daihui.zhang
commited on
Commit
·
e046f39
1
Parent(s):
6f13b8c
add buffer clip via sequence strategy
Browse files- transcribe/strategy.py +152 -0
- transcribe/whisper_llm_serve.py +24 -134
transcribe/strategy.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
from logging import getLogger
|
| 4 |
+
from difflib import SequenceMatcher
|
| 5 |
+
import collections
|
| 6 |
+
import config
|
| 7 |
+
import numpy as np
|
| 8 |
+
from itertools import chain
|
| 9 |
+
|
| 10 |
+
logger = getLogger("Stragegy")
|
| 11 |
+
|
| 12 |
+
class TripleTextBuffer:
|
| 13 |
+
def __init__(self, size=2):
|
| 14 |
+
self.history = collections.deque(maxlen=size)
|
| 15 |
+
|
| 16 |
+
def add_entry(self, text, index):
|
| 17 |
+
"""
|
| 18 |
+
text: 文本
|
| 19 |
+
index: 当前buffer的相对下标 数组索引
|
| 20 |
+
"""
|
| 21 |
+
self.history.append((text, index))
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_final_index(self, similarity_threshold=0.7):
|
| 25 |
+
"""根据文本变化,返回可靠的标点的buffer的位置下标"""
|
| 26 |
+
if len(self.history) < 2:
|
| 27 |
+
return None
|
| 28 |
+
|
| 29 |
+
# 获取三次的文本
|
| 30 |
+
text1, _ = self.history[0]
|
| 31 |
+
text2, idx2 = self.history[1]
|
| 32 |
+
# text3, idx3 = self.history[2]
|
| 33 |
+
|
| 34 |
+
# 计算变化程度
|
| 35 |
+
sim_12 = self.text_similarity(text1, text2)
|
| 36 |
+
# print("比较: ", text1, text2," => ", sim_12)
|
| 37 |
+
# sim_23 = self.text_similarity(text2, text3)
|
| 38 |
+
if sim_12 >= similarity_threshold:
|
| 39 |
+
self.history.clear()
|
| 40 |
+
return idx2
|
| 41 |
+
return None
|
| 42 |
+
|
| 43 |
+
@staticmethod
|
| 44 |
+
def text_similarity(text1, text2):
|
| 45 |
+
return SequenceMatcher(None, text1, text2).ratio()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class SegmentManager:
|
| 50 |
+
def __init__(self) -> None:
|
| 51 |
+
self._commited_segments = [] # 确定后的段落
|
| 52 |
+
self._commited_short_sentences = [] # 确定后的序列
|
| 53 |
+
self._temp_string = "" # 存储当前临时的文本字符串,直到以句号结尾
|
| 54 |
+
|
| 55 |
+
def handle(self, string):
|
| 56 |
+
self._temp_string = string
|
| 57 |
+
return self
|
| 58 |
+
|
| 59 |
+
@property
|
| 60 |
+
def short_sentence(self) -> str:
|
| 61 |
+
return "".join(self._commited_short_sentences)
|
| 62 |
+
|
| 63 |
+
@property
|
| 64 |
+
def segment(self):
|
| 65 |
+
return self._commited_segments[-1] if len(self._commited_segments) > 0 else ""
|
| 66 |
+
|
| 67 |
+
def get_seg_id(self):
|
| 68 |
+
return len(self._commited_segments)
|
| 69 |
+
|
| 70 |
+
@property
|
| 71 |
+
def string(self):
|
| 72 |
+
return self._temp_string
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def commit_short_sentence(self):
|
| 76 |
+
"""将临时字符串 提交到临时短句"""
|
| 77 |
+
self._commited_short_sentences.append(self._temp_string)
|
| 78 |
+
self._temp_string = ""
|
| 79 |
+
|
| 80 |
+
def commit_segment(self):
|
| 81 |
+
"""将短句 合并 到长句中"""
|
| 82 |
+
self._commited_segments.append(self.short_sentence)
|
| 83 |
+
self._commited_short_sentences = []
|
| 84 |
+
|
| 85 |
+
def commit(self, is_end_sentence=False):
|
| 86 |
+
"""
|
| 87 |
+
当需要切掉的音频部分的时候,将句子提交到短句队列中,并移除临时字符串
|
| 88 |
+
当完成一个整句的时候提交到段落中
|
| 89 |
+
"""
|
| 90 |
+
self.commit_short_sentence()
|
| 91 |
+
if is_end_sentence:
|
| 92 |
+
self.commit_segment()
|
| 93 |
+
|
| 94 |
+
def segement_merge(segments):
|
| 95 |
+
"""根据标点符号分整句"""
|
| 96 |
+
sequences = []
|
| 97 |
+
temp_seq = []
|
| 98 |
+
|
| 99 |
+
for seg in segments:
|
| 100 |
+
temp_seq.append(seg)
|
| 101 |
+
if any([mk in seg.text for mk in config.SENTENCE_END_MARKERS]):
|
| 102 |
+
sequences.append(temp_seq.copy())
|
| 103 |
+
temp_seq = []
|
| 104 |
+
if temp_seq:
|
| 105 |
+
sequences.append(temp_seq)
|
| 106 |
+
return sequences
|
| 107 |
+
|
| 108 |
+
def segments_split(segments, audio_buffer: np.ndarray, sample_rate=16000):
|
| 109 |
+
"""根据左边第一个标点符号来将序列拆分成 观察段 和 剩余部分"""
|
| 110 |
+
left_watch_sequences = []
|
| 111 |
+
left_watch_idx = 0
|
| 112 |
+
right_watch_sequences = []
|
| 113 |
+
is_end = False
|
| 114 |
+
|
| 115 |
+
if (len(audio_buffer) / sample_rate) < 12:
|
| 116 |
+
# 低于12s 使用短句符号比如逗号作为判断依据
|
| 117 |
+
markers = config.PAUSE_END_MARKERS
|
| 118 |
+
is_end = False
|
| 119 |
+
|
| 120 |
+
for idx, seg in enumerate(segments):
|
| 121 |
+
left_watch_sequences.append(seg)
|
| 122 |
+
if seg.text in markers:
|
| 123 |
+
seg_index = int(seg.t1 / 100 * sample_rate)
|
| 124 |
+
rest_buffer_duration = (len(audio_buffer) - seg_index) / sample_rate
|
| 125 |
+
# is_end = any(i in seg.text for i in config.SENTENCE_END_MARKERS)
|
| 126 |
+
right_watch_sequences = segments[min(idx+1, len(segments)):]
|
| 127 |
+
if rest_buffer_duration >= 1.5:
|
| 128 |
+
left_watch_idx = seg_index
|
| 129 |
+
break
|
| 130 |
+
return left_watch_idx, left_watch_sequences, right_watch_sequences, is_end
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def sequences_split(segments, audio_buffer: np.ndarray, sample_rate=16000):
|
| 134 |
+
# 长句 保留最后两句即可
|
| 135 |
+
left_watch_sequences = []
|
| 136 |
+
right_watch_sequences = []
|
| 137 |
+
left_watch_idx = 0
|
| 138 |
+
is_end = False
|
| 139 |
+
sequences = segement_merge(segments)
|
| 140 |
+
|
| 141 |
+
if len(sequences) > 2:
|
| 142 |
+
logger.info(f"buffer clip via sequence, current length: {len(sequences)}")
|
| 143 |
+
is_end = True
|
| 144 |
+
left_watch_sequences = chain(*sequences[:-2])
|
| 145 |
+
right_watch_sequences = chain(*sequences[-2:])
|
| 146 |
+
last_sequence_segment = sequences[-3]
|
| 147 |
+
last_segment = last_sequence_segment[-1]
|
| 148 |
+
left_watch_idx = int(last_segment.t1 / 100 * sample_rate)
|
| 149 |
+
return left_watch_idx, left_watch_sequences, right_watch_sequences, is_end
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
transcribe/whisper_llm_serve.py
CHANGED
|
@@ -1,119 +1,31 @@
|
|
| 1 |
|
| 2 |
|
| 3 |
import soundfile
|
| 4 |
-
from concurrent.futures import ProcessPoolExecutor as PPool
|
| 5 |
import multiprocessing as mp
|
| 6 |
import numpy as np
|
| 7 |
from logging import getLogger
|
| 8 |
-
|
| 9 |
-
import collections
|
| 10 |
import config
|
| 11 |
import time
|
| 12 |
import json
|
| 13 |
import threading
|
| 14 |
-
from functools import partial
|
| 15 |
from .server import ServeClientBase
|
| 16 |
-
|
| 17 |
-
from .vad import VoiceActivityDetector
|
| 18 |
-
from pywhispercpp.model import Model
|
| 19 |
-
from queue import Queue
|
| 20 |
from scipy.io.wavfile import write
|
| 21 |
from api_model import TransResult, Message
|
| 22 |
from .utils import log_block
|
| 23 |
from .translatepipes import TranslatePipes
|
|
|
|
| 24 |
|
| 25 |
logger = getLogger("TranslatorApp")
|
| 26 |
|
| 27 |
translate_pipes = TranslatePipes()
|
| 28 |
translate_pipes.wait_ready()
|
| 29 |
-
|
| 30 |
logger.info("Pipeline is ready.")
|
| 31 |
|
| 32 |
def save_to_wave(filename, data:np.ndarray, sample_rate=16000):
|
| 33 |
write(filename, sample_rate, data)
|
| 34 |
|
| 35 |
-
class TripleTextBuffer:
|
| 36 |
-
def __init__(self, size=2):
|
| 37 |
-
self.history = collections.deque(maxlen=size)
|
| 38 |
-
|
| 39 |
-
def add_entry(self, text, index):
|
| 40 |
-
"""
|
| 41 |
-
text: 文本
|
| 42 |
-
index: 当前buffer的相对下标 数组索引
|
| 43 |
-
"""
|
| 44 |
-
self.history.append((text, index))
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def get_final_index(self, similarity_threshold=0.7):
|
| 48 |
-
"""根据文本变化,返回可靠的标点的buffer的位置下标"""
|
| 49 |
-
if len(self.history) < 2:
|
| 50 |
-
return None
|
| 51 |
-
|
| 52 |
-
# 获取三次的文本
|
| 53 |
-
text1, _ = self.history[0]
|
| 54 |
-
text2, idx2 = self.history[1]
|
| 55 |
-
# text3, idx3 = self.history[2]
|
| 56 |
-
|
| 57 |
-
# 计算变化程度
|
| 58 |
-
sim_12 = self.text_similarity(text1, text2)
|
| 59 |
-
# print("比较: ", text1, text2," => ", sim_12)
|
| 60 |
-
# sim_23 = self.text_similarity(text2, text3)
|
| 61 |
-
if sim_12 >= similarity_threshold:
|
| 62 |
-
self.history.clear()
|
| 63 |
-
return idx2
|
| 64 |
-
return None
|
| 65 |
-
|
| 66 |
-
@staticmethod
|
| 67 |
-
def text_similarity(text1, text2):
|
| 68 |
-
return SequenceMatcher(None, text1, text2).ratio()
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
class SegmentManager:
|
| 73 |
-
def __init__(self) -> None:
|
| 74 |
-
self._commited_segments = [] # 确定后的段落
|
| 75 |
-
self._commited_short_sentences = [] # 确定后的序列
|
| 76 |
-
self._temp_string = "" # 存储当前临时的文本字符串,直到以句号结尾
|
| 77 |
-
|
| 78 |
-
def handle(self, string):
|
| 79 |
-
self._temp_string = string
|
| 80 |
-
return self
|
| 81 |
-
|
| 82 |
-
@property
|
| 83 |
-
def short_sentence(self) -> str:
|
| 84 |
-
return "".join(self._commited_short_sentences)
|
| 85 |
-
|
| 86 |
-
@property
|
| 87 |
-
def segment(self):
|
| 88 |
-
return self._commited_segments[-1] if len(self._commited_segments) > 0 else ""
|
| 89 |
-
|
| 90 |
-
def get_seg_id(self):
|
| 91 |
-
return len(self._commited_segments)
|
| 92 |
-
|
| 93 |
-
@property
|
| 94 |
-
def string(self):
|
| 95 |
-
return self._temp_string
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
def commit_short_sentence(self):
|
| 99 |
-
"""将临时字符串 提交到临时短句"""
|
| 100 |
-
self._commited_short_sentences.append(self._temp_string)
|
| 101 |
-
self._temp_string = ""
|
| 102 |
-
|
| 103 |
-
def commit_segment(self):
|
| 104 |
-
"""将短句 合并 到长句中"""
|
| 105 |
-
self._commited_segments.append(self.short_sentence)
|
| 106 |
-
self._commited_short_sentences = []
|
| 107 |
-
|
| 108 |
-
def commit(self, is_end_sentence=False):
|
| 109 |
-
"""
|
| 110 |
-
当需要切掉的音频部分的时候,将句子提交到短句队列中,并移除临时字符串
|
| 111 |
-
当完成一个整句的时候提交到段落中
|
| 112 |
-
"""
|
| 113 |
-
self.commit_short_sentence()
|
| 114 |
-
if is_end_sentence:
|
| 115 |
-
self.commit_segment()
|
| 116 |
-
|
| 117 |
|
| 118 |
|
| 119 |
class PyWhiperCppServe(ServeClientBase):
|
|
@@ -127,15 +39,11 @@ class PyWhiperCppServe(ServeClientBase):
|
|
| 127 |
self._text_buffer = TripleTextBuffer()
|
| 128 |
# 存储转录数据
|
| 129 |
self._segment_manager = SegmentManager()
|
| 130 |
-
self._ready_state = mp.Event()
|
| 131 |
|
| 132 |
self.lock = threading.Lock()
|
| 133 |
self.frames_np = None
|
| 134 |
self.sample_rate = 16000
|
| 135 |
-
|
| 136 |
-
# 进程初始化后再开始收音频
|
| 137 |
-
|
| 138 |
-
logger.info('Create a process to process audio.')
|
| 139 |
self.send_ready_state()
|
| 140 |
|
| 141 |
self.trans_thread = threading.Thread(target=self.speech_to_text)
|
|
@@ -143,7 +51,7 @@ class PyWhiperCppServe(ServeClientBase):
|
|
| 143 |
self.trans_thread.start()
|
| 144 |
|
| 145 |
def send_ready_state(self):
|
| 146 |
-
|
| 147 |
self.websocket.send(json.dumps({
|
| 148 |
"uid": self.client_uid,
|
| 149 |
"message": self.SERVER_READY,
|
|
@@ -193,40 +101,14 @@ class PyWhiperCppServe(ServeClientBase):
|
|
| 193 |
ret = translate_pipes.translate(text, self.language, self.dst_lang)
|
| 194 |
log_block("LLM translate time", f"{(time.perf_counter() - start_time):.3f}", "s")
|
| 195 |
return ret.translate_content
|
| 196 |
-
|
| 197 |
-
def _segments_split(self, segments, audio_buffer: np.ndarray):
|
| 198 |
-
"""根据左边第一个标点符号来将序列拆分成 观察段 和 剩余部分"""
|
| 199 |
-
left_watch_sequences = []
|
| 200 |
-
left_watch_idx = 0
|
| 201 |
-
right_watch_sequences = []
|
| 202 |
-
is_end = False
|
| 203 |
-
|
| 204 |
-
if (len(audio_buffer) / self.sample_rate) < 10:
|
| 205 |
-
# 低于10s 使用短句符号比如逗号作为判断依据
|
| 206 |
-
markers = config.PAUSE_END_MARKERS
|
| 207 |
-
is_end = False
|
| 208 |
-
else:
|
| 209 |
-
# 使用句号 长句结尾符号作为判断
|
| 210 |
-
markers = config.SENTENCE_END_MARKERS
|
| 211 |
-
is_end = True
|
| 212 |
|
| 213 |
-
|
| 214 |
-
left_watch_sequences.append(seg)
|
| 215 |
-
if seg.text in markers:
|
| 216 |
-
seg_index = int(seg.t1 / 100 * self.sample_rate)
|
| 217 |
-
rest_buffer_duration = (len(audio_buffer) - seg_index) / self.sample_rate
|
| 218 |
-
# is_end = any(i in seg.text for i in config.SENTENCE_END_MARKERS)
|
| 219 |
-
right_watch_sequences = segments[min(idx+1, len(segments)):]
|
| 220 |
-
if rest_buffer_duration >= 1.5:
|
| 221 |
-
left_watch_idx = seg_index
|
| 222 |
-
break
|
| 223 |
-
return left_watch_idx, left_watch_sequences, right_watch_sequences, is_end
|
| 224 |
|
| 225 |
def analysis_segments(self, segments, audio_buffer: np.ndarray):
|
| 226 |
# 找到第一个标点符号作为锚点 左边为确认段,右边为观察段,
|
| 227 |
# 当左边确认后,右边段才会进入观察
|
| 228 |
# 当左边确认后,会从缓冲区中删除对应的buffer,减少下次输入的数据量
|
| 229 |
-
left_watch_idx, left_watch_sequences, right_watch_sequences, is_end_sentence =
|
| 230 |
left_watch_string = "".join(i.text for i in left_watch_sequences)
|
| 231 |
right_watch_string = "".join(i.text for i in right_watch_sequences)
|
| 232 |
|
|
@@ -236,6 +118,14 @@ class PyWhiperCppServe(ServeClientBase):
|
|
| 236 |
audio_cut_index = self._text_buffer.get_final_index()
|
| 237 |
if audio_cut_index:
|
| 238 |
return audio_cut_index, left_watch_string, right_watch_string, is_end_sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
return None, left_watch_string, right_watch_string, is_end_sentence
|
| 240 |
|
| 241 |
def speech_to_text(self):
|
|
@@ -253,15 +143,15 @@ class PyWhiperCppServe(ServeClientBase):
|
|
| 253 |
# c+= 1
|
| 254 |
# name = f"dev-{c}.wav"
|
| 255 |
# save_to_wave(name, audio_buffer)
|
| 256 |
-
try:
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
except KeyboardInterrupt:
|
| 262 |
-
|
| 263 |
-
except Exception as e:
|
| 264 |
-
|
| 265 |
|
| 266 |
def handle_transcription_output(self, segments, audio_buffer):
|
| 267 |
texts = "".join(i.text for i in segments)
|
|
|
|
| 1 |
|
| 2 |
|
| 3 |
import soundfile
|
|
|
|
| 4 |
import multiprocessing as mp
|
| 5 |
import numpy as np
|
| 6 |
from logging import getLogger
|
| 7 |
+
|
|
|
|
| 8 |
import config
|
| 9 |
import time
|
| 10 |
import json
|
| 11 |
import threading
|
|
|
|
| 12 |
from .server import ServeClientBase
|
| 13 |
+
|
|
|
|
|
|
|
|
|
|
| 14 |
from scipy.io.wavfile import write
|
| 15 |
from api_model import TransResult, Message
|
| 16 |
from .utils import log_block
|
| 17 |
from .translatepipes import TranslatePipes
|
| 18 |
+
from .strategy import TripleTextBuffer, SegmentManager, segments_split, sequences_split
|
| 19 |
|
| 20 |
logger = getLogger("TranslatorApp")
|
| 21 |
|
| 22 |
translate_pipes = TranslatePipes()
|
| 23 |
translate_pipes.wait_ready()
|
|
|
|
| 24 |
logger.info("Pipeline is ready.")
|
| 25 |
|
| 26 |
def save_to_wave(filename, data:np.ndarray, sample_rate=16000):
|
| 27 |
write(filename, sample_rate, data)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
class PyWhiperCppServe(ServeClientBase):
|
|
|
|
| 39 |
self._text_buffer = TripleTextBuffer()
|
| 40 |
# 存储转录数据
|
| 41 |
self._segment_manager = SegmentManager()
|
|
|
|
| 42 |
|
| 43 |
self.lock = threading.Lock()
|
| 44 |
self.frames_np = None
|
| 45 |
self.sample_rate = 16000
|
| 46 |
+
|
|
|
|
|
|
|
|
|
|
| 47 |
self.send_ready_state()
|
| 48 |
|
| 49 |
self.trans_thread = threading.Thread(target=self.speech_to_text)
|
|
|
|
| 51 |
self.trans_thread.start()
|
| 52 |
|
| 53 |
def send_ready_state(self):
|
| 54 |
+
|
| 55 |
self.websocket.send(json.dumps({
|
| 56 |
"uid": self.client_uid,
|
| 57 |
"message": self.SERVER_READY,
|
|
|
|
| 101 |
ret = translate_pipes.translate(text, self.language, self.dst_lang)
|
| 102 |
log_block("LLM translate time", f"{(time.perf_counter() - start_time):.3f}", "s")
|
| 103 |
return ret.translate_content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
def analysis_segments(self, segments, audio_buffer: np.ndarray):
|
| 108 |
# 找到第一个标点符号作为锚点 左边为确认段,右边为观察段,
|
| 109 |
# 当左边确认后,右边段才会进入观察
|
| 110 |
# 当左边确认后,会从缓冲区中删除对应的buffer,减少下次输入的数据量
|
| 111 |
+
left_watch_idx, left_watch_sequences, right_watch_sequences, is_end_sentence = segments_split(segments, audio_buffer)
|
| 112 |
left_watch_string = "".join(i.text for i in left_watch_sequences)
|
| 113 |
right_watch_string = "".join(i.text for i in right_watch_sequences)
|
| 114 |
|
|
|
|
| 118 |
audio_cut_index = self._text_buffer.get_final_index()
|
| 119 |
if audio_cut_index:
|
| 120 |
return audio_cut_index, left_watch_string, right_watch_string, is_end_sentence
|
| 121 |
+
|
| 122 |
+
# 整句消除 后两句之前的内容
|
| 123 |
+
left_watch_idx, left_watch_sequences, right_watch_sequences, is_end_sentence = sequences_split(segments, audio_buffer)
|
| 124 |
+
left_watch_string = "".join(i.text for i in left_watch_sequences)
|
| 125 |
+
right_watch_string = "".join(i.text for i in right_watch_sequences)
|
| 126 |
+
if left_watch_idx != 0:
|
| 127 |
+
return left_watch_idx, left_watch_string, right_watch_string, is_end_sentence
|
| 128 |
+
|
| 129 |
return None, left_watch_string, right_watch_string, is_end_sentence
|
| 130 |
|
| 131 |
def speech_to_text(self):
|
|
|
|
| 143 |
# c+= 1
|
| 144 |
# name = f"dev-{c}.wav"
|
| 145 |
# save_to_wave(name, audio_buffer)
|
| 146 |
+
# try:
|
| 147 |
+
logger.info(f"Audio buffer length: {len(audio_buffer) / self.sample_rate:.2f}s")
|
| 148 |
+
segments = self.transcribe_audio(audio_buffer)
|
| 149 |
+
for tran_result in self.handle_transcription_output(segments, audio_buffer):
|
| 150 |
+
self.send_to_client(tran_result)
|
| 151 |
+
# except KeyboardInterrupt:
|
| 152 |
+
# break
|
| 153 |
+
# except Exception as e:
|
| 154 |
+
# logger.error(f"{e}")
|
| 155 |
|
| 156 |
def handle_transcription_output(self, segments, audio_buffer):
|
| 157 |
texts = "".join(i.text for i in segments)
|