Xin Zhang
commited on
Commit
·
793447d
1
Parent(s):
484b9cf
[fix]: test dynamic vad.
Browse files
transcribe/helpers/vad_dynamic.py
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from copy import deepcopy
|
| 2 |
+
from queue import Queue, Empty
|
| 3 |
+
from time import time
|
| 4 |
+
from config import VAD_MODEL_PATH
|
| 5 |
+
# from silero_vad import load_silero_vad
|
| 6 |
+
import numpy as np
|
| 7 |
+
import onnxruntime
|
| 8 |
+
|
| 9 |
+
class OnnxWrapper():
|
| 10 |
+
|
| 11 |
+
def __init__(self, path, force_onnx_cpu=False):
|
| 12 |
+
opts = onnxruntime.SessionOptions()
|
| 13 |
+
opts.inter_op_num_threads = 1
|
| 14 |
+
opts.intra_op_num_threads = 1
|
| 15 |
+
|
| 16 |
+
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
|
| 17 |
+
self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'], sess_options=opts)
|
| 18 |
+
else:
|
| 19 |
+
self.session = onnxruntime.InferenceSession(path, sess_options=opts)
|
| 20 |
+
|
| 21 |
+
self.reset_states()
|
| 22 |
+
self.sample_rates = [16000]
|
| 23 |
+
|
| 24 |
+
def _validate_input(self, x: np.ndarray, sr: int):
|
| 25 |
+
if x.ndim == 1:
|
| 26 |
+
x = x[None]
|
| 27 |
+
if x.ndim > 2:
|
| 28 |
+
raise ValueError(f"Too many dimensions for input audio chunk {x.ndim}")
|
| 29 |
+
|
| 30 |
+
if sr != 16000 and (sr % 16000 == 0):
|
| 31 |
+
step = sr // 16000
|
| 32 |
+
x = x[:, ::step]
|
| 33 |
+
sr = 16000
|
| 34 |
+
|
| 35 |
+
if sr not in self.sample_rates:
|
| 36 |
+
raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)")
|
| 37 |
+
if sr / x.shape[1] > 31.25:
|
| 38 |
+
raise ValueError("Input audio chunk is too short")
|
| 39 |
+
|
| 40 |
+
return x, sr
|
| 41 |
+
|
| 42 |
+
def reset_states(self, batch_size=1):
|
| 43 |
+
self._state = np.zeros((2, batch_size, 128)).astype(np.float32)
|
| 44 |
+
self._context = np.zeros(0)
|
| 45 |
+
self._last_sr = 0
|
| 46 |
+
self._last_batch_size = 0
|
| 47 |
+
|
| 48 |
+
def __call__(self, x, sr: int):
|
| 49 |
+
|
| 50 |
+
x, sr = self._validate_input(x, sr)
|
| 51 |
+
num_samples = 512 if sr == 16000 else 256
|
| 52 |
+
|
| 53 |
+
if x.shape[-1] != num_samples:
|
| 54 |
+
raise ValueError(
|
| 55 |
+
f"Provided number of samples is {x.shape[-1]} (Supported values: 256 for 8000 sample rate, 512 for 16000)")
|
| 56 |
+
|
| 57 |
+
batch_size = x.shape[0]
|
| 58 |
+
context_size = 64 if sr == 16000 else 32
|
| 59 |
+
|
| 60 |
+
if not self._last_batch_size:
|
| 61 |
+
self.reset_states(batch_size)
|
| 62 |
+
if (self._last_sr) and (self._last_sr != sr):
|
| 63 |
+
self.reset_states(batch_size)
|
| 64 |
+
if (self._last_batch_size) and (self._last_batch_size != batch_size):
|
| 65 |
+
self.reset_states(batch_size)
|
| 66 |
+
|
| 67 |
+
if not len(self._context):
|
| 68 |
+
self._context = np.zeros((batch_size, context_size)).astype(np.float32)
|
| 69 |
+
|
| 70 |
+
x = np.concatenate([self._context, x], axis=1)
|
| 71 |
+
if sr in [8000, 16000]:
|
| 72 |
+
ort_inputs = {'input': x, 'state': self._state, 'sr': np.array(sr, dtype='int64')}
|
| 73 |
+
ort_outs = self.session.run(None, ort_inputs)
|
| 74 |
+
out, state = ort_outs
|
| 75 |
+
self._state = state
|
| 76 |
+
else:
|
| 77 |
+
raise ValueError()
|
| 78 |
+
|
| 79 |
+
self._context = x[..., -context_size:]
|
| 80 |
+
self._last_sr = sr
|
| 81 |
+
self._last_batch_size = batch_size
|
| 82 |
+
|
| 83 |
+
# out = torch.from_numpy(out)
|
| 84 |
+
return out
|
| 85 |
+
|
| 86 |
+
def audio_forward(self, audio: np.ndarray, sr: int):
|
| 87 |
+
outs = []
|
| 88 |
+
x, sr = self._validate_input(audio, sr)
|
| 89 |
+
self.reset_states()
|
| 90 |
+
num_samples = 512 if sr == 16000 else 256
|
| 91 |
+
|
| 92 |
+
if x.shape[1] % num_samples:
|
| 93 |
+
pad_num = num_samples - (x.shape[1] % num_samples)
|
| 94 |
+
x = np.pad(x, ((0, 0), (0, pad_num)), 'constant', constant_values=(0.0, 0.0))
|
| 95 |
+
|
| 96 |
+
for i in range(0, x.shape[1], num_samples):
|
| 97 |
+
wavs_batch = x[:, i:i + num_samples]
|
| 98 |
+
out_chunk = self.__call__(wavs_batch, sr)
|
| 99 |
+
outs.append(out_chunk)
|
| 100 |
+
|
| 101 |
+
stacked = np.concatenate(outs, axis=1)
|
| 102 |
+
return stacked
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class VADIteratorOnnx:
|
| 106 |
+
def __init__(self,
|
| 107 |
+
threshold: float = 0.5,
|
| 108 |
+
sampling_rate: int = 16000,
|
| 109 |
+
min_silence_duration_ms: int = 100,
|
| 110 |
+
max_speech_duration_s: float = float('inf'),
|
| 111 |
+
long_speech_threshold_s: float = 6.0, # 新增:长语音阈值(秒)
|
| 112 |
+
adjusted_min_silence_factor: float = 0.5 # 新增:调整后的静音时长因子
|
| 113 |
+
):
|
| 114 |
+
self.model = OnnxWrapper(VAD_MODEL_PATH, True)
|
| 115 |
+
self.threshold = threshold
|
| 116 |
+
self.sampling_rate = sampling_rate
|
| 117 |
+
|
| 118 |
+
if sampling_rate not in [8000, 16000]:
|
| 119 |
+
raise ValueError('VADIterator does not support sampling rates other than [8000, 16000]')
|
| 120 |
+
|
| 121 |
+
self._original_min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 # 存储原始值
|
| 122 |
+
self.min_silence_samples = self._original_min_silence_samples # 当前使用的值
|
| 123 |
+
self.adjusted_min_silence_samples = self._original_min_silence_samples * adjusted_min_silence_factor # 计算调整后的值
|
| 124 |
+
self.long_speech_threshold_samples = sampling_rate * long_speech_threshold_s # 长语音阈值(样本数)
|
| 125 |
+
|
| 126 |
+
self.max_speech_samples = int(sampling_rate * max_speech_duration_s)
|
| 127 |
+
# self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
| 128 |
+
self.reset_states()
|
| 129 |
+
|
| 130 |
+
def reset_states(self):
|
| 131 |
+
|
| 132 |
+
self.model.reset_states()
|
| 133 |
+
self.triggered = False
|
| 134 |
+
self.temp_end = 0
|
| 135 |
+
self.current_sample = 0
|
| 136 |
+
self.start = 0
|
| 137 |
+
self.speech_start_sample = 0 # 新增:记录连续语音开始的样本点
|
| 138 |
+
self.min_silence_samples = self._original_min_silence_samples # 重置为原始值
|
| 139 |
+
|
| 140 |
+
def __call__(self, x: np.ndarray, return_seconds=False):
|
| 141 |
+
"""
|
| 142 |
+
x: np.ndarray
|
| 143 |
+
audio chunk (see examples in repo)
|
| 144 |
+
|
| 145 |
+
return_seconds: bool (default - False)
|
| 146 |
+
whether return timestamps in seconds (default - samples)
|
| 147 |
+
"""
|
| 148 |
+
|
| 149 |
+
window_size_samples = 512 if self.sampling_rate == 16000 else 256
|
| 150 |
+
x = x[:window_size_samples]
|
| 151 |
+
if len(x) < window_size_samples:
|
| 152 |
+
x = np.pad(x, ((0, 0), (0, window_size_samples - len(x))), 'constant', constant_values=0.0)
|
| 153 |
+
|
| 154 |
+
self.current_sample += window_size_samples
|
| 155 |
+
|
| 156 |
+
speech_prob = self.model(x, self.sampling_rate)[0,0]
|
| 157 |
+
# print(f"{self.current_sample/self.sampling_rate:.2f}: {speech_prob}")
|
| 158 |
+
|
| 159 |
+
# --- 动态调整逻辑 ---
|
| 160 |
+
current_min_silence_samples_to_use = self._original_min_silence_samples
|
| 161 |
+
if self.triggered and self.speech_start_sample > 0:
|
| 162 |
+
current_speech_duration_samples = self.current_sample - self.speech_start_sample
|
| 163 |
+
if current_speech_duration_samples > self.long_speech_threshold_samples:
|
| 164 |
+
# 如果连续语音超过阈值,使用调整后的(更短的)静音时长
|
| 165 |
+
current_min_silence_samples_to_use = self.adjusted_min_silence_samples
|
| 166 |
+
# --- 结束动态调整逻辑 ---
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
if (speech_prob >= self.threshold) and self.temp_end:
|
| 170 |
+
# 从临时静音恢复到语音,清除临时结束点
|
| 171 |
+
self.temp_end = 0
|
| 172 |
+
|
| 173 |
+
if (speech_prob >= self.threshold) and not self.triggered:
|
| 174 |
+
# 检测到语音开始
|
| 175 |
+
self.triggered = True
|
| 176 |
+
speech_start = max(0, self.current_sample - window_size_samples)
|
| 177 |
+
self.start = speech_start
|
| 178 |
+
self.speech_start_sample = self.start # 记录语音开始点
|
| 179 |
+
# self.min_silence_samples = self._original_min_silence_samples # 在 reset_states 中重置
|
| 180 |
+
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)}
|
| 181 |
+
|
| 182 |
+
if (speech_prob >= self.threshold) and self.current_sample - self.start >= self.max_speech_samples:
|
| 183 |
+
# 达到最大语音长度,强制结束(如果设置了)
|
| 184 |
+
if self.temp_end:
|
| 185 |
+
self.temp_end = 0
|
| 186 |
+
speech_end = self.current_sample # 使用当前样本点作为结束点
|
| 187 |
+
self.triggered = False # 结束当前段
|
| 188 |
+
self.speech_start_sample = 0 # 重置连续语音开始点
|
| 189 |
+
# self.min_silence_samples = self._original_min_silence_samples # 在 reset_states 中重置
|
| 190 |
+
# 返回结束事件,并重置 start 以便可以立即开始新的段
|
| 191 |
+
end_val = int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)
|
| 192 |
+
self.start = speech_end # 将 start 设置为当前结束点,为下一段做准备?或者在 VadV2 中处理? VadV2 会重置 start/end
|
| 193 |
+
return {'end': end_val}
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
if (speech_prob < self.threshold - 0.15) and self.triggered:
|
| 197 |
+
# 检测到可能的静音
|
| 198 |
+
if not self.temp_end:
|
| 199 |
+
self.temp_end = self.current_sample # 记录可能的结束点
|
| 200 |
+
# 使用当前计算出的(可能调整过的)静音时长阈值进行判断
|
| 201 |
+
if self.current_sample - self.temp_end < current_min_silence_samples_to_use:
|
| 202 |
+
# 静音时间不够长,忽略
|
| 203 |
+
return None
|
| 204 |
+
else:
|
| 205 |
+
# 静音时间足够长,确认语音结束
|
| 206 |
+
speech_end = self.temp_end - window_size_samples # 结束点是临时结束点减去窗口大小
|
| 207 |
+
self.temp_end = 0
|
| 208 |
+
self.triggered = False
|
| 209 |
+
self.speech_start_sample = 0 # 重置连续语音开始点
|
| 210 |
+
# self.min_silence_samples = self._original_min_silence_samples # 在 reset_states 中重置
|
| 211 |
+
return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)}
|
| 212 |
+
|
| 213 |
+
return None
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
class VadV2:
|
| 218 |
+
def __init__(self,
|
| 219 |
+
threshold: float = 0.5,
|
| 220 |
+
sampling_rate: int = 16000,
|
| 221 |
+
min_silence_duration_ms: int = 100,
|
| 222 |
+
speech_pad_ms: int = 30,
|
| 223 |
+
max_speech_duration_s: float = float('inf'),
|
| 224 |
+
long_speech_threshold_s: float = 10.0, # 提高默认值,减少动态调整频率
|
| 225 |
+
adjusted_min_silence_factor: float = 0.6 # 提高默认值,使调整不那么激进
|
| 226 |
+
):
|
| 227 |
+
self.vad_iterator = VADIteratorOnnx(threshold, sampling_rate, min_silence_duration_ms, max_speech_duration_s,
|
| 228 |
+
long_speech_threshold_s, adjusted_min_silence_factor)
|
| 229 |
+
self.speech_pad_samples = int(sampling_rate * speech_pad_ms / 1000)
|
| 230 |
+
self.sampling_rate = sampling_rate
|
| 231 |
+
self.audio_buffer = np.array([], dtype=np.float32)
|
| 232 |
+
self.start = 0
|
| 233 |
+
self.end = 0
|
| 234 |
+
self.offset = 0
|
| 235 |
+
# 检查 speech_pad_ms 是否小于 min_silence_duration_ms 是一个好的实践,但非强制
|
| 236 |
+
# assert speech_pad_ms <= min_silence_duration_ms, "speech_pad_ms should be less than min_silence_duration_ms"
|
| 237 |
+
self.max_speech_samples = int(sampling_rate * max_speech_duration_s)
|
| 238 |
+
|
| 239 |
+
self.silence_chunk_size = 0
|
| 240 |
+
# 基于窗口大小计算静音阈值(例如,大约2秒的静音)
|
| 241 |
+
self.silence_chunk_threshold = int(2.0 / (512 / self.sampling_rate))
|
| 242 |
+
|
| 243 |
+
def reset(self):
|
| 244 |
+
self.audio_buffer = np.array([], dtype=np.float32)
|
| 245 |
+
self.start = 0
|
| 246 |
+
self.end = 0
|
| 247 |
+
self.offset = 0
|
| 248 |
+
self.vad_iterator.reset_states()
|
| 249 |
+
self.silence_chunk_size = 0 # 重置静音计数器
|
| 250 |
+
|
| 251 |
+
def __call__(self, x: np.ndarray = None):
|
| 252 |
+
if x is None:
|
| 253 |
+
# 处理缓冲区中剩余的音频
|
| 254 |
+
# 检查条件:VAD 正在触发状态,或者 VAD 未触发但已检测到 start 且缓冲区有内容
|
| 255 |
+
if self.vad_iterator.triggered or (self.start > self.offset and len(self.audio_buffer) > 0):
|
| 256 |
+
start_global = max(self.offset, self.start - self.speech_pad_samples)
|
| 257 |
+
# 结束点是缓冲区的绝对末尾
|
| 258 |
+
end_global = self.offset + len(self.audio_buffer)
|
| 259 |
+
|
| 260 |
+
# 确保 start < end
|
| 261 |
+
if start_global < end_global:
|
| 262 |
+
start_ts = round(start_global / self.sampling_rate, 1)
|
| 263 |
+
end_ts = round(end_global / self.sampling_rate, 1)
|
| 264 |
+
|
| 265 |
+
# 提取数据,从计算出的 buffer 内索引开始到 buffer 末尾
|
| 266 |
+
buffer_start_index = max(0, start_global - self.offset)
|
| 267 |
+
audio_data = self.audio_buffer[buffer_start_index:]
|
| 268 |
+
|
| 269 |
+
if len(audio_data) > 0:
|
| 270 |
+
result = {
|
| 271 |
+
"start": start_ts,
|
| 272 |
+
"end": end_ts,
|
| 273 |
+
"audio": audio_data,
|
| 274 |
+
}
|
| 275 |
+
else:
|
| 276 |
+
result = None
|
| 277 |
+
else:
|
| 278 |
+
result = None # start >= end, 无效片段
|
| 279 |
+
else:
|
| 280 |
+
result = None # 无需处理的剩余音频
|
| 281 |
+
self.reset() # 处理完剩余部分后重置状态
|
| 282 |
+
return result
|
| 283 |
+
|
| 284 |
+
# 将新音频块添加到缓冲区
|
| 285 |
+
self.audio_buffer = np.append(self.audio_buffer, deepcopy(x))
|
| 286 |
+
|
| 287 |
+
# 使用 VAD 迭代器处理新块
|
| 288 |
+
vad_result = self.vad_iterator(x)
|
| 289 |
+
if vad_result is not None:
|
| 290 |
+
self.silence_chunk_size = 0 # VAD 有活动,重置静音计数
|
| 291 |
+
if 'start' in vad_result:
|
| 292 |
+
# 仅当尚未开始一个新片段时更新 start
|
| 293 |
+
# (self.start <= self.offset 意味着上一个片段已结束或从未开始)
|
| 294 |
+
if self.start <= self.offset:
|
| 295 |
+
self.start = vad_result['start'] + self.offset
|
| 296 |
+
if 'end' in vad_result:
|
| 297 |
+
# 仅当已检测到 start 时更新 end
|
| 298 |
+
if self.start > self.offset:
|
| 299 |
+
self.end = vad_result['end'] + self.offset
|
| 300 |
+
else:
|
| 301 |
+
# 仅在 VAD 未触发且未检测到语音开始时增加静音计数
|
| 302 |
+
if not self.vad_iterator.triggered and self.start <= self.offset:
|
| 303 |
+
self.silence_chunk_size += 1
|
| 304 |
+
|
| 305 |
+
# --- 缓冲区管理 ---
|
| 306 |
+
# 1. 清理前导静音 (如果从未检测到语音开始)
|
| 307 |
+
if self.start <= self.offset and not self.vad_iterator.triggered and len(self.audio_buffer) > self.speech_pad_samples:
|
| 308 |
+
# 仅当 VAD 内部状态也确认无语音时清理
|
| 309 |
+
if self.vad_iterator.speech_start_sample == 0:
|
| 310 |
+
clearable_length = len(self.audio_buffer) - self.speech_pad_samples
|
| 311 |
+
self.offset += clearable_length
|
| 312 |
+
self.audio_buffer = self.audio_buffer[clearable_length:]
|
| 313 |
+
self.silence_chunk_size = 0 # 清理后重置计数
|
| 314 |
+
|
| 315 |
+
# 2. 因长时间静音清理缓冲区 (如果从未检测到语音开始)
|
| 316 |
+
if self.start <= self.offset and not self.vad_iterator.triggered and self.silence_chunk_size >= self.silence_chunk_threshold:
|
| 317 |
+
clearable_length = len(self.audio_buffer) # 清理到当前位置的所有内容
|
| 318 |
+
if clearable_length > 0:
|
| 319 |
+
self.offset += clearable_length
|
| 320 |
+
self.audio_buffer = np.array([], dtype=np.float32) # 清空缓冲区
|
| 321 |
+
self.silence_chunk_size = 0 # 重置计数
|
| 322 |
+
# --- 结束缓冲区管理 ---
|
| 323 |
+
|
| 324 |
+
# --- 片段提取 ---
|
| 325 |
+
segment_to_return = None
|
| 326 |
+
if self.end > self.start:
|
| 327 |
+
# 检测到完整语音段 [start, end]
|
| 328 |
+
start_global = max(self.offset, self.start - self.speech_pad_samples)
|
| 329 |
+
end_global = self.end + self.speech_pad_samples
|
| 330 |
+
|
| 331 |
+
# 实际能提取的结束点不能超过当前缓冲区的末尾
|
| 332 |
+
effective_end_global = min(end_global, self.offset + len(self.audio_buffer))
|
| 333 |
+
|
| 334 |
+
# 确保 start_global < effective_end_global
|
| 335 |
+
if start_global < effective_end_global:
|
| 336 |
+
start_ts = round(start_global / self.sampling_rate, 1)
|
| 337 |
+
# 时间戳使用理论上的 end_global
|
| 338 |
+
end_ts = round(end_global / self.sampling_rate, 1)
|
| 339 |
+
|
| 340 |
+
# 计算在当前 audio_buffer 中的索引
|
| 341 |
+
buffer_start_index = max(0, start_global - self.offset)
|
| 342 |
+
buffer_end_index = effective_end_global - self.offset
|
| 343 |
+
|
| 344 |
+
if buffer_start_index < buffer_end_index: # 确保索引有效
|
| 345 |
+
audio_data = self.audio_buffer[buffer_start_index : buffer_end_index]
|
| 346 |
+
|
| 347 |
+
# --- 更新缓冲区和 Offset ---
|
| 348 |
+
# 保留从提取片段之后的数据
|
| 349 |
+
keep_from_index = buffer_end_index
|
| 350 |
+
|
| 351 |
+
if keep_from_index < len(self.audio_buffer):
|
| 352 |
+
self.audio_buffer = self.audio_buffer[keep_from_index:]
|
| 353 |
+
# *** 关键修复 ***: 新的 offset 是保留下来的缓冲区的起始全局位置
|
| 354 |
+
self.offset = effective_end_global
|
| 355 |
+
else:
|
| 356 |
+
# 提取的片段到达或超过了缓冲区的末尾
|
| 357 |
+
self.audio_buffer = np.array([], dtype=np.float32)
|
| 358 |
+
self.offset = effective_end_global # Offset 更新到缓冲区结束的位置
|
| 359 |
+
|
| 360 |
+
# 重置 start 和 end 以寻找下一个片段
|
| 361 |
+
# 新的查找应该从新的 offset 开始
|
| 362 |
+
self.start = self.offset
|
| 363 |
+
self.end = self.offset
|
| 364 |
+
|
| 365 |
+
segment_to_return = {
|
| 366 |
+
"start": start_ts,
|
| 367 |
+
"end": end_ts,
|
| 368 |
+
"audio": audio_data,
|
| 369 |
+
}
|
| 370 |
+
else:
|
| 371 |
+
# 索引无效,可能由快速的 start/end 事件或 padding 引起
|
| 372 |
+
# 谨慎重置状态,避免丢失同步
|
| 373 |
+
self.start = self.offset
|
| 374 |
+
self.end = self.offset
|
| 375 |
+
else:
|
| 376 |
+
# start_global >= effective_end_global,无效,重置状态
|
| 377 |
+
self.start = self.offset
|
| 378 |
+
self.end = self.offset
|
| 379 |
+
|
| 380 |
+
return segment_to_return
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
class VadProcessor:
|
| 384 |
+
def __init__(
|
| 385 |
+
self,
|
| 386 |
+
prob_threshold=0.5,
|
| 387 |
+
silence_s=0.2,
|
| 388 |
+
cache_s=0.15, # 这个参数现在由 VadV2 内部的 speech_pad_ms 控制
|
| 389 |
+
sr=16000,
|
| 390 |
+
long_speech_threshold_s: float = 6.0, # 新增:默认长语音阈值
|
| 391 |
+
adjusted_min_silence_factor: float = 0.5 # 新增:默认调整因子
|
| 392 |
+
):
|
| 393 |
+
self.prob_threshold = prob_threshold
|
| 394 |
+
# self.cache_s = cache_s # 不再直接使用 cache_s,改用 speech_pad_ms
|
| 395 |
+
self.sr = sr
|
| 396 |
+
self.silence_s = silence_s # 用于 min_silence_duration_ms
|
| 397 |
+
self.speech_pad_s = cache_s # 将 cache_s 理解为 speech_pad_ms
|
| 398 |
+
|
| 399 |
+
# 传递所有参数给 VadV2
|
| 400 |
+
self.vad = VadV2(
|
| 401 |
+
threshold=self.prob_threshold,
|
| 402 |
+
sampling_rate=self.sr,
|
| 403 |
+
min_silence_duration_ms=int(self.silence_s * 1000),
|
| 404 |
+
speech_pad_ms=int(self.speech_pad_s * 1000),
|
| 405 |
+
max_speech_duration_s=15, # 保持原来的最大时长限制
|
| 406 |
+
long_speech_threshold_s=long_speech_threshold_s, # 传递新参数
|
| 407 |
+
adjusted_min_silence_factor=adjusted_min_silence_factor # 传递新参数
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
def process_audio(self, audio_buffer: np.ndarray):
|
| 412 |
+
audio = np.array([], np.float32)
|
| 413 |
+
chunk_size = 512 # VAD 模型期望的块大小
|
| 414 |
+
for i in range(0, len(audio_buffer), chunk_size):
|
| 415 |
+
chunk = audio_buffer[i:i+chunk_size]
|
| 416 |
+
# 如果是最后一块且长度不足,VADIteratorOnnx 内部会处理 padding
|
| 417 |
+
ret = self.vad(chunk)
|
| 418 |
+
if ret:
|
| 419 |
+
audio = np.append(audio, ret['audio'])
|
| 420 |
+
|
| 421 |
+
# 处理结束后,调用 vad(None) 来获取缓冲区中剩余的音频
|
| 422 |
+
final_ret = self.vad(None)
|
| 423 |
+
if final_ret:
|
| 424 |
+
audio = np.append(audio, final_ret['audio'])
|
| 425 |
+
|
| 426 |
+
return audio
|
| 427 |
+
|
| 428 |
+
# 可能需要一个 reset 方法来重置 VAD 状态,以备复用 VadProcessor 实例
|
| 429 |
+
def reset(self):
|
| 430 |
+
self.vad.reset()
|
transcribe/whisper_llm_serve.py
CHANGED
|
@@ -16,6 +16,7 @@ from .translatepipes import TranslatePipes
|
|
| 16 |
from .strategy import (
|
| 17 |
TranscriptStabilityAnalyzer, TranscriptToken)
|
| 18 |
from transcribe.helpers.vadprocessor import VadProcessor
|
|
|
|
| 19 |
from transcribe.pipelines import MetaItem
|
| 20 |
|
| 21 |
logger = getLogger("TranscriptionService")
|
|
@@ -59,9 +60,9 @@ class WhisperTranscriptionService:
|
|
| 59 |
self.translate_thread = self._start_thread(self._transcription_processing_loop)
|
| 60 |
self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
|
| 61 |
if language == "zh":
|
| 62 |
-
self._vad = VadProcessor(prob_threshold=0.
|
| 63 |
else:
|
| 64 |
-
self._vad = VadProcessor(prob_threshold=0.
|
| 65 |
self.row_number = 0
|
| 66 |
# for test
|
| 67 |
self._transcrible_time_cost = 0.
|
|
|
|
| 16 |
from .strategy import (
|
| 17 |
TranscriptStabilityAnalyzer, TranscriptToken)
|
| 18 |
from transcribe.helpers.vadprocessor import VadProcessor
|
| 19 |
+
# from transcribe.helpers.vad_dynamic import VadProcessor
|
| 20 |
from transcribe.pipelines import MetaItem
|
| 21 |
|
| 22 |
logger = getLogger("TranscriptionService")
|
|
|
|
| 60 |
self.translate_thread = self._start_thread(self._transcription_processing_loop)
|
| 61 |
self.frame_processing_thread = self._start_thread(self._frame_processing_loop)
|
| 62 |
if language == "zh":
|
| 63 |
+
self._vad = VadProcessor(prob_threshold=0.5, silence_s=0.15, cache_s=0.12)
|
| 64 |
else:
|
| 65 |
+
self._vad = VadProcessor(prob_threshold=0.5, silence_s=0.2, cache_s=0.15)
|
| 66 |
self.row_number = 0
|
| 67 |
# for test
|
| 68 |
self._transcrible_time_cost = 0.
|