david
commited on
Commit
·
0c38083
1
Parent(s):
dfb349e
update code for readability
Browse files- config.py +4 -0
- main.py +2 -2
- transcribe/strategy.py +246 -119
- transcribe/whisper_llm_serve.py +243 -195
config.py
CHANGED
|
@@ -17,6 +17,10 @@ ASSERT_DIR = BASE_DIR / "assets"
|
|
| 17 |
# 标点
|
| 18 |
SENTENCE_END_MARKERS = ['.', '!', '?', '。', '!', '?', ';', ';', ':', ':']
|
| 19 |
PAUSE_END_MARKERS = [',', ',', '、']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
sentence_end_chars = ''.join([re.escape(char) for char in SENTENCE_END_MARKERS])
|
| 22 |
SENTENCE_END_PATTERN = re.compile(f'[{sentence_end_chars}]')
|
|
|
|
| 17 |
# 标点
|
| 18 |
SENTENCE_END_MARKERS = ['.', '!', '?', '。', '!', '?', ';', ';', ':', ':']
|
| 19 |
PAUSE_END_MARKERS = [',', ',', '、']
|
| 20 |
+
# 合并所有标点
|
| 21 |
+
ALL_MARKERS = SENTENCE_END_MARKERS + PAUSE_END_MARKERS
|
| 22 |
+
# 构造正则表达式字符类
|
| 23 |
+
REGEX_MARKERS = re.compile(r'[' + re.escape(''.join(ALL_MARKERS)) + r']')
|
| 24 |
|
| 25 |
sentence_end_chars = ''.join([re.escape(char) for char in SENTENCE_END_MARKERS])
|
| 26 |
SENTENCE_END_PATTERN = re.compile(f'[{sentence_end_chars}]')
|
main.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 2 |
from urllib.parse import urlparse, parse_qsl
|
| 3 |
-
from transcribe.whisper_llm_serve import
|
| 4 |
from uuid import uuid1
|
| 5 |
from logging import getLogger
|
| 6 |
import numpy as np
|
|
@@ -57,7 +57,7 @@ async def root():
|
|
| 57 |
async def translate(websocket: WebSocket):
|
| 58 |
query_parameters_dict = websocket.query_params
|
| 59 |
from_lang, to_lang = query_parameters_dict.get('from'), query_parameters_dict.get('to')
|
| 60 |
-
client =
|
| 61 |
websocket,
|
| 62 |
pipe,
|
| 63 |
language="en",
|
|
|
|
| 1 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
| 2 |
from urllib.parse import urlparse, parse_qsl
|
| 3 |
+
from transcribe.whisper_llm_serve import WhisperTranscriptionService
|
| 4 |
from uuid import uuid1
|
| 5 |
from logging import getLogger
|
| 6 |
import numpy as np
|
|
|
|
| 57 |
async def translate(websocket: WebSocket):
|
| 58 |
query_parameters_dict = websocket.query_params
|
| 59 |
from_lang, to_lang = query_parameters_dict.get('from'), query_parameters_dict.get('to')
|
| 60 |
+
client = WhisperTranscriptionService(
|
| 61 |
websocket,
|
| 62 |
pipe,
|
| 63 |
language="en",
|
transcribe/strategy.py
CHANGED
|
@@ -1,153 +1,280 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
from logging import getLogger
|
| 4 |
-
from difflib import SequenceMatcher
|
| 5 |
import collections
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
from itertools import chain
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
logger = getLogger("
|
| 11 |
|
| 12 |
-
class TripleTextBuffer:
|
| 13 |
-
def __init__(self, size=2):
|
| 14 |
-
self.history = collections.deque(maxlen=size)
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"""
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
"""
|
| 21 |
self.history.append((text, index))
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
if len(self.history) < 2:
|
| 27 |
return None
|
| 28 |
|
| 29 |
-
# 获取三次的文本
|
| 30 |
text1, _ = self.history[0]
|
| 31 |
text2, idx2 = self.history[1]
|
| 32 |
-
# text3, idx3 = self.history[2]
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
# sim_23 = self.text_similarity(text2, text3)
|
| 38 |
-
if sim_12 >= similarity_threshold:
|
| 39 |
self.history.clear()
|
| 40 |
return idx2
|
| 41 |
return None
|
| 42 |
|
| 43 |
@staticmethod
|
| 44 |
-
def
|
|
|
|
| 45 |
return SequenceMatcher(None, text1, text2).ratio()
|
| 46 |
|
| 47 |
|
| 48 |
|
| 49 |
-
class
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
self._commited_short_sentences = [] # 确定后的序列
|
| 53 |
-
self._temp_string = "" # 存储当前临时的文本字符串,直到以句号结尾
|
| 54 |
-
|
| 55 |
-
def handle(self, string):
|
| 56 |
-
self._temp_string = string
|
| 57 |
-
return self
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
@property
|
| 60 |
-
def
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
@property
|
| 64 |
-
def
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
return len(self._commited_segments)
|
| 69 |
-
|
| 70 |
@property
|
| 71 |
-
def
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
self.
|
| 79 |
-
|
| 80 |
-
def
|
| 81 |
-
"""
|
| 82 |
-
self.
|
| 83 |
-
self
|
| 84 |
-
|
| 85 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
"""
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
"""
|
| 90 |
-
self.
|
| 91 |
-
if
|
| 92 |
-
self.
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
for idx, seg in enumerate(segments):
|
| 121 |
-
|
| 122 |
-
left_watch_sequences.append(seg)
|
| 123 |
if seg.text and seg.text[-1] in markers:
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
break
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
|
|
|
|
|
|
|
|
|
| 2 |
import collections
|
| 3 |
+
import logging
|
| 4 |
+
from difflib import SequenceMatcher
|
| 5 |
from itertools import chain
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from typing import List, Tuple, Optional, Deque, Any, Iterator
|
| 8 |
+
from config import SENTENCE_END_MARKERS, ALL_MARKERS,SENTENCE_END_PATTERN,REGEX_MARKERS
|
| 9 |
+
import numpy as np
|
| 10 |
|
| 11 |
+
logger = logging.getLogger("TranscriptionStrategy")
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
@dataclass
|
| 15 |
+
class TranscriptSegment:
|
| 16 |
+
"""表示一个转录片段,包含文本和时间信息"""
|
| 17 |
+
text: str
|
| 18 |
+
t0: float # 开始时间(百分之一秒)
|
| 19 |
+
t1: float # 结束时间(百分之一秒)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class TextStabilityBuffer:
|
| 23 |
+
"""
|
| 24 |
+
通过比较连续文本样本的相似度来确定转录文本的稳定性。
|
| 25 |
+
当连续样本的相似度超过阈值时,认为文本已稳定。
|
| 26 |
+
"""
|
| 27 |
+
def __init__(self, max_history: int = 2):
|
| 28 |
+
self.history: Deque[Tuple[str, int]] = collections.deque(maxlen=max_history)
|
| 29 |
+
|
| 30 |
+
def add_entry(self, text: str, index: int) -> None:
|
| 31 |
"""
|
| 32 |
+
添加新的文本和索引到历史记录中
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
text: 文本内容
|
| 36 |
+
index: 当前buffer的相对下标
|
| 37 |
"""
|
| 38 |
self.history.append((text, index))
|
| 39 |
|
| 40 |
+
def get_stable_index(self, similarity_threshold: float = 0.7) -> Optional[int]:
|
| 41 |
+
"""
|
| 42 |
+
根据文本相似度,判断文本是否稳定,返回稳定文本的索引
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
similarity_threshold: 相似度阈值,超过此值认为文本稳定
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
稳定文本的索引,如果没有找到稳定文本则返回None
|
| 49 |
+
"""
|
| 50 |
if len(self.history) < 2:
|
| 51 |
return None
|
| 52 |
|
|
|
|
| 53 |
text1, _ = self.history[0]
|
| 54 |
text2, idx2 = self.history[1]
|
|
|
|
| 55 |
|
| 56 |
+
similarity = self._calculate_similarity(text1, text2)
|
| 57 |
+
|
| 58 |
+
if similarity >= similarity_threshold:
|
|
|
|
|
|
|
| 59 |
self.history.clear()
|
| 60 |
return idx2
|
| 61 |
return None
|
| 62 |
|
| 63 |
@staticmethod
|
| 64 |
+
def _calculate_similarity(text1: str, text2: str) -> float:
|
| 65 |
+
"""计算两段文本的相似度"""
|
| 66 |
return SequenceMatcher(None, text1, text2).ratio()
|
| 67 |
|
| 68 |
|
| 69 |
|
| 70 |
+
class TranscriptionManager:
|
| 71 |
+
"""
|
| 72 |
+
管理转录文本的分级结构:临时字符串 -> 短句 -> 完整段落
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
|-- 已确认文本 --|-- 观察窗口 --|-- 新输入 --|
|
| 75 |
+
"""
|
| 76 |
+
def __init__(self):
|
| 77 |
+
self._committed_segments: List[str] = [] # 确认的完整段落
|
| 78 |
+
self._committed_sentences: List[str] = [] # 确认的短句
|
| 79 |
+
self._temp_string: str = "" # 临时字符串缓冲
|
| 80 |
+
|
| 81 |
@property
|
| 82 |
+
def current_sentence(self) -> str:
|
| 83 |
+
"""当前已确认的短句组合"""
|
| 84 |
+
return "".join(self._committed_sentences)
|
| 85 |
+
|
| 86 |
@property
|
| 87 |
+
def latest_segment(self) -> str:
|
| 88 |
+
"""最新确认的完整段落"""
|
| 89 |
+
return self._committed_segments[-1] if self._committed_segments else ""
|
| 90 |
+
|
|
|
|
|
|
|
| 91 |
@property
|
| 92 |
+
def segment_count(self) -> int:
|
| 93 |
+
"""已确认的段落数量"""
|
| 94 |
+
return len(self._committed_segments)
|
| 95 |
+
|
| 96 |
+
@property
|
| 97 |
+
def sentence_length(self) -> int:
|
| 98 |
+
"""当前短句的总字符长度"""
|
| 99 |
+
return sum(len(s) for s in self._committed_sentences)
|
| 100 |
+
|
| 101 |
+
def update_temp(self, text: str) -> 'TranscriptionManager':
|
| 102 |
+
"""更新临时字符串"""
|
| 103 |
+
self._temp_string = text
|
| 104 |
+
return self
|
| 105 |
+
|
| 106 |
+
def commit_sentence(self) -> None:
|
| 107 |
+
"""将临时字符串提交到短句列表"""
|
| 108 |
+
if self._temp_string:
|
| 109 |
+
self._committed_sentences.append(self._temp_string)
|
| 110 |
+
self._temp_string = ""
|
| 111 |
+
|
| 112 |
+
def commit_segment(self, is_end_of_sentence: bool = False) -> None:
|
| 113 |
"""
|
| 114 |
+
提交当前内容到适当的层级
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
is_end_of_sentence: 是否为完整句子的结束
|
| 118 |
"""
|
| 119 |
+
self.commit_sentence()
|
| 120 |
+
if is_end_of_sentence and self._committed_sentences:
|
| 121 |
+
self._committed_segments.append(self.current_sentence)
|
| 122 |
+
self._committed_sentences = []
|
| 123 |
+
|
| 124 |
+
def get_all_text(self) -> str:
|
| 125 |
+
"""获取所有已提交的文本"""
|
| 126 |
+
all_segments = self._committed_segments.copy()
|
| 127 |
+
if self.current_sentence:
|
| 128 |
+
all_segments.append(self.current_sentence)
|
| 129 |
+
if self._temp_string:
|
| 130 |
+
all_segments.append(self._temp_string)
|
| 131 |
+
return "\n".join(all_segments)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class TranscriptionSplitter:
|
| 135 |
+
"""负责根据语音和文本特征拆分转录片段"""
|
| 136 |
+
|
| 137 |
+
@staticmethod
|
| 138 |
+
def group_by_sentences(segments: List[TranscriptSegment]) -> List[List[TranscriptSegment]]:
|
| 139 |
+
"""将片段按照完整句子分组"""
|
| 140 |
+
sequences = []
|
| 141 |
+
temp_seq = []
|
| 142 |
+
|
| 143 |
+
for seg in segments:
|
| 144 |
+
temp_seq.append(seg)
|
| 145 |
+
if any(marker in seg.text for marker in SENTENCE_END_MARKERS):
|
| 146 |
+
sequences.append(temp_seq.copy())
|
| 147 |
+
temp_seq = []
|
| 148 |
+
|
| 149 |
+
if temp_seq:
|
| 150 |
+
sequences.append(temp_seq)
|
| 151 |
+
return sequences
|
| 152 |
+
|
| 153 |
+
@staticmethod
|
| 154 |
+
def split_by_punctuation(
|
| 155 |
+
segments: List[TranscriptSegment],
|
| 156 |
+
audio_buffer: np.ndarray,
|
| 157 |
+
sample_rate: int = 16000
|
| 158 |
+
) -> Tuple[int, List[TranscriptSegment], List[TranscriptSegment], bool]:
|
| 159 |
+
"""
|
| 160 |
+
根据标点符号将片段分为左侧(已确认)和右侧(待确认)
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
(分割索引, 左侧片段, 右侧片段, 是否为句子结束)
|
| 164 |
+
"""
|
| 165 |
+
left_segments = []
|
| 166 |
+
right_segments = []
|
| 167 |
+
split_index = 0
|
| 168 |
+
is_sentence_end = False
|
| 169 |
+
|
| 170 |
+
# 短音频使用所有标点符号作为分割依据
|
| 171 |
+
buffer_duration = len(audio_buffer) / sample_rate
|
| 172 |
+
markers = ALL_MARKERS if buffer_duration < 12 else SENTENCE_END_MARKERS
|
| 173 |
+
|
| 174 |
for idx, seg in enumerate(segments):
|
| 175 |
+
left_segments.append(seg)
|
|
|
|
| 176 |
if seg.text and seg.text[-1] in markers:
|
| 177 |
+
split_index = int(seg.t1 / 100 * sample_rate)
|
| 178 |
+
is_sentence_end = bool(SENTENCE_END_PATTERN.search(seg.text))
|
| 179 |
+
right_segments = segments[min(idx+1, len(segments)):]
|
| 180 |
+
break
|
| 181 |
|
| 182 |
+
return split_index, left_segments, right_segments, is_sentence_end
|
| 183 |
+
|
| 184 |
+
@staticmethod
|
| 185 |
+
def split_by_sequences(
|
| 186 |
+
segments: List[TranscriptSegment],
|
| 187 |
+
audio_buffer: np.ndarray,
|
| 188 |
+
sample_rate: int = 16000
|
| 189 |
+
) -> Tuple[int, Iterator[TranscriptSegment], Iterator[TranscriptSegment], bool]:
|
| 190 |
+
"""
|
| 191 |
+
对于长文本,按照句子组保留最新的两句
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
(分割索引, 左侧片段, 右侧片段, 是否为句子结束)
|
| 195 |
+
"""
|
| 196 |
+
sequences = TranscriptionSplitter.group_by_sentences(segments)
|
| 197 |
+
|
| 198 |
+
if len(sequences) > 2:
|
| 199 |
+
logger.info(f"Buffer clip via sequence, current length: {len(sequences)}")
|
| 200 |
+
left_segments = chain(*sequences[:-2])
|
| 201 |
+
right_segments = chain(*sequences[-2:])
|
| 202 |
+
|
| 203 |
+
# 确定切分点
|
| 204 |
+
last_sequence = sequences[-3]
|
| 205 |
+
last_segment = last_sequence[-1]
|
| 206 |
+
split_index = int(last_segment.t1 / 100 * sample_rate)
|
| 207 |
+
|
| 208 |
+
return split_index, left_segments, right_segments, True
|
| 209 |
+
|
| 210 |
+
return 0, iter([]), iter(segments), False
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class TranscriptionStabilizer:
|
| 214 |
+
"""
|
| 215 |
+
转录结果稳定器,负责确认和管理转录片段
|
| 216 |
+
"""
|
| 217 |
+
def __init__(self, sample_rate: int = 16000):
|
| 218 |
+
self.manager = TranscriptionManager()
|
| 219 |
+
self.stability_buffer = TextStabilityBuffer(max_history=2)
|
| 220 |
+
self.sample_rate = sample_rate
|
| 221 |
+
|
| 222 |
+
def process_segments(self, segments: List[TranscriptSegment]) -> Tuple[Optional[int], bool]:
|
| 223 |
+
"""
|
| 224 |
+
处理转录片段,确认稳定的文本
|
| 225 |
+
|
| 226 |
+
Args:
|
| 227 |
+
segments: 转录片段列表
|
| 228 |
+
|
| 229 |
+
Returns:
|
| 230 |
+
(音频分割点索引, 是否达到足够长度需要换行)
|
| 231 |
+
"""
|
| 232 |
+
# 查找第一个包含标点的片段作为分割点
|
| 233 |
+
split_index = None
|
| 234 |
+
stable_segments = []
|
| 235 |
+
|
| 236 |
+
for idx, seg in enumerate(segments):
|
| 237 |
+
stable_segments.append(seg)
|
| 238 |
+
if REGEX_MARKERS.search(seg.text):
|
| 239 |
+
split_index = int(seg.t1 / 100 * self.sample_rate)
|
| 240 |
+
stable_idx = min(idx + 1, len(segments))
|
| 241 |
break
|
| 242 |
+
|
| 243 |
+
if split_index: # 找到标点,确认标点前的内容
|
| 244 |
+
stable_text = self._join_segment_text(segments[:stable_idx])
|
| 245 |
+
self.manager.update_temp(stable_text).commit_sentence()
|
| 246 |
+
|
| 247 |
+
# 更新剩余文本
|
| 248 |
+
remaining_text = self._join_segment_text(segments[stable_idx:])
|
| 249 |
+
self.manager.update_temp(remaining_text)
|
| 250 |
+
else:
|
| 251 |
+
# 没有找到标点,全部作为临时文本
|
| 252 |
+
self.manager.update_temp(self._join_segment_text(segments))
|
| 253 |
+
|
| 254 |
+
# 检查是否达到换行标准
|
| 255 |
+
should_linebreak = self.manager.sentence_length >= 20
|
| 256 |
+
|
| 257 |
+
return split_index, should_linebreak
|
| 258 |
+
|
| 259 |
+
def check_stability(self, text: str, index: int) -> Optional[int]:
|
| 260 |
+
"""
|
| 261 |
+
检查文本是否稳定
|
| 262 |
+
|
| 263 |
+
Args:
|
| 264 |
+
text: 当前文本
|
| 265 |
+
index: 当前索引
|
| 266 |
+
|
| 267 |
+
Returns:
|
| 268 |
+
如果文本稳定,返回稳定的索引;否则返回None
|
| 269 |
+
"""
|
| 270 |
+
self.stability_buffer.add_entry(text, index)
|
| 271 |
+
return self.stability_buffer.get_stable_index()
|
| 272 |
+
|
| 273 |
+
def commit_segment(self, is_end_of_sentence: bool) -> None:
|
| 274 |
+
"""提交转录片段"""
|
| 275 |
+
self.manager.commit_segment(is_end_of_sentence)
|
| 276 |
+
|
| 277 |
+
@staticmethod
|
| 278 |
+
def _join_segment_text(segments: List[TranscriptSegment], separator: str = "") -> str:
|
| 279 |
+
"""连接多个片段的文本"""
|
| 280 |
+
return separator.join(seg.text for seg in segments)
|
transcribe/whisper_llm_serve.py
CHANGED
|
@@ -1,261 +1,309 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import numpy as np
|
| 4 |
-
from logging import getLogger
|
| 5 |
import asyncio
|
| 6 |
-
from .utils import save_to_wave
|
| 7 |
-
import time
|
| 8 |
import json
|
| 9 |
-
import threading
|
| 10 |
-
from .server import ServeClientBase
|
| 11 |
import queue
|
| 12 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
from api_model import TransResult, Message
|
| 14 |
-
from .
|
|
|
|
| 15 |
from .translatepipes import TranslatePipes
|
| 16 |
-
from .strategy import
|
| 17 |
-
|
| 18 |
-
logger = getLogger("TranslatorApp")
|
| 19 |
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
-
class
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
super().__init__(client_uid, websocket)
|
| 26 |
-
self.
|
| 27 |
-
self.
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
self.
|
| 32 |
-
self.
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
self.frames_np = None
|
|
|
|
| 35 |
self._frame_queue = queue.Queue()
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
self.send_ready_state()
|
|
|
|
|
|
|
| 39 |
self._translate_thread_stop = threading.Event()
|
| 40 |
-
self.
|
| 41 |
-
self.translate_thread = self.
|
| 42 |
-
self.
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
def
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
t.start()
|
| 50 |
-
return t
|
| 51 |
|
| 52 |
-
def send_ready_state(self):
|
|
|
|
| 53 |
self.websocket.send(json.dumps({
|
| 54 |
"uid": self.client_uid,
|
| 55 |
"message": self.SERVER_READY,
|
| 56 |
-
"backend": "
|
| 57 |
}))
|
| 58 |
|
| 59 |
-
def
|
| 60 |
-
|
| 61 |
-
self.
|
| 62 |
-
self.
|
|
|
|
| 63 |
|
| 64 |
-
def
|
|
|
|
| 65 |
self._frame_queue.put(frame_np)
|
| 66 |
|
| 67 |
-
def
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
item = self._translate_pipes.voice_detect(frame.tobytes())
|
| 71 |
-
frame_np = np.frombuffer(item.audio, dtype=np.float32)
|
| 72 |
-
self.frames_np = frame_np.copy()
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def get_frame_from_queue(self,):
|
| 76 |
-
while not self._frame_to_queue_thread_stop.is_set():
|
| 77 |
try:
|
| 78 |
frame_np = self._frame_queue.get(timeout=0.1)
|
| 79 |
with self.lock:
|
| 80 |
if self.frames_np is None:
|
| 81 |
self.frames_np = frame_np.copy()
|
| 82 |
else:
|
| 83 |
-
self.frames_np = np.append(self.frames_np,frame_np)
|
| 84 |
except queue.Empty:
|
| 85 |
pass
|
| 86 |
-
|
| 87 |
|
| 88 |
-
def
|
|
|
|
| 89 |
with self.lock:
|
| 90 |
-
self.frames_np
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
def
|
| 93 |
-
"""
|
| 94 |
-
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
|
|
|
|
|
|
| 100 |
log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
|
| 101 |
start_time = time.perf_counter()
|
| 102 |
|
| 103 |
-
|
| 104 |
-
segments =
|
| 105 |
-
|
| 106 |
-
log_block("Whisper
|
| 107 |
-
|
|
|
|
| 108 |
return segments
|
| 109 |
-
|
| 110 |
-
def
|
| 111 |
-
"""
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
| 115 |
start_time = time.perf_counter()
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
| 120 |
return translated_text
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
self.
|
| 135 |
-
|
| 136 |
-
if
|
| 137 |
-
return
|
| 138 |
|
| 139 |
-
#
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
if left_watch_idx != 0:
|
| 144 |
-
return left_watch_idx, left_watch_string, right_watch_string, is_end_sentence
|
| 145 |
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
def
|
| 149 |
-
|
| 150 |
while not self._translate_thread_stop.is_set():
|
| 151 |
if self.exit:
|
| 152 |
-
logger.info("Exiting
|
| 153 |
break
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
| 158 |
continue
|
| 159 |
-
|
| 160 |
-
|
|
|
|
| 161 |
if audio_buffer is None:
|
| 162 |
-
time.sleep(0.02)
|
| 163 |
continue
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
| 183 |
return
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
# print(last_cut_index, left_string, right_string, is_end_sentence)
|
| 188 |
-
if last_cut_index:
|
| 189 |
-
self.update_audio_buffer(last_cut_index)
|
| 190 |
-
# 句子或者短句的提交
|
| 191 |
-
log_block("Whisper string lock ", f"{left_string}",)
|
| 192 |
-
self._segment_manager.handle(left_string).commit(is_end_sentence)
|
| 193 |
-
self._segment_manager.handle(right_string)
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
seg_id = self._segment_manager.get_seg_id() - 1
|
| 198 |
-
# logger.info(f"{seg_id}, {message}")
|
| 199 |
-
yield TransResult(
|
| 200 |
-
seg_id=seg_id,
|
| 201 |
-
context=message,
|
| 202 |
-
from_=self.language,
|
| 203 |
-
to=self.dst_lang,
|
| 204 |
-
tran_content=self.translate_text(message),
|
| 205 |
-
partial=False
|
| 206 |
-
)
|
| 207 |
-
if self._segment_manager.string.strip():
|
| 208 |
-
message = self._segment_manager.string.strip()
|
| 209 |
-
# logger.info(f"{seg_id + 1}, {message}")
|
| 210 |
-
yield TransResult(
|
| 211 |
-
seg_id=seg_id+1,
|
| 212 |
-
context=self._segment_manager.string,
|
| 213 |
-
from_=self.language,
|
| 214 |
-
to=self.dst_lang,
|
| 215 |
-
tran_content=self.translate_text(message),
|
| 216 |
-
)
|
| 217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
else:
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
| 222 |
yield TransResult(
|
| 223 |
-
seg_id=
|
| 224 |
-
context=
|
| 225 |
-
from_=self.
|
| 226 |
-
to=self.
|
| 227 |
-
tran_content=self.
|
|
|
|
| 228 |
)
|
| 229 |
-
|
| 230 |
-
def
|
|
|
|
| 231 |
try:
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
)
|
| 235 |
asyncio.run(coro)
|
| 236 |
-
except RuntimeError
|
| 237 |
self.stop()
|
| 238 |
-
return
|
| 239 |
except Exception as e:
|
| 240 |
-
logger.error(e)
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
def get_audio_chunk_for_processing(self):
|
| 245 |
-
self.vad_merge()
|
| 246 |
-
silence_audio = np.zeros((self.sample_rate+1000,), dtype=np.float32)
|
| 247 |
-
frames = self.frames_np.copy()
|
| 248 |
-
# 添加对非常短音频的处理
|
| 249 |
-
if len(frames) <= 100:
|
| 250 |
-
# 对于极短的音频段(<=100帧),直接返回空音频
|
| 251 |
-
self.update_audio_buffer(len(frames))
|
| 252 |
-
return None
|
| 253 |
-
elif len(frames) < self.sample_rate:
|
| 254 |
-
silence_audio[-len(frames):] = frames
|
| 255 |
-
return silence_audio.copy()
|
| 256 |
-
return frames.copy()
|
| 257 |
-
|
| 258 |
|
| 259 |
-
def stop(self):
|
|
|
|
| 260 |
self._translate_thread_stop.set()
|
| 261 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import asyncio
|
|
|
|
|
|
|
| 2 |
import json
|
|
|
|
|
|
|
| 3 |
import queue
|
| 4 |
+
import threading
|
| 5 |
+
import time
|
| 6 |
+
from logging import getLogger
|
| 7 |
+
from typing import List, Optional, Iterator, Tuple, Any
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
from api_model import TransResult, Message
|
| 12 |
+
from .server import ServeClientBase
|
| 13 |
+
from .utils import log_block, save_to_wave
|
| 14 |
from .translatepipes import TranslatePipes
|
| 15 |
+
from .strategy import TextStabilityBuffer, TranscriptionManager, TranscriptionSplitter, TranscriptSegment
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
logger = getLogger("TranscriptionService")
|
| 18 |
|
| 19 |
|
| 20 |
+
class WhisperTranscriptionService(ServeClientBase):
|
| 21 |
+
"""
|
| 22 |
+
Whisper语音转录服务类,处理音频流转录和翻译
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, websocket, pipe: TranslatePipes, language=None, dst_lang=None, client_uid=None):
|
| 26 |
super().__init__(client_uid, websocket)
|
| 27 |
+
self.source_language = language # 源语言
|
| 28 |
+
self.target_language = dst_lang # 目标翻译语言
|
| 29 |
+
|
| 30 |
+
# 转录结果稳定性管理
|
| 31 |
+
self._text_stability_buffer = TextStabilityBuffer()
|
| 32 |
+
self._transcription_manager = TranscriptionManager()
|
| 33 |
+
self._translate_pipe = pipe
|
| 34 |
+
|
| 35 |
+
# 音频处理相关
|
| 36 |
+
self.sample_rate = 16000
|
| 37 |
self.frames_np = None
|
| 38 |
+
self.lock = threading.Lock()
|
| 39 |
self._frame_queue = queue.Queue()
|
| 40 |
+
|
| 41 |
+
# 文本分隔符,根据语言设置
|
| 42 |
+
self.text_separator = self._get_text_separator(language)
|
| 43 |
+
|
| 44 |
+
# 发送就绪状态
|
| 45 |
self.send_ready_state()
|
| 46 |
+
|
| 47 |
+
# 启动处理线程
|
| 48 |
self._translate_thread_stop = threading.Event()
|
| 49 |
+
self._frame_processing_thread_stop = threading.Event()
|
| 50 |
+
self.translate_thread = self._start_thread(self._transcription_processing_loop)
|
| 51 |
+
self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
|
| 52 |
|
| 53 |
+
def _start_thread(self, target_function) -> threading.Thread:
|
| 54 |
+
"""启动守护线程执行指定函数"""
|
| 55 |
+
thread = threading.Thread(target=target_function)
|
| 56 |
+
thread.daemon = True
|
| 57 |
+
thread.start()
|
| 58 |
+
return thread
|
| 59 |
|
| 60 |
+
def _get_text_separator(self, language: str) -> str:
|
| 61 |
+
"""根据语言返回适当的文本分隔符"""
|
| 62 |
+
return "" if language == "zh" else " "
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
def send_ready_state(self) -> None:
|
| 65 |
+
"""发送服务就绪状态消息"""
|
| 66 |
self.websocket.send(json.dumps({
|
| 67 |
"uid": self.client_uid,
|
| 68 |
"message": self.SERVER_READY,
|
| 69 |
+
"backend": "whisper_transcription"
|
| 70 |
}))
|
| 71 |
|
| 72 |
+
def set_language(self, source_lang: str, target_lang: str) -> None:
|
| 73 |
+
"""设置源语言和目标语言"""
|
| 74 |
+
self.source_language = source_lang
|
| 75 |
+
self.target_language = target_lang
|
| 76 |
+
self.text_separator = self._get_text_separator(source_lang)
|
| 77 |
|
| 78 |
+
def add_audio_frames(self, frame_np: np.ndarray) -> None:
|
| 79 |
+
"""添加音频帧到处理队列"""
|
| 80 |
self._frame_queue.put(frame_np)
|
| 81 |
|
| 82 |
+
def _frame_processing_loop(self) -> None:
|
| 83 |
+
"""从队列获取音频帧并合并到缓冲区"""
|
| 84 |
+
while not self._frame_processing_thread_stop.is_set():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
try:
|
| 86 |
frame_np = self._frame_queue.get(timeout=0.1)
|
| 87 |
with self.lock:
|
| 88 |
if self.frames_np is None:
|
| 89 |
self.frames_np = frame_np.copy()
|
| 90 |
else:
|
| 91 |
+
self.frames_np = np.append(self.frames_np, frame_np)
|
| 92 |
except queue.Empty:
|
| 93 |
pass
|
|
|
|
| 94 |
|
| 95 |
+
def _apply_voice_activity_detection(self) -> None:
|
| 96 |
+
"""应用语音活动检测来优化音频缓冲区"""
|
| 97 |
with self.lock:
|
| 98 |
+
if self.frames_np is not None:
|
| 99 |
+
frame = self.frames_np.copy()
|
| 100 |
+
processed_audio = self._translate_pipe.voice_detect(frame.tobytes())
|
| 101 |
+
self.frames_np = np.frombuffer(processed_audio.audio, dtype=np.float32).copy()
|
| 102 |
|
| 103 |
+
def _update_audio_buffer(self, offset: int) -> None:
|
| 104 |
+
"""从音频缓冲区中移除已处理的部分"""
|
| 105 |
+
with self.lock:
|
| 106 |
+
if self.frames_np is not None and offset > 0:
|
| 107 |
+
self.frames_np = self.frames_np[offset:]
|
| 108 |
|
| 109 |
+
def _get_audio_for_processing(self) -> Optional[np.ndarray]:
|
| 110 |
+
"""准备用于处理的音频块"""
|
| 111 |
+
# 应用VAD处理
|
| 112 |
+
self._apply_voice_activity_detection()
|
| 113 |
+
|
| 114 |
+
# 没有音频帧
|
| 115 |
+
if self.frames_np is None:
|
| 116 |
+
return None
|
| 117 |
+
|
| 118 |
+
frames = self.frames_np.copy()
|
| 119 |
+
|
| 120 |
+
# 音频过短时的处理
|
| 121 |
+
if len(frames) <= 100:
|
| 122 |
+
# 极短音频段,清空并返回None
|
| 123 |
+
self._update_audio_buffer(len(frames))
|
| 124 |
+
return None
|
| 125 |
+
elif len(frames) < self.sample_rate:
|
| 126 |
+
# 不足一秒的音频,补充静音
|
| 127 |
+
silence_audio = np.zeros((self.sample_rate + 1000,), dtype=np.float32)
|
| 128 |
+
silence_audio[-len(frames):] = frames
|
| 129 |
+
return silence_audio.copy()
|
| 130 |
+
|
| 131 |
+
return frames.copy()
|
| 132 |
|
| 133 |
+
def _transcribe_audio(self, audio_buffer: np.ndarray) -> List[TranscriptSegment]:
|
| 134 |
+
"""转录音频并返回转录片段"""
|
| 135 |
log_block("Audio buffer length", f"{audio_buffer.shape[0]/self.sample_rate:.2f}", "s")
|
| 136 |
start_time = time.perf_counter()
|
| 137 |
|
| 138 |
+
result = self._translate_pipe.transcrible(audio_buffer.tobytes(), self.source_language)
|
| 139 |
+
segments = result.segments
|
| 140 |
+
|
| 141 |
+
log_block("Whisper transcription output", f"{''.join(seg.text for seg in segments)}", "")
|
| 142 |
+
log_block("Whisper transcription time", f"{(time.perf_counter() - start_time):.3f}", "s")
|
| 143 |
+
|
| 144 |
return segments
|
| 145 |
+
|
| 146 |
+
def _translate_text(self, text: str) -> str:
|
| 147 |
+
"""将文本翻译为目标语言"""
|
| 148 |
+
if not text.strip():
|
| 149 |
+
return ""
|
| 150 |
+
|
| 151 |
+
log_block("Translation input", f"{text}")
|
| 152 |
start_time = time.perf_counter()
|
| 153 |
+
|
| 154 |
+
result = self._translate_pipe.translate(text, self.source_language, self.target_language)
|
| 155 |
+
translated_text = result.translate_content
|
| 156 |
+
|
| 157 |
+
log_block("Translation time", f"{(time.perf_counter() - start_time):.3f}", "s")
|
| 158 |
+
log_block("Translation output", f"{translated_text}")
|
| 159 |
+
|
| 160 |
return translated_text
|
|
|
|
| 161 |
|
| 162 |
+
def _analyze_segments(self, segments: List[TranscriptSegment], audio_buffer: np.ndarray) -> Tuple[Optional[int], str, str, bool]:
|
| 163 |
+
"""
|
| 164 |
+
分析转录片段,确定稳定部分和需要继续观察的部分
|
| 165 |
+
|
| 166 |
+
Returns:
|
| 167 |
+
(分割索引, 左侧稳定文本, 右侧观察文本, 是否为句子结束)
|
| 168 |
+
"""
|
| 169 |
+
# 尝试基于标点符号进行分割
|
| 170 |
+
left_idx, left_segments, right_segments, is_end = TranscriptionSplitter.split_by_punctuation(
|
| 171 |
+
segments, audio_buffer, self.sample_rate
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
left_text = self.text_separator.join(seg.text for seg in left_segments)
|
| 175 |
+
right_text = self.text_separator.join(seg.text for seg in right_segments)
|
| 176 |
|
| 177 |
+
# 如果找到分割点,检查左侧文本稳定性
|
| 178 |
+
if left_idx != 0:
|
| 179 |
+
self._text_stability_buffer.add_entry(left_text, left_idx)
|
| 180 |
+
stable_idx = self._text_stability_buffer.get_stable_index()
|
| 181 |
+
if stable_idx:
|
| 182 |
+
return stable_idx, left_text, right_text, is_end
|
| 183 |
|
| 184 |
+
# 如果基于标点的方法未找到稳定点,尝试基于句子序列的方法
|
| 185 |
+
left_idx, left_segments, right_segments, is_end = TranscriptionSplitter.split_by_sequences(
|
| 186 |
+
segments, audio_buffer, self.sample_rate
|
| 187 |
+
)
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
if left_idx != 0:
|
| 190 |
+
left_text = self.text_separator.join(seg.text for seg in left_segments)
|
| 191 |
+
right_text = self.text_separator.join(seg.text for seg in right_segments)
|
| 192 |
+
return left_idx, left_text, right_text, is_end
|
| 193 |
+
|
| 194 |
+
# 如果都没有找到分割点
|
| 195 |
+
return None, left_text, right_text, is_end
|
| 196 |
|
| 197 |
+
def _transcription_processing_loop(self) -> None:
|
| 198 |
+
"""主转录处理循环"""
|
| 199 |
while not self._translate_thread_stop.is_set():
|
| 200 |
if self.exit:
|
| 201 |
+
logger.info("Exiting transcription thread")
|
| 202 |
break
|
| 203 |
+
|
| 204 |
+
# 等待音频数据
|
| 205 |
+
if self.frames_np is None:
|
| 206 |
+
time.sleep(0.02)
|
| 207 |
+
logger.info("Waiting for audio data...")
|
| 208 |
continue
|
| 209 |
+
|
| 210 |
+
# 获取音频块进行处理
|
| 211 |
+
audio_buffer = self._get_audio_for_processing()
|
| 212 |
if audio_buffer is None:
|
| 213 |
+
time.sleep(0.02)
|
| 214 |
continue
|
| 215 |
+
|
| 216 |
+
try:
|
| 217 |
+
logger.info(f"Processing audio buffer: {len(audio_buffer)/self.sample_rate:.2f}s")
|
| 218 |
+
segments = self._transcribe_audio(audio_buffer)
|
| 219 |
+
|
| 220 |
+
# 处理转录结果并发送到客户端
|
| 221 |
+
for result in self._process_transcription_results(segments, audio_buffer):
|
| 222 |
+
self._send_result_to_client(result)
|
| 223 |
+
|
| 224 |
+
except Exception as e:
|
| 225 |
+
logger.error(f"Error processing audio: {e}")
|
| 226 |
+
|
| 227 |
+
def _process_transcription_results(self, segments: List[TranscriptSegment], audio_buffer: np.ndarray) -> Iterator[TransResult]:
|
| 228 |
+
"""
|
| 229 |
+
处理转录结果,生成翻译结果
|
| 230 |
+
|
| 231 |
+
Returns:
|
| 232 |
+
TransResult对象的迭代器
|
| 233 |
+
"""
|
| 234 |
+
# 合并所有片段的文本
|
| 235 |
+
full_text = self.text_separator.join(seg.text for seg in segments)
|
| 236 |
+
if not full_text:
|
| 237 |
return
|
| 238 |
+
|
| 239 |
+
# 更新转录管理器中的临时文本
|
| 240 |
+
self._transcription_manager.update_temp(full_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
+
# 分析片段,确定稳定部分和需要继续观察的部分
|
| 243 |
+
cut_index, stable_text, remaining_text, is_sentence_end = self._analyze_segments(segments, audio_buffer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
+
# 如果找到稳定的分割点
|
| 246 |
+
if cut_index:
|
| 247 |
+
# 更新音频缓冲区,移除已处理部分
|
| 248 |
+
self._update_audio_buffer(cut_index)
|
| 249 |
+
|
| 250 |
+
# 提交稳定的文本
|
| 251 |
+
log_block("Stable transcription", f"{stable_text}")
|
| 252 |
+
self._transcription_manager.update_temp(stable_text).commit_segment(is_sentence_end)
|
| 253 |
+
self._transcription_manager.update_temp(remaining_text)
|
| 254 |
+
|
| 255 |
+
# 如果是句子结束,发送完整句子的翻译结果
|
| 256 |
+
if is_sentence_end:
|
| 257 |
+
segment_text = self._transcription_manager.latest_segment
|
| 258 |
+
segment_id = self._transcription_manager.segment_count - 1
|
| 259 |
+
|
| 260 |
+
# 生成已确认句子的翻译结果
|
| 261 |
+
yield TransResult(
|
| 262 |
+
seg_id=segment_id,
|
| 263 |
+
context=segment_text,
|
| 264 |
+
from_=self.source_language,
|
| 265 |
+
to=self.target_language,
|
| 266 |
+
tran_content=self._translate_text(segment_text),
|
| 267 |
+
partial=False
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
# 如果还有剩余部分,生成临时翻译结果
|
| 271 |
+
if self._transcription_manager.current_sentence.strip():
|
| 272 |
+
yield TransResult(
|
| 273 |
+
seg_id=segment_id + 1,
|
| 274 |
+
context=self._transcription_manager.current_sentence,
|
| 275 |
+
from_=self.source_language,
|
| 276 |
+
to=self.target_language,
|
| 277 |
+
tran_content=self._translate_text(self._transcription_manager.current_sentence.strip()),
|
| 278 |
+
partial=True
|
| 279 |
+
)
|
| 280 |
else:
|
| 281 |
+
# 没有找到稳定点,发送当前所有内容的临时翻译结果
|
| 282 |
+
segment_id = self._transcription_manager.segment_count
|
| 283 |
+
current_text = self._transcription_manager.current_sentence + self._transcription_manager.update_temp(remaining_text)._temp_string
|
| 284 |
+
|
| 285 |
yield TransResult(
|
| 286 |
+
seg_id=segment_id,
|
| 287 |
+
context=current_text,
|
| 288 |
+
from_=self.source_language,
|
| 289 |
+
to=self.target_language,
|
| 290 |
+
tran_content=self._translate_text(current_text),
|
| 291 |
+
partial=True
|
| 292 |
)
|
| 293 |
+
|
| 294 |
+
def _send_result_to_client(self, result: TransResult) -> None:
|
| 295 |
+
"""发送翻译结果到客户端"""
|
| 296 |
try:
|
| 297 |
+
message = Message(result=result, request_id=self.client_uid).model_dump_json(by_alias=True)
|
| 298 |
+
coro = self.websocket.send_text(message)
|
|
|
|
| 299 |
asyncio.run(coro)
|
| 300 |
+
except RuntimeError:
|
| 301 |
self.stop()
|
|
|
|
| 302 |
except Exception as e:
|
| 303 |
+
logger.error(f"Error sending result to client: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
+
def stop(self) -> None:
|
| 306 |
+
"""停止所有处理线程并清理资源"""
|
| 307 |
self._translate_thread_stop.set()
|
| 308 |
+
self._frame_processing_thread_stop.set()
|
| 309 |
+
logger.info(f"Stopping transcription service for client: {self.client_uid}")
|