0.9457 |
|
| 117 |
-
| 0.0519 | 47.0 | 141 | 0.2670 | 0.9457 |
|
| 118 |
-
| 0.0519 | 48.0 | 144 | 0.2629 | 0.9457 |
|
| 119 |
-
| 0.0519 | 49.0 | 147 | 0.2761 | 0.9457 |
|
| 120 |
-
| 0.0281 | 50.0 | 150 | 0.3040 | 0.9457 |
|
| 121 |
-
| 0.0281 | 51.0 | 153 | 0.3191 | 0.9457 |
|
| 122 |
-
| 0.0281 | 52.0 | 156 | 0.3214 | 0.9457 |
|
| 123 |
-
| 0.0281 | 53.0 | 159 | 0.3132 | 0.9457 |
|
| 124 |
-
| 0.028 | 54.0 | 162 | 0.3115 | 0.9457 |
|
| 125 |
-
| 0.028 | 55.0 | 165 | 0.3116 | 0.9565 |
|
| 126 |
-
| 0.028 | 56.0 | 168 | 0.3225 | 0.9457 |
|
| 127 |
-
| 0.0361 | 57.0 | 171 | 0.3235 | 0.9457 |
|
| 128 |
-
| 0.0361 | 58.0 | 174 | 0.3200 | 0.9457 |
|
| 129 |
-
| 0.0361 | 59.0 | 177 | 0.3183 | 0.9457 |
|
| 130 |
-
| 0.0312 | 60.0 | 180 | 0.3181 | 0.9457 |
|
| 131 |
|
| 132 |
|
| 133 |
### Framework versions
|
|
|
|
| 23 |
metrics:
|
| 24 |
- name: Accuracy
|
| 25 |
type: accuracy
|
| 26 |
+
value: 0.92511454202441
|
| 27 |
---
|
| 28 |
|
| 29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 33 |
|
| 34 |
This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset.
|
| 35 |
It achieves the following results on the evaluation set:
|
| 36 |
+
- Loss: 0.2045
|
| 37 |
+
- Accuracy: 0.9251
|
| 38 |
|
| 39 |
## Model description
|
| 40 |
|
|
|
|
| 54 |
|
| 55 |
The following hyperparameters were used during training:
|
| 56 |
- learning_rate: 5e-05
|
| 57 |
+
- train_batch_size: 64
|
| 58 |
+
- eval_batch_size: 64
|
| 59 |
- seed: 42
|
| 60 |
- gradient_accumulation_steps: 4
|
| 61 |
+
- total_train_batch_size: 256
|
| 62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 63 |
- lr_scheduler_type: linear
|
| 64 |
- lr_scheduler_warmup_ratio: 0.1
|
| 65 |
+
- num_epochs: 5
|
| 66 |
|
| 67 |
### Training results
|
| 68 |
|
| 69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 71 |
+
| 0.3471 | 1.0 | 208 | 0.2960 | 0.8940 |
|
| 72 |
+
| 0.3113 | 2.0 | 416 | 0.2551 | 0.9088 |
|
| 73 |
+
| 0.3104 | 3.0 | 624 | 0.2106 | 0.9212 |
|
| 74 |
+
| 0.2855 | 4.0 | 832 | 0.2101 | 0.9221 |
|
| 75 |
+
| 0.2497 | 5.0 | 1040 | 0.2045 | 0.9251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
### Framework versions
|