daihui.zhang
commited on
Commit
·
418e2a0
1
Parent(s):
601009a
fix segments missing error
Browse files- run_client.py +0 -17
- run_server.py +0 -31
- transcribe/vad.py +0 -164
- transcribe/whisper_llm_serve.py +4 -4
- transcribe/whispercpp_serve.py +0 -383
run_client.py
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
from transcribe.client import TranscriptionClient
|
| 3 |
-
|
| 4 |
-
client = TranscriptionClient(
|
| 5 |
-
"localhost",
|
| 6 |
-
9090,
|
| 7 |
-
lang="zh",
|
| 8 |
-
dst_lang="en",
|
| 9 |
-
save_output_recording=False, # Only used for microphone input, False by Default
|
| 10 |
-
output_recording_filename="./output_recording.wav", # Only used for microphone input
|
| 11 |
-
max_clients=4,
|
| 12 |
-
max_connection_time=600,
|
| 13 |
-
mute_audio_playback=False, # Only used for file input, False by Default
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
if __name__ == '__main__':
|
| 17 |
-
client()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run_server.py
DELETED
|
@@ -1,31 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import os
|
| 3 |
-
|
| 4 |
-
if __name__ == "__main__":
|
| 5 |
-
parser = argparse.ArgumentParser()
|
| 6 |
-
parser.add_argument('--port', '-p',
|
| 7 |
-
type=int,
|
| 8 |
-
default=9090,
|
| 9 |
-
help="Websocket port to run the server on.")
|
| 10 |
-
parser.add_argument('--backend', '-b',
|
| 11 |
-
type=str,
|
| 12 |
-
default='pywhispercpp',
|
| 13 |
-
help='Backends from ["pywhispercpp"]')
|
| 14 |
-
|
| 15 |
-
parser.add_argument('--omp_num_threads', '-omp',
|
| 16 |
-
type=int,
|
| 17 |
-
default=1,
|
| 18 |
-
help="Number of threads to use for OpenMP")
|
| 19 |
-
|
| 20 |
-
args = parser.parse_args()
|
| 21 |
-
|
| 22 |
-
if "OMP_NUM_THREADS" not in os.environ:
|
| 23 |
-
os.environ["OMP_NUM_THREADS"] = str(args.omp_num_threads)
|
| 24 |
-
|
| 25 |
-
from transcribe.transcription import TranscriptionServer
|
| 26 |
-
server = TranscriptionServer()
|
| 27 |
-
server.run(
|
| 28 |
-
"0.0.0.0",
|
| 29 |
-
port=args.port,
|
| 30 |
-
backend=args.backend,
|
| 31 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transcribe/vad.py
DELETED
|
@@ -1,164 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import subprocess
|
| 3 |
-
import warnings
|
| 4 |
-
|
| 5 |
-
import numpy as np
|
| 6 |
-
import onnxruntime
|
| 7 |
-
import torch
|
| 8 |
-
import logging
|
| 9 |
-
from config import VAD_MODEL_PATH
|
| 10 |
-
|
| 11 |
-
class VoiceActivityDetection():
|
| 12 |
-
|
| 13 |
-
def __init__(self, force_onnx_cpu=True):
|
| 14 |
-
# path = self.download()
|
| 15 |
-
path = VAD_MODEL_PATH
|
| 16 |
-
if not os.path.exists(path):
|
| 17 |
-
raise FileNotFoundError(f"Model file not found at {path}. Please download the model.")
|
| 18 |
-
|
| 19 |
-
opts = onnxruntime.SessionOptions()
|
| 20 |
-
opts.log_severity_level = 3
|
| 21 |
-
|
| 22 |
-
opts.inter_op_num_threads = 1
|
| 23 |
-
opts.intra_op_num_threads = 1
|
| 24 |
-
|
| 25 |
-
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
|
| 26 |
-
self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'], sess_options=opts)
|
| 27 |
-
else:
|
| 28 |
-
self.session = onnxruntime.InferenceSession(path, providers=['CUDAExecutionProvider'], sess_options=opts)
|
| 29 |
-
|
| 30 |
-
self.reset_states()
|
| 31 |
-
if '16k' in path:
|
| 32 |
-
warnings.warn('This model support only 16000 sampling rate!')
|
| 33 |
-
self.sample_rates = [16000]
|
| 34 |
-
else:
|
| 35 |
-
self.sample_rates = [8000, 16000]
|
| 36 |
-
|
| 37 |
-
def _validate_input(self, x, sr: int):
|
| 38 |
-
if x.dim() == 1:
|
| 39 |
-
x = x.unsqueeze(0)
|
| 40 |
-
if x.dim() > 2:
|
| 41 |
-
raise ValueError(f"Too many dimensions for input audio chunk {x.dim()}")
|
| 42 |
-
|
| 43 |
-
if sr != 16000 and (sr % 16000 == 0):
|
| 44 |
-
step = sr // 16000
|
| 45 |
-
x = x[:, ::step]
|
| 46 |
-
sr = 16000
|
| 47 |
-
|
| 48 |
-
if sr not in self.sample_rates:
|
| 49 |
-
raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)")
|
| 50 |
-
if sr / x.shape[1] > 31.25:
|
| 51 |
-
raise ValueError("Input audio chunk is too short")
|
| 52 |
-
|
| 53 |
-
return x, sr
|
| 54 |
-
|
| 55 |
-
def reset_states(self, batch_size=1):
|
| 56 |
-
self._state = torch.zeros((2, batch_size, 128)).float()
|
| 57 |
-
self._context = torch.zeros(0)
|
| 58 |
-
self._last_sr = 0
|
| 59 |
-
self._last_batch_size = 0
|
| 60 |
-
|
| 61 |
-
def __call__(self, x, sr: int):
|
| 62 |
-
|
| 63 |
-
x, sr = self._validate_input(x, sr)
|
| 64 |
-
num_samples = 512 if sr == 16000 else 256
|
| 65 |
-
|
| 66 |
-
if x.shape[-1] != num_samples:
|
| 67 |
-
raise ValueError(
|
| 68 |
-
f"Provided number of samples is {x.shape[-1]} (Supported values: 256 for 8000 sample rate, 512 for 16000)")
|
| 69 |
-
|
| 70 |
-
batch_size = x.shape[0]
|
| 71 |
-
context_size = 64 if sr == 16000 else 32
|
| 72 |
-
|
| 73 |
-
if not self._last_batch_size:
|
| 74 |
-
self.reset_states(batch_size)
|
| 75 |
-
if (self._last_sr) and (self._last_sr != sr):
|
| 76 |
-
self.reset_states(batch_size)
|
| 77 |
-
if (self._last_batch_size) and (self._last_batch_size != batch_size):
|
| 78 |
-
self.reset_states(batch_size)
|
| 79 |
-
|
| 80 |
-
if not len(self._context):
|
| 81 |
-
self._context = torch.zeros(batch_size, context_size)
|
| 82 |
-
|
| 83 |
-
x = torch.cat([self._context, x], dim=1)
|
| 84 |
-
if sr in [8000, 16000]:
|
| 85 |
-
ort_inputs = {'input': x.numpy(), 'state': self._state.numpy(), 'sr': np.array(sr, dtype='int64')}
|
| 86 |
-
ort_outs = self.session.run(None, ort_inputs)
|
| 87 |
-
out, state = ort_outs
|
| 88 |
-
self._state = torch.from_numpy(state)
|
| 89 |
-
else:
|
| 90 |
-
raise ValueError()
|
| 91 |
-
|
| 92 |
-
self._context = x[..., -context_size:]
|
| 93 |
-
self._last_sr = sr
|
| 94 |
-
self._last_batch_size = batch_size
|
| 95 |
-
|
| 96 |
-
out = torch.from_numpy(out)
|
| 97 |
-
return out
|
| 98 |
-
|
| 99 |
-
def audio_forward(self, x, sr: int):
|
| 100 |
-
outs = []
|
| 101 |
-
x, sr = self._validate_input(x, sr)
|
| 102 |
-
self.reset_states()
|
| 103 |
-
num_samples = 512 if sr == 16000 else 256
|
| 104 |
-
|
| 105 |
-
if x.shape[1] % num_samples:
|
| 106 |
-
pad_num = num_samples - (x.shape[1] % num_samples)
|
| 107 |
-
x = torch.nn.functional.pad(x, (0, pad_num), 'constant', value=0.0)
|
| 108 |
-
|
| 109 |
-
for i in range(0, x.shape[1], num_samples):
|
| 110 |
-
wavs_batch = x[:, i:i + num_samples]
|
| 111 |
-
out_chunk = self.__call__(wavs_batch, sr)
|
| 112 |
-
outs.append(out_chunk)
|
| 113 |
-
|
| 114 |
-
stacked = torch.cat(outs, dim=1)
|
| 115 |
-
return stacked.cpu()
|
| 116 |
-
|
| 117 |
-
@staticmethod
|
| 118 |
-
def download(model_url="https://github.com/snakers4/silero-vad/raw/v5.0/files/silero_vad.onnx"):
|
| 119 |
-
target_dir = os.path.expanduser("~/.cache/silero-vad/")
|
| 120 |
-
|
| 121 |
-
# Ensure the target directory exists
|
| 122 |
-
os.makedirs(target_dir, exist_ok=True)
|
| 123 |
-
|
| 124 |
-
# Define the target file path
|
| 125 |
-
model_filename = os.path.join(target_dir, "silero_vad.onnx")
|
| 126 |
-
|
| 127 |
-
# Check if the model file already exists
|
| 128 |
-
if not os.path.exists(model_filename):
|
| 129 |
-
# If it doesn't exist, download the model using wget
|
| 130 |
-
try:
|
| 131 |
-
# subprocess.run(["wget", "-O", model_filename, model_url], check=True)
|
| 132 |
-
subprocess.run(["curl", "-sL", "-o", model_filename, model_url], check=True)
|
| 133 |
-
except subprocess.CalledProcessError:
|
| 134 |
-
print("Failed to download the model using wget.")
|
| 135 |
-
return model_filename
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
class VoiceActivityDetector:
|
| 139 |
-
def __init__(self, threshold=0.5, frame_rate=16000):
|
| 140 |
-
"""
|
| 141 |
-
Initializes the VoiceActivityDetector with a voice activity detection model and a threshold.
|
| 142 |
-
|
| 143 |
-
Args:
|
| 144 |
-
threshold (float, optional): The probability threshold for detecting voice activity. Defaults to 0.5.
|
| 145 |
-
"""
|
| 146 |
-
self.model = VoiceActivityDetection()
|
| 147 |
-
self.threshold = threshold
|
| 148 |
-
self.frame_rate = frame_rate
|
| 149 |
-
|
| 150 |
-
def __call__(self, audio_frame):
|
| 151 |
-
"""
|
| 152 |
-
Determines if the given audio frame contains speech by comparing the detected speech probability against
|
| 153 |
-
the threshold.
|
| 154 |
-
|
| 155 |
-
Args:
|
| 156 |
-
audio_frame (np.ndarray): The audio frame to be analyzed for voice activity. It is expected to be a
|
| 157 |
-
NumPy array of audio samples.
|
| 158 |
-
|
| 159 |
-
Returns:
|
| 160 |
-
bool: True if the speech probability exceeds the threshold, indicating the presence of voice activity;
|
| 161 |
-
False otherwise.
|
| 162 |
-
"""
|
| 163 |
-
speech_probs = self.model.audio_forward(torch.from_numpy(audio_frame.copy()), self.frame_rate)[0]
|
| 164 |
-
return torch.any(speech_probs > self.threshold).item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transcribe/whisper_llm_serve.py
CHANGED
|
@@ -99,7 +99,7 @@ class WhisperTranscriptionService:
|
|
| 99 |
"""设置源语言和目标语言"""
|
| 100 |
self.source_language = source_lang
|
| 101 |
self.target_language = target_lang
|
| 102 |
-
|
| 103 |
# self._transcrible_analysis = TranscriptStabilityAnalyzer(self.source_language, self.text_separator)
|
| 104 |
|
| 105 |
def add_frames(self, frame_np: np.ndarray) -> None:
|
|
@@ -197,13 +197,13 @@ class WhisperTranscriptionService:
|
|
| 197 |
# logger.error(f"Error processing audio: {e}")
|
| 198 |
|
| 199 |
def _process_transcription_results_2(self, segments: List[TranscriptToken],):
|
| 200 |
-
|
| 201 |
item = TransResult(
|
| 202 |
seg_id=self.row_number,
|
| 203 |
-
context=
|
| 204 |
from_=self.source_language,
|
| 205 |
to=self.target_language,
|
| 206 |
-
tran_content=self._translate_text_large(
|
| 207 |
partial=False
|
| 208 |
)
|
| 209 |
self.row_number += 1
|
|
|
|
| 99 |
"""设置源语言和目标语言"""
|
| 100 |
self.source_language = source_lang
|
| 101 |
self.target_language = target_lang
|
| 102 |
+
self.text_separator = self._get_text_separator(source_lang)
|
| 103 |
# self._transcrible_analysis = TranscriptStabilityAnalyzer(self.source_language, self.text_separator)
|
| 104 |
|
| 105 |
def add_frames(self, frame_np: np.ndarray) -> None:
|
|
|
|
| 197 |
# logger.error(f"Error processing audio: {e}")
|
| 198 |
|
| 199 |
def _process_transcription_results_2(self, segments: List[TranscriptToken],):
|
| 200 |
+
seg_text = self.text_separator.join(seg.text for seg in segments)
|
| 201 |
item = TransResult(
|
| 202 |
seg_id=self.row_number,
|
| 203 |
+
context=seg_text,
|
| 204 |
from_=self.source_language,
|
| 205 |
to=self.target_language,
|
| 206 |
+
tran_content=self._translate_text_large(seg_text),
|
| 207 |
partial=False
|
| 208 |
)
|
| 209 |
self.row_number += 1
|
transcribe/whispercpp_serve.py
DELETED
|
@@ -1,383 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
import json
|
| 3 |
-
import logging
|
| 4 |
-
import pathlib
|
| 5 |
-
import threading
|
| 6 |
-
import time
|
| 7 |
-
import config
|
| 8 |
-
import librosa
|
| 9 |
-
import numpy as np
|
| 10 |
-
import soundfile
|
| 11 |
-
from pywhispercpp.model import Model
|
| 12 |
-
|
| 13 |
-
logging.basicConfig(level=logging.INFO)
|
| 14 |
-
|
| 15 |
-
class ServeClientBase(object):
|
| 16 |
-
RATE = 16000
|
| 17 |
-
SERVER_READY = "SERVER_READY"
|
| 18 |
-
DISCONNECT = "DISCONNECT"
|
| 19 |
-
|
| 20 |
-
def __init__(self, client_uid, websocket):
|
| 21 |
-
self.client_uid = client_uid
|
| 22 |
-
self.websocket = websocket
|
| 23 |
-
self.frames = b""
|
| 24 |
-
self.timestamp_offset = 0.0
|
| 25 |
-
self.frames_np = None
|
| 26 |
-
self.frames_offset = 0.0
|
| 27 |
-
self.text = []
|
| 28 |
-
self.current_out = ''
|
| 29 |
-
self.prev_out = ''
|
| 30 |
-
self.t_start = None
|
| 31 |
-
self.exit = False
|
| 32 |
-
self.same_output_count = 0
|
| 33 |
-
self.show_prev_out_thresh = 5 # if pause(no output from whisper) show previous output for 5 seconds
|
| 34 |
-
self.add_pause_thresh = 3 # add a blank to segment list as a pause(no speech) for 3 seconds
|
| 35 |
-
self.transcript = []
|
| 36 |
-
self.send_last_n_segments = 10
|
| 37 |
-
|
| 38 |
-
# text formatting
|
| 39 |
-
self.pick_previous_segments = 2
|
| 40 |
-
|
| 41 |
-
# threading
|
| 42 |
-
self.lock = threading.Lock()
|
| 43 |
-
|
| 44 |
-
def speech_to_text(self):
|
| 45 |
-
raise NotImplementedError
|
| 46 |
-
|
| 47 |
-
def transcribe_audio(self):
|
| 48 |
-
raise NotImplementedError
|
| 49 |
-
|
| 50 |
-
def handle_transcription_output(self):
|
| 51 |
-
raise NotImplementedError
|
| 52 |
-
|
| 53 |
-
def add_frames(self, frame_np):
|
| 54 |
-
"""
|
| 55 |
-
Add audio frames to the ongoing audio stream buffer.
|
| 56 |
-
|
| 57 |
-
This method is responsible for maintaining the audio stream buffer, allowing the continuous addition
|
| 58 |
-
of audio frames as they are received. It also ensures that the buffer does not exceed a specified size
|
| 59 |
-
to prevent excessive memory usage.
|
| 60 |
-
|
| 61 |
-
If the buffer size exceeds a threshold (45 seconds of audio data), it discards the oldest 30 seconds
|
| 62 |
-
of audio data to maintain a reasonable buffer size. If the buffer is empty, it initializes it with the provided
|
| 63 |
-
audio frame. The audio stream buffer is used for real-time processing of audio data for transcription.
|
| 64 |
-
|
| 65 |
-
Args:
|
| 66 |
-
frame_np (numpy.ndarray): The audio frame data as a NumPy array.
|
| 67 |
-
|
| 68 |
-
"""
|
| 69 |
-
self.lock.acquire()
|
| 70 |
-
if self.frames_np is not None and self.frames_np.shape[0] > 45 * self.RATE:
|
| 71 |
-
self.frames_offset += 30.0
|
| 72 |
-
self.frames_np = self.frames_np[int(30 * self.RATE):]
|
| 73 |
-
# check timestamp offset(should be >= self.frame_offset)
|
| 74 |
-
# this basically means that there is no speech as timestamp offset hasnt updated
|
| 75 |
-
# and is less than frame_offset
|
| 76 |
-
if self.timestamp_offset < self.frames_offset:
|
| 77 |
-
self.timestamp_offset = self.frames_offset
|
| 78 |
-
if self.frames_np is None:
|
| 79 |
-
self.frames_np = frame_np.copy()
|
| 80 |
-
else:
|
| 81 |
-
self.frames_np = np.concatenate((self.frames_np, frame_np), axis=0)
|
| 82 |
-
self.lock.release()
|
| 83 |
-
|
| 84 |
-
def clip_audio_if_no_valid_segment(self):
|
| 85 |
-
"""
|
| 86 |
-
Update the timestamp offset based on audio buffer status.
|
| 87 |
-
Clip audio if the current chunk exceeds 30 seconds, this basically implies that
|
| 88 |
-
no valid segment for the last 30 seconds from whisper
|
| 89 |
-
"""
|
| 90 |
-
with self.lock:
|
| 91 |
-
if self.frames_np[int((self.timestamp_offset - self.frames_offset) * self.RATE):].shape[0] > 25 * self.RATE:
|
| 92 |
-
duration = self.frames_np.shape[0] / self.RATE
|
| 93 |
-
self.timestamp_offset = self.frames_offset + duration - 5
|
| 94 |
-
|
| 95 |
-
def get_audio_chunk_for_processing(self):
|
| 96 |
-
"""
|
| 97 |
-
Retrieves the next chunk of audio data for processing based on the current offsets.
|
| 98 |
-
|
| 99 |
-
Calculates which part of the audio data should be processed next, based on
|
| 100 |
-
the difference between the current timestamp offset and the frame's offset, scaled by
|
| 101 |
-
the audio sample rate (RATE). It then returns this chunk of audio data along with its
|
| 102 |
-
duration in seconds.
|
| 103 |
-
|
| 104 |
-
Returns:
|
| 105 |
-
tuple: A tuple containing:
|
| 106 |
-
- input_bytes (np.ndarray): The next chunk of audio data to be processed.
|
| 107 |
-
- duration (float): The duration of the audio chunk in seconds.
|
| 108 |
-
"""
|
| 109 |
-
with self.lock:
|
| 110 |
-
samples_take = max(0, (self.timestamp_offset - self.frames_offset) * self.RATE)
|
| 111 |
-
input_bytes = self.frames_np[int(samples_take):].copy()
|
| 112 |
-
duration = input_bytes.shape[0] / self.RATE
|
| 113 |
-
return input_bytes, duration
|
| 114 |
-
|
| 115 |
-
def prepare_segments(self, last_segment=None):
|
| 116 |
-
"""
|
| 117 |
-
Prepares the segments of transcribed text to be sent to the client.
|
| 118 |
-
|
| 119 |
-
This method compiles the recent segments of transcribed text, ensuring that only the
|
| 120 |
-
specified number of the most recent segments are included. It also appends the most
|
| 121 |
-
recent segment of text if provided (which is considered incomplete because of the possibility
|
| 122 |
-
of the last word being truncated in the audio chunk).
|
| 123 |
-
|
| 124 |
-
Args:
|
| 125 |
-
last_segment (str, optional): The most recent segment of transcribed text to be added
|
| 126 |
-
to the list of segments. Defaults to None.
|
| 127 |
-
|
| 128 |
-
Returns:
|
| 129 |
-
list: A list of transcribed text segments to be sent to the client.
|
| 130 |
-
"""
|
| 131 |
-
segments = []
|
| 132 |
-
if len(self.transcript) >= self.send_last_n_segments:
|
| 133 |
-
segments = self.transcript[-self.send_last_n_segments:].copy()
|
| 134 |
-
else:
|
| 135 |
-
segments = self.transcript.copy()
|
| 136 |
-
if last_segment is not None:
|
| 137 |
-
segments = segments + [last_segment]
|
| 138 |
-
logging.info(f"{segments}")
|
| 139 |
-
return segments
|
| 140 |
-
|
| 141 |
-
def get_audio_chunk_duration(self, input_bytes):
|
| 142 |
-
"""
|
| 143 |
-
Calculates the duration of the provided audio chunk.
|
| 144 |
-
|
| 145 |
-
Args:
|
| 146 |
-
input_bytes (numpy.ndarray): The audio chunk for which to calculate the duration.
|
| 147 |
-
|
| 148 |
-
Returns:
|
| 149 |
-
float: The duration of the audio chunk in seconds.
|
| 150 |
-
"""
|
| 151 |
-
return input_bytes.shape[0] / self.RATE
|
| 152 |
-
|
| 153 |
-
def send_transcription_to_client(self, segments):
|
| 154 |
-
"""
|
| 155 |
-
Sends the specified transcription segments to the client over the websocket connection.
|
| 156 |
-
|
| 157 |
-
This method formats the transcription segments into a JSON object and attempts to send
|
| 158 |
-
this object to the client. If an error occurs during the send operation, it logs the error.
|
| 159 |
-
|
| 160 |
-
Returns:
|
| 161 |
-
segments (list): A list of transcription segments to be sent to the client.
|
| 162 |
-
"""
|
| 163 |
-
try:
|
| 164 |
-
self.websocket.send(
|
| 165 |
-
json.dumps({
|
| 166 |
-
"uid": self.client_uid,
|
| 167 |
-
"segments": segments,
|
| 168 |
-
})
|
| 169 |
-
)
|
| 170 |
-
except Exception as e:
|
| 171 |
-
logging.error(f"[ERROR]: Sending data to client: {e}")
|
| 172 |
-
|
| 173 |
-
def disconnect(self):
|
| 174 |
-
"""
|
| 175 |
-
Notify the client of disconnection and send a disconnect message.
|
| 176 |
-
|
| 177 |
-
This method sends a disconnect message to the client via the WebSocket connection to notify them
|
| 178 |
-
that the transcription service is disconnecting gracefully.
|
| 179 |
-
|
| 180 |
-
"""
|
| 181 |
-
self.websocket.send(json.dumps({
|
| 182 |
-
"uid": self.client_uid,
|
| 183 |
-
"message": self.DISCONNECT
|
| 184 |
-
}))
|
| 185 |
-
|
| 186 |
-
def cleanup(self):
|
| 187 |
-
"""
|
| 188 |
-
Perform cleanup tasks before exiting the transcription service.
|
| 189 |
-
|
| 190 |
-
This method performs necessary cleanup tasks, including stopping the transcription thread, marking
|
| 191 |
-
the exit flag to indicate the transcription thread should exit gracefully, and destroying resources
|
| 192 |
-
associated with the transcription process.
|
| 193 |
-
|
| 194 |
-
"""
|
| 195 |
-
logging.info("Cleaning up.")
|
| 196 |
-
self.exit = True
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
class ServeClientWhisperCPP(ServeClientBase):
|
| 200 |
-
SINGLE_MODEL = None
|
| 201 |
-
SINGLE_MODEL_LOCK = threading.Lock()
|
| 202 |
-
|
| 203 |
-
def __init__(self, websocket, language=None, client_uid=None,
|
| 204 |
-
single_model=False):
|
| 205 |
-
"""
|
| 206 |
-
Initialize a ServeClient instance.
|
| 207 |
-
The Whisper model is initialized based on the client's language and device availability.
|
| 208 |
-
The transcription thread is started upon initialization. A "SERVER_READY" message is sent
|
| 209 |
-
to the client to indicate that the server is ready.
|
| 210 |
-
|
| 211 |
-
Args:
|
| 212 |
-
websocket (WebSocket): The WebSocket connection for the client.
|
| 213 |
-
language (str, optional): The language for transcription. Defaults to None.
|
| 214 |
-
client_uid (str, optional): A unique identifier for the client. Defaults to None.
|
| 215 |
-
single_model (bool, optional): Whether to instantiate a new model for each client connection. Defaults to False.
|
| 216 |
-
|
| 217 |
-
"""
|
| 218 |
-
super().__init__(client_uid, websocket)
|
| 219 |
-
self.language = language
|
| 220 |
-
self.eos = False
|
| 221 |
-
|
| 222 |
-
if single_model:
|
| 223 |
-
if ServeClientWhisperCPP.SINGLE_MODEL is None:
|
| 224 |
-
self.create_model()
|
| 225 |
-
ServeClientWhisperCPP.SINGLE_MODEL = self.transcriber
|
| 226 |
-
else:
|
| 227 |
-
self.transcriber = ServeClientWhisperCPP.SINGLE_MODEL
|
| 228 |
-
else:
|
| 229 |
-
self.create_model()
|
| 230 |
-
|
| 231 |
-
# threading
|
| 232 |
-
logging.info('Create a thread to process audio.')
|
| 233 |
-
self.trans_thread = threading.Thread(target=self.speech_to_text)
|
| 234 |
-
self.trans_thread.start()
|
| 235 |
-
|
| 236 |
-
self.websocket.send(json.dumps({
|
| 237 |
-
"uid": self.client_uid,
|
| 238 |
-
"message": self.SERVER_READY,
|
| 239 |
-
"backend": "pywhispercpp"
|
| 240 |
-
}))
|
| 241 |
-
|
| 242 |
-
def create_model(self, warmup=True):
|
| 243 |
-
"""
|
| 244 |
-
Instantiates a new model, sets it as the transcriber and does warmup if desired.
|
| 245 |
-
"""
|
| 246 |
-
|
| 247 |
-
self.transcriber = Model(model=config.WHISPER_MODEL, models_dir=config.MODEL_DIR)
|
| 248 |
-
if warmup:
|
| 249 |
-
self.warmup()
|
| 250 |
-
|
| 251 |
-
def warmup(self, warmup_steps=1):
|
| 252 |
-
"""
|
| 253 |
-
Warmup TensorRT since first few inferences are slow.
|
| 254 |
-
|
| 255 |
-
Args:
|
| 256 |
-
warmup_steps (int): Number of steps to warm up the model for.
|
| 257 |
-
"""
|
| 258 |
-
logging.info("[INFO:] Warming up whisper.cpp engine..")
|
| 259 |
-
mel, _, = soundfile.read("assets/jfk.flac")
|
| 260 |
-
for i in range(warmup_steps):
|
| 261 |
-
self.transcriber.transcribe(mel, print_progress=False)
|
| 262 |
-
|
| 263 |
-
def set_eos(self, eos):
|
| 264 |
-
"""
|
| 265 |
-
Sets the End of Speech (EOS) flag.
|
| 266 |
-
|
| 267 |
-
Args:
|
| 268 |
-
eos (bool): The value to set for the EOS flag.
|
| 269 |
-
"""
|
| 270 |
-
self.lock.acquire()
|
| 271 |
-
self.eos = eos
|
| 272 |
-
self.lock.release()
|
| 273 |
-
|
| 274 |
-
def handle_transcription_output(self, last_segment, duration):
|
| 275 |
-
"""
|
| 276 |
-
Handle the transcription output, updating the transcript and sending data to the client.
|
| 277 |
-
|
| 278 |
-
Args:
|
| 279 |
-
last_segment (str): The last segment from the whisper output which is considered to be incomplete because
|
| 280 |
-
of the possibility of word being truncated.
|
| 281 |
-
duration (float): Duration of the transcribed audio chunk.
|
| 282 |
-
"""
|
| 283 |
-
segments = self.prepare_segments({"text": last_segment})
|
| 284 |
-
self.send_transcription_to_client(segments)
|
| 285 |
-
if self.eos:
|
| 286 |
-
self.update_timestamp_offset(last_segment, duration)
|
| 287 |
-
|
| 288 |
-
def transcribe_audio(self, input_bytes):
|
| 289 |
-
"""
|
| 290 |
-
Transcribe the audio chunk and send the results to the client.
|
| 291 |
-
|
| 292 |
-
Args:
|
| 293 |
-
input_bytes (np.array): The audio chunk to transcribe.
|
| 294 |
-
"""
|
| 295 |
-
if ServeClientWhisperCPP.SINGLE_MODEL:
|
| 296 |
-
ServeClientWhisperCPP.SINGLE_MODEL_LOCK.acquire()
|
| 297 |
-
logging.info(f"[pywhispercpp:] Processing audio with duration: {input_bytes.shape[0] / self.RATE}")
|
| 298 |
-
mel = input_bytes
|
| 299 |
-
duration = librosa.get_duration(y=input_bytes, sr=self.RATE)
|
| 300 |
-
|
| 301 |
-
if self.language == "zh":
|
| 302 |
-
prompt = '以下是简体中文普通话的句子。'
|
| 303 |
-
else:
|
| 304 |
-
prompt = ''
|
| 305 |
-
|
| 306 |
-
segments = self.transcriber.transcribe(
|
| 307 |
-
mel,
|
| 308 |
-
language=self.language,
|
| 309 |
-
initial_prompt=prompt,
|
| 310 |
-
token_timestamps=True,
|
| 311 |
-
# max_len=max_len,
|
| 312 |
-
print_progress=False
|
| 313 |
-
)
|
| 314 |
-
text = []
|
| 315 |
-
for segment in segments:
|
| 316 |
-
content = segment.text
|
| 317 |
-
text.append(content)
|
| 318 |
-
last_segment = ' '.join(text)
|
| 319 |
-
|
| 320 |
-
logging.info(f"[pywhispercpp:] Last segment: {last_segment}")
|
| 321 |
-
|
| 322 |
-
if ServeClientWhisperCPP.SINGLE_MODEL:
|
| 323 |
-
ServeClientWhisperCPP.SINGLE_MODEL_LOCK.release()
|
| 324 |
-
if last_segment:
|
| 325 |
-
self.handle_transcription_output(last_segment, duration)
|
| 326 |
-
|
| 327 |
-
def update_timestamp_offset(self, last_segment, duration):
|
| 328 |
-
"""
|
| 329 |
-
Update timestamp offset and transcript.
|
| 330 |
-
|
| 331 |
-
Args:
|
| 332 |
-
last_segment (str): Last transcribed audio from the whisper model.
|
| 333 |
-
duration (float): Duration of the last audio chunk.
|
| 334 |
-
"""
|
| 335 |
-
if not len(self.transcript):
|
| 336 |
-
self.transcript.append({"text": last_segment + " "})
|
| 337 |
-
elif self.transcript[-1]["text"].strip() != last_segment:
|
| 338 |
-
self.transcript.append({"text": last_segment + " "})
|
| 339 |
-
|
| 340 |
-
logging.info(f'Transcript list context: {self.transcript}')
|
| 341 |
-
|
| 342 |
-
with self.lock:
|
| 343 |
-
self.timestamp_offset += duration
|
| 344 |
-
|
| 345 |
-
def speech_to_text(self):
|
| 346 |
-
"""
|
| 347 |
-
Process an audio stream in an infinite loop, continuously transcribing the speech.
|
| 348 |
-
|
| 349 |
-
This method continuously receives audio frames, performs real-time transcription, and sends
|
| 350 |
-
transcribed segments to the client via a WebSocket connection.
|
| 351 |
-
|
| 352 |
-
If the client's language is not detected, it waits for 30 seconds of audio input to make a language prediction.
|
| 353 |
-
It utilizes the Whisper ASR model to transcribe the audio, continuously processing and streaming results. Segments
|
| 354 |
-
are sent to the client in real-time, and a history of segments is maintained to provide context.Pauses in speech
|
| 355 |
-
(no output from Whisper) are handled by showing the previous output for a set duration. A blank segment is added if
|
| 356 |
-
there is no speech for a specified duration to indicate a pause.
|
| 357 |
-
|
| 358 |
-
Raises:
|
| 359 |
-
Exception: If there is an issue with audio processing or WebSocket communication.
|
| 360 |
-
|
| 361 |
-
"""
|
| 362 |
-
while True:
|
| 363 |
-
if self.exit:
|
| 364 |
-
logging.info("Exiting speech to text thread")
|
| 365 |
-
break
|
| 366 |
-
|
| 367 |
-
if self.frames_np is None:
|
| 368 |
-
time.sleep(0.02) # wait for any audio to arrive
|
| 369 |
-
continue
|
| 370 |
-
|
| 371 |
-
self.clip_audio_if_no_valid_segment()
|
| 372 |
-
|
| 373 |
-
input_bytes, duration = self.get_audio_chunk_for_processing()
|
| 374 |
-
if duration < 1:
|
| 375 |
-
continue
|
| 376 |
-
|
| 377 |
-
try:
|
| 378 |
-
input_sample = input_bytes.copy()
|
| 379 |
-
logging.info(f"[pywhispercpp:] Processing audio with duration: {duration}")
|
| 380 |
-
self.transcribe_audio(input_sample)
|
| 381 |
-
|
| 382 |
-
except Exception as e:
|
| 383 |
-
logging.error(f"[ERROR]: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|