File size: 5,363 Bytes
fcd58ee
 
 
1f45d99
c0447ed
 
d4ac08b
93d2288
fcd58ee
5518c26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f45d99
d4ac08b
 
1f45d99
9e66f7d
1f45d99
 
fcd58ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0447ed
 
 
3ec4a4f
 
730ea7e
 
 
 
 
 
 
 
 
 
 
 
93d2288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import textwrap
from pathlib import Path
import logging
import numpy as np
from scipy.io.wavfile import write
import config
import csv
import av
import re

# Compile regex patterns once outside the loop for better performance
p_pattern = re.compile(r"(\s*\[.*?\])")
p_start_pattern = re.compile(r"(\s*\[.*)")
p_end_pattern = re.compile(r"(\s*.*\])")


def filter_words(res_word):
    """
    Filter words according to specific bracket patterns.
    
    Args:
        res_word: Iterable of word objects with a 'text' attribute
    
    Returns:
        List of filtered word objects
    """
    asr_results = []
    skip_word = False
    
    for word in res_word:
        # Skip words that completely match the pattern
        if p_pattern.match(word.text):
            continue
        
        # Mark the start of a section to skip
        if p_start_pattern.match(word.text):
            skip_word = True
            continue
        
        # Mark the end of a section to skip
        if p_end_pattern.match(word.text) and skip_word:
            skip_word = False
            continue
        
        # Skip words if we're in a skip section
        if skip_word:
            continue
        
        # Add the word to results if it passed all filters
        asr_results.append(word)
    
    return asr_results

def log_block(key: str, value, unit=''):
    if config.DEBUG:
        return 
    """格式化输出日志内容"""
    key_fmt = f"[  {key.ljust(25)}]"  # 左对齐填充
    val_fmt = f"{value} {unit}".strip()
    logging.info(f"{key_fmt}: {val_fmt}")


def clear_screen():
    """Clears the console screen."""
    os.system("cls" if os.name == "nt" else "clear")


def print_transcript(text):
    """Prints formatted transcript text."""
    wrapper = textwrap.TextWrapper(width=60)
    for line in wrapper.wrap(text="".join(text)):
        print(line)


def format_time(s):
    """Convert seconds (float) to SRT time format."""
    hours = int(s // 3600)
    minutes = int((s % 3600) // 60)
    seconds = int(s % 60)
    milliseconds = int((s - int(s)) * 1000)
    return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"


def create_srt_file(segments, resampled_file):
    with open(resampled_file, 'w', encoding='utf-8') as srt_file:
        segment_number = 1
        for segment in segments:
            start_time = format_time(float(segment['start']))
            end_time = format_time(float(segment['end']))
            text = segment['text']

            srt_file.write(f"{segment_number}\n")
            srt_file.write(f"{start_time} --> {end_time}\n")
            srt_file.write(f"{text}\n\n")

            segment_number += 1


def resample(file: str, sr: int = 16000):
    """
    Resample the audio file to 16kHz.

    Args:
        file (str): The audio file to open
        sr (int): The sample rate to resample the audio if necessary

    Returns:
        resampled_file (str): The resampled audio file
    """
    container = av.open(file)
    stream = next(s for s in container.streams if s.type == 'audio')

    resampler = av.AudioResampler(
        format='s16',
        layout='mono',
        rate=sr,
    )

    resampled_file = Path(file).stem + "_resampled.wav"
    output_container = av.open(resampled_file, mode='w')
    output_stream = output_container.add_stream('pcm_s16le', rate=sr)
    output_stream.layout = 'mono'

    for frame in container.decode(audio=0):
        frame.pts = None
        resampled_frames = resampler.resample(frame)
        if resampled_frames is not None:
            for resampled_frame in resampled_frames:
                for packet in output_stream.encode(resampled_frame):
                    output_container.mux(packet)

    for packet in output_stream.encode(None):
        output_container.mux(packet)

    output_container.close()
    return resampled_file


def save_to_wave(filename, data:np.ndarray, sample_rate=16000):
    data = (data * 32767).astype(np.int16)
    write(filename, sample_rate, data)


def pcm_bytes_to_np_array(pcm_bytes: bytes, dtype=np.float32, channels=1):
    # 1. 转换成 numpy int16 数组(每个采样点是 2 字节)
    audio_np = np.frombuffer(pcm_bytes, dtype=np.int16)
    audio_np = audio_np.astype(dtype=dtype)
    if dtype == np.float32:
        audio_np /= 32768.0
    # 2. 如果是多声道,例如 2 通道(立体声),你可以 reshape
    if channels > 1:
        audio_np = audio_np.reshape(-1, channels)
    return audio_np

class TestDataWriter:
    def __init__(self, file_path='test_data.csv'):
        self.file_path = file_path
        self.fieldnames = [
            'seg_id', 'transcrible_time', 'translate_time',
            'transcribleContent', 'from', 'to', 'translateContent', 'partial'
        ]
        self._ensure_file_has_header()

    def _ensure_file_has_header(self):
        if not os.path.exists(self.file_path) or os.path.getsize(self.file_path) == 0:
            with open(self.file_path, mode='w', newline='') as file:
                writer = csv.DictWriter(file, fieldnames=self.fieldnames)
                writer.writeheader()

    def write(self, result: 'DebugResult'):
        with open(self.file_path, mode='a', newline='') as file:
            writer = csv.DictWriter(file, fieldnames=self.fieldnames)
            writer.writerow(result.model_dump(by_alias=True))