Commit
·
8535e80
1
Parent(s):
cf531ba
chore: initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- README.md +33 -0
- build.toml +23 -0
- build/torch26-cxx11-cu118-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch26-cxx11-cu118-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch26-cxx11-cu118-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch26-cxx11-cu118-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch26-cxx11-cu118-x86_64-linux/optimizer/muon.py +458 -0
- build/torch26-cxx11-cu124-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch26-cxx11-cu124-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch26-cxx11-cu124-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch26-cxx11-cu124-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch26-cxx11-cu124-x86_64-linux/optimizer/muon.py +458 -0
- build/torch26-cxx11-cu126-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch26-cxx11-cu126-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch26-cxx11-cu126-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch26-cxx11-cu126-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch26-cxx11-cu126-x86_64-linux/optimizer/muon.py +458 -0
- build/torch26-cxx11-rocm62-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_20250614121529.abi3.so +3 -0
- build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_20250614123843.abi3.so +3 -0
- build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch26-cxx11-rocm62-x86_64-linux/optimizer/muon.py +458 -0
- build/torch26-cxx98-cu118-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch26-cxx98-cu118-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch26-cxx98-cu118-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch26-cxx98-cu118-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch26-cxx98-cu118-x86_64-linux/optimizer/muon.py +458 -0
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch26-cxx98-cu124-x86_64-linux/optimizer/muon.py +458 -0
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch26-cxx98-cu126-x86_64-linux/optimizer/muon.py +458 -0
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/muon.py +458 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/__init__.py +5 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/_ops.py +9 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so +3 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so +3 -0
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/muon.py +458 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.so filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.pdf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- kernel
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Optimizer
|
| 7 |
+
|
| 8 |
+
Optimizer is a python package that provides:
|
| 9 |
+
- PyTorch implementation of recent optimizer algorithms
|
| 10 |
+
- with support for parallelism techniques for efficient large-scale training.
|
| 11 |
+
|
| 12 |
+
### Currently implemented
|
| 13 |
+
- [Parallel Muon with FSDP2](./docs/muon/parallel_muon.pdf)
|
| 14 |
+
|
| 15 |
+
## Usage
|
| 16 |
+
|
| 17 |
+
```python
|
| 18 |
+
import torch
|
| 19 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
| 20 |
+
from kernels import get_kernel
|
| 21 |
+
|
| 22 |
+
optimizer = get_kernel("motif-technologies/optimizer")
|
| 23 |
+
|
| 24 |
+
model = None # your model here
|
| 25 |
+
fsdp_model = FSDP(model)
|
| 26 |
+
|
| 27 |
+
optim = optimizer.Muon(
|
| 28 |
+
fsdp_model.parameters(),
|
| 29 |
+
lr=0.01,
|
| 30 |
+
momentum=0.9,
|
| 31 |
+
weight_decay=1e-4,
|
| 32 |
+
)
|
| 33 |
+
```
|
build.toml
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[general]
|
| 2 |
+
name = "optimizer"
|
| 3 |
+
universal = false
|
| 4 |
+
|
| 5 |
+
[torch]
|
| 6 |
+
src = [
|
| 7 |
+
"torch-ext/torch_binding.cpp",
|
| 8 |
+
"torch-ext/torch_binding.h",
|
| 9 |
+
]
|
| 10 |
+
|
| 11 |
+
[kernel.activation]
|
| 12 |
+
backend = "rocm"
|
| 13 |
+
src = [
|
| 14 |
+
"optimizer/dummy.cu",
|
| 15 |
+
]
|
| 16 |
+
depends = [ "torch" ]
|
| 17 |
+
|
| 18 |
+
[kernel.activation_cuda]
|
| 19 |
+
backend = "cuda"
|
| 20 |
+
src = [
|
| 21 |
+
"optimizer/dummy.cu",
|
| 22 |
+
]
|
| 23 |
+
depends = [ "torch" ]
|
build/torch26-cxx11-cu118-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch26-cxx11-cu118-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch26-cxx11-cu118-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66ca698639fff584999fe65f8f10cc4436c197829e936be2741bf53db685caa0
|
| 3 |
+
size 1787272
|
build/torch26-cxx11-cu118-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8325d12959ef4f31b6c6340eca29176f5077abeaa10f3a6651db55ccf3c634f
|
| 3 |
+
size 1787272
|
build/torch26-cxx11-cu118-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|
build/torch26-cxx11-cu124-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch26-cxx11-cu124-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch26-cxx11-cu124-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e89cd7d514bfe92598684ae3cfc2d35ac2d021340846e09c0b6c880c3d55bfa0
|
| 3 |
+
size 1820136
|
build/torch26-cxx11-cu124-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9cbffc2cf8039069831a57afb8e2f64fa684f1a44bec79bb4b72dbb57d9ac607
|
| 3 |
+
size 1824224
|
build/torch26-cxx11-cu124-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|
build/torch26-cxx11-cu126-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch26-cxx11-cu126-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch26-cxx11-cu126-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f5dce62d3038e879e688fffa9bbc70f3e82db20b2e7ae3ba09040e0319acb71
|
| 3 |
+
size 1820136
|
build/torch26-cxx11-cu126-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:58162f994df84868dbf62ae70e39d3c14e3390fc827f152eece83dfae7f51503
|
| 3 |
+
size 1824224
|
build/torch26-cxx11-cu126-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|
build/torch26-cxx11-rocm62-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_20250614121529.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d2f60369ba2bd0a0f84e053d857d37496137ff476dc21561f211b1fa39651990
|
| 3 |
+
size 1749784
|
build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_20250614123843.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4d790535f99b7b362a966e802a547654f31749f5f28a0207493870927f1d8d2
|
| 3 |
+
size 1749784
|
build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b440dd9a60711a498010068e91d0ad013cd0b8ac732c16b5d1d17e5d4ec0f9b4
|
| 3 |
+
size 1749784
|
build/torch26-cxx11-rocm62-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f50ea9cab62a5bd06d886516d3917e4490e65aa9addd1cbb84fc81c6f9a9d5b1
|
| 3 |
+
size 1749744
|
build/torch26-cxx11-rocm62-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|
build/torch26-cxx98-cu118-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch26-cxx98-cu118-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch26-cxx98-cu118-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a8f8e7d78ed9a095b882cf764fd9c80a0b0810fb961ba9e8545656fc4cb0b0d7
|
| 3 |
+
size 1787200
|
build/torch26-cxx98-cu118-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:002dab6441bcad54ab4e7c064b5806acfd45170eb33cfa059745ba6e0c349607
|
| 3 |
+
size 1787192
|
build/torch26-cxx98-cu118-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab2379d932e40d10bee55f032bd16d2e4d9c1920bc5500628006f8a0eb8abd39
|
| 3 |
+
size 1824192
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f499350bb19eca6c3da1bb72e46023834b8411ce00730854273b588b2cd9206
|
| 3 |
+
size 1824184
|
build/torch26-cxx98-cu124-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c3282a321487a6faa532afe43bc1298731983c50e2a1acdff5480ff6e4df34e
|
| 3 |
+
size 1824192
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5b49ed642e1c320da3932377033ad90031124f4ec24b2d1c95fd976ff28346c
|
| 3 |
+
size 1824184
|
build/torch26-cxx98-cu126-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de82486a39ded94bfe7eeaa862459944a93e284fd0d919329979bb67db3c367f
|
| 3 |
+
size 1787376
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ac9027c4a93801e9f19f1e9e94a9ed33b27e92c72797053c3de55e2a6fbb41d
|
| 3 |
+
size 1787368
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .muon import Muon
|
| 2 |
+
|
| 3 |
+
__all__ = [
|
| 4 |
+
"Muon",
|
| 5 |
+
]
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _optimizer_b4b3752_dirty
|
| 3 |
+
ops = torch.ops._optimizer_b4b3752_dirty
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_optimizer_b4b3752_dirty::{op_name}"
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/_optimizer_20250614125054.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb02d3818a89c819a5a12d066ce56da0ebc4f3da491cb045ae380c5b9319e592
|
| 3 |
+
size 1824256
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/_optimizer_b4b3752_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b425a7fd854402508da5af17fa88f305753a09474686d6ec7afe540b3c5c082e
|
| 3 |
+
size 1824256
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/muon.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributed as dist
|
| 6 |
+
from torch.distributed._tensor import DTensor
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# TODO leave original url and consider LICENSE
|
| 10 |
+
# This code snippet is a modified version adapted from the following GitHub repository:
|
| 11 |
+
# https://github.com/KellerJordan/Muon/blob/master/muon.py
|
| 12 |
+
def _zeropower_via_newtonschulz5(G, steps):
|
| 13 |
+
"""
|
| 14 |
+
Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a
|
| 15 |
+
quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose
|
| 16 |
+
of minimizing steps, it turns out to be empirically effective to keep increasing the slope at
|
| 17 |
+
zero even beyond the point where the iteration no longer converges all the way to one everywhere
|
| 18 |
+
on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T
|
| 19 |
+
where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model
|
| 20 |
+
performance at all relative to UV^T, where USV^T = G is the SVD.
|
| 21 |
+
"""
|
| 22 |
+
assert len(G.shape) == 2
|
| 23 |
+
a, b, c = (3.4445, -4.7750, 2.0315)
|
| 24 |
+
X = G # no manual typecast
|
| 25 |
+
if G.size(0) > G.size(1):
|
| 26 |
+
X = X.T
|
| 27 |
+
# Ensure spectral norm is at most 1
|
| 28 |
+
X = X / (X.norm() + 1e-7)
|
| 29 |
+
X = X.bfloat16()
|
| 30 |
+
# Perform the NS iterations
|
| 31 |
+
for _ in range(steps):
|
| 32 |
+
A = X @ X.T
|
| 33 |
+
# B = (
|
| 34 |
+
# b * A + c * A @ A
|
| 35 |
+
# ) # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng
|
| 36 |
+
B = torch.addmm(A, A, A, alpha=c, beta=b)
|
| 37 |
+
# X = a * X + B @ X
|
| 38 |
+
X = torch.addmm(X, B, X, alpha=1.0, beta=a)
|
| 39 |
+
|
| 40 |
+
if G.size(0) > G.size(1):
|
| 41 |
+
X = X.T
|
| 42 |
+
return X.to(G.dtype)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class _muon_state:
|
| 47 |
+
# TODO: use Optional
|
| 48 |
+
worker_rank: int | None = None
|
| 49 |
+
gathered_grad: torch.Tensor | None = None
|
| 50 |
+
computed_u: torch.Tensor | None = None
|
| 51 |
+
scattered_u: torch.Tensor | None = None
|
| 52 |
+
gather_event: torch.cuda.Event | None = None
|
| 53 |
+
compute_event: torch.cuda.Event | None = None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def _gather(p, state, rank, comm_stream):
|
| 57 |
+
g = p.grad
|
| 58 |
+
mesh = g.device_mesh
|
| 59 |
+
|
| 60 |
+
if rank == state.worker_rank:
|
| 61 |
+
gather_list = [torch.empty_like(g.to_local()) for _ in range(mesh.mesh.numel())]
|
| 62 |
+
else:
|
| 63 |
+
gather_list = None
|
| 64 |
+
|
| 65 |
+
with torch.cuda.stream(comm_stream):
|
| 66 |
+
torch.distributed.gather(
|
| 67 |
+
g.to_local(),
|
| 68 |
+
dst=state.worker_rank,
|
| 69 |
+
gather_list=gather_list,
|
| 70 |
+
group=mesh.get_group(),
|
| 71 |
+
)
|
| 72 |
+
if rank == state.worker_rank:
|
| 73 |
+
# TODO: Consider ,,,
|
| 74 |
+
if state.gathered_grad is not None:
|
| 75 |
+
raise RuntimeError(
|
| 76 |
+
"Gather event already exists, which should not happen."
|
| 77 |
+
)
|
| 78 |
+
state.gathered_grad = torch.cat(gather_list, dim=0)
|
| 79 |
+
state.gather_event = torch.cuda.Event()
|
| 80 |
+
state.gather_event.record()
|
| 81 |
+
else:
|
| 82 |
+
state.gathered_grad = None
|
| 83 |
+
state.gather_event = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _compute_u(state, steps, rank, compute_stream):
|
| 87 |
+
with torch.cuda.stream(compute_stream):
|
| 88 |
+
if rank == state.worker_rank:
|
| 89 |
+
if state.gather_event is None:
|
| 90 |
+
raise RuntimeError("Gather event must be set before compute.")
|
| 91 |
+
compute_stream.wait_event(state.gather_event)
|
| 92 |
+
u = _zeropower_via_newtonschulz5(state.gathered_grad, steps)
|
| 93 |
+
state.computed_u = u
|
| 94 |
+
state.compute_event = torch.cuda.Event()
|
| 95 |
+
state.compute_event.record()
|
| 96 |
+
else:
|
| 97 |
+
state.computed_u = None
|
| 98 |
+
state.compute_event = None
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _scatter(p, state, rank, comm_stream):
|
| 102 |
+
u = state.computed_u
|
| 103 |
+
mesh = p.device_mesh
|
| 104 |
+
|
| 105 |
+
with torch.cuda.stream(comm_stream):
|
| 106 |
+
if rank == state.worker_rank:
|
| 107 |
+
if state.compute_event is None:
|
| 108 |
+
raise RuntimeError("Compute event must be set before scatter.")
|
| 109 |
+
comm_stream.wait_event(state.compute_event)
|
| 110 |
+
scatter_list = list(torch.split(u, p.size(0) // mesh.mesh.numel(), dim=0))
|
| 111 |
+
else:
|
| 112 |
+
scatter_list = None
|
| 113 |
+
|
| 114 |
+
u = torch.empty_like(p.to_local())
|
| 115 |
+
torch.distributed.scatter(
|
| 116 |
+
u,
|
| 117 |
+
scatter_list=scatter_list,
|
| 118 |
+
src=state.worker_rank,
|
| 119 |
+
group=mesh.get_group(),
|
| 120 |
+
)
|
| 121 |
+
u = DTensor.from_local(
|
| 122 |
+
u,
|
| 123 |
+
placements=p.placements,
|
| 124 |
+
device_mesh=mesh,
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
state.scattered_u = u
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class Muon(torch.optim.Optimizer):
|
| 131 |
+
"""
|
| 132 |
+
Muon - MomentUm Orthogonalized by Newton-schulz
|
| 133 |
+
|
| 134 |
+
Muon internally runs standard SGD-momentum, and then performs an orthogonalization post-
|
| 135 |
+
processing step, in which each 2D parameter's update is replaced with the nearest orthogonal
|
| 136 |
+
matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has
|
| 137 |
+
the advantage that it can be stably run in bfloat16 on the GPU.
|
| 138 |
+
|
| 139 |
+
Some warnings:
|
| 140 |
+
- We believe this optimizer is unlikely to work well for training with small batch size.
|
| 141 |
+
- We believe it may not work well for finetuning pretrained models, but we haven't tested this.
|
| 142 |
+
|
| 143 |
+
Arguments:
|
| 144 |
+
muon_params: The parameters to be optimized by Muon.
|
| 145 |
+
lr: The learning rate. The updates will have spectral norm of `lr`. (0.02 is a good default)
|
| 146 |
+
momentum: The momentum used by the internal SGD. (0.95 is a good default)
|
| 147 |
+
nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended)
|
| 148 |
+
ns_steps: The number of Newton-Schulz iterations to run. (6 is probably always enough)
|
| 149 |
+
adamw_params: The parameters to be optimized by AdamW. Any parameters in `muon_params` which are
|
| 150 |
+
{0, 1}-D or are detected as being the embed or lm_head will be optimized by AdamW as well.
|
| 151 |
+
adamw_lr: The learning rate for the internal AdamW.
|
| 152 |
+
adamw_betas: The betas for the internal AdamW.
|
| 153 |
+
adamw_eps: The epsilon for the internal AdamW.
|
| 154 |
+
adamw_wd: The weight decay for the internal AdamW.
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(
|
| 158 |
+
self,
|
| 159 |
+
model,
|
| 160 |
+
is_muon_func,
|
| 161 |
+
lr=1e-3,
|
| 162 |
+
momentum=0.95,
|
| 163 |
+
nesterov=True,
|
| 164 |
+
ns_steps=5,
|
| 165 |
+
adamw_wd=0.1,
|
| 166 |
+
adamw_betas=(0.9, 0.95),
|
| 167 |
+
adamw_eps=1e-8,
|
| 168 |
+
debug=False,
|
| 169 |
+
):
|
| 170 |
+
defaults = dict(
|
| 171 |
+
lr=lr,
|
| 172 |
+
wd=adamw_wd,
|
| 173 |
+
momentum=momentum,
|
| 174 |
+
nesterov=nesterov,
|
| 175 |
+
ns_steps=ns_steps,
|
| 176 |
+
adamw_betas=adamw_betas,
|
| 177 |
+
adamw_eps=adamw_eps,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
super().__init__(model.parameters(), defaults)
|
| 181 |
+
self.is_muon_func = is_muon_func
|
| 182 |
+
self.model = model
|
| 183 |
+
|
| 184 |
+
if not dist.is_initialized():
|
| 185 |
+
raise RuntimeError(
|
| 186 |
+
"Muon optimizer requires distributed training to be initialized."
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
self.rank = dist.get_rank()
|
| 190 |
+
|
| 191 |
+
self.comm_stream = torch.cuda.Stream()
|
| 192 |
+
self.compute_stream = torch.cuda.Stream()
|
| 193 |
+
self.debug = debug
|
| 194 |
+
|
| 195 |
+
def __setstate__(self, state):
|
| 196 |
+
# Sort parameters into those for which we will use Muon, and those for which we will not
|
| 197 |
+
super().__setstate__(state)
|
| 198 |
+
for name, p in self.model.named_parameters():
|
| 199 |
+
if self.is_muon_func(p, name):
|
| 200 |
+
# Use Muon for every parameter in muon_params which is >= 2D and doesn't look like an embedding or head layer
|
| 201 |
+
assert p.ndim == 2, p.ndim
|
| 202 |
+
self.state[p]["use_muon"] = True
|
| 203 |
+
self.state[p]["orig_shape"] = p.shape
|
| 204 |
+
else:
|
| 205 |
+
# Do not use Muon for parameters in adamw_params
|
| 206 |
+
self.state[p]["use_muon"] = False
|
| 207 |
+
|
| 208 |
+
def _calc_flops(self, G, steps):
|
| 209 |
+
assert len(G.shape) == 2
|
| 210 |
+
M, N = G.shape
|
| 211 |
+
if M > N:
|
| 212 |
+
M, N = N, M
|
| 213 |
+
|
| 214 |
+
return steps * ((M**3) * 2 + (M**2 * N) * 4 + M * N * 2 + M**2 * 3)
|
| 215 |
+
|
| 216 |
+
def adjust_lr_for_muon(self, lr, param_shape):
|
| 217 |
+
A, B = param_shape[:2]
|
| 218 |
+
# We adjust the learning rate and weight decay based on the size of the parameter matrix
|
| 219 |
+
# as describted in the paper
|
| 220 |
+
adjusted_ratio = 0.2 * math.sqrt(max(A, B))
|
| 221 |
+
adjusted_lr = lr * adjusted_ratio
|
| 222 |
+
return adjusted_lr
|
| 223 |
+
|
| 224 |
+
def init_state_and_assign_params(self, params, group):
|
| 225 |
+
param_to_state = {}
|
| 226 |
+
param_to_flops = {}
|
| 227 |
+
|
| 228 |
+
total_flops = 0
|
| 229 |
+
for p in params:
|
| 230 |
+
g = p.grad
|
| 231 |
+
if g is None:
|
| 232 |
+
continue
|
| 233 |
+
assert g.ndim == 2, "Muon only supports 2D parameters."
|
| 234 |
+
|
| 235 |
+
flops = self._calc_flops(g, group["ns_steps"])
|
| 236 |
+
param_to_flops[id(p)] = flops
|
| 237 |
+
total_flops += flops
|
| 238 |
+
|
| 239 |
+
if self.debug:
|
| 240 |
+
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs", flush=True)
|
| 241 |
+
|
| 242 |
+
ordered_params = sorted(
|
| 243 |
+
params, key=lambda p: param_to_flops[id(p)], reverse=True
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
round_robin = 0
|
| 247 |
+
mesh = None
|
| 248 |
+
for p in ordered_params:
|
| 249 |
+
if mesh is None:
|
| 250 |
+
mesh = p.device_mesh
|
| 251 |
+
if mesh.ndim != 1:
|
| 252 |
+
raise NotImplementedError(
|
| 253 |
+
"Muon requires a 1D mesh for distributed training yet."
|
| 254 |
+
)
|
| 255 |
+
elif mesh != p.device_mesh:
|
| 256 |
+
raise ValueError("All parameters must be on the same mesh.")
|
| 257 |
+
|
| 258 |
+
param_to_state[id(p)] = _muon_state()
|
| 259 |
+
param_to_state[id(p)].worker_rank = mesh.mesh[round_robin].item()
|
| 260 |
+
|
| 261 |
+
round_robin = (round_robin + 1) % mesh.mesh.numel()
|
| 262 |
+
|
| 263 |
+
return param_to_state, ordered_params
|
| 264 |
+
|
| 265 |
+
def base(self, params, group, lr, wd, momentum):
|
| 266 |
+
# generate weight updates in distributed fashion
|
| 267 |
+
for p in params:
|
| 268 |
+
g = p.grad
|
| 269 |
+
if g is None:
|
| 270 |
+
continue
|
| 271 |
+
if g.ndim > 2:
|
| 272 |
+
g = g.view(g.size(0), -1)
|
| 273 |
+
assert g is not None
|
| 274 |
+
|
| 275 |
+
# calc update
|
| 276 |
+
state = self.state[p]
|
| 277 |
+
if "momentum_buffer" not in state:
|
| 278 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 279 |
+
buf = state["momentum_buffer"]
|
| 280 |
+
buf.mul_(momentum).add_(g)
|
| 281 |
+
if group["nesterov"]:
|
| 282 |
+
g = g.add(buf, alpha=momentum)
|
| 283 |
+
else:
|
| 284 |
+
g = buf
|
| 285 |
+
|
| 286 |
+
u = _zeropower_via_newtonschulz5(g, steps=group["ns_steps"])
|
| 287 |
+
|
| 288 |
+
# scale update
|
| 289 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 290 |
+
|
| 291 |
+
# apply weight decay
|
| 292 |
+
p.data.mul_(1 - lr * wd)
|
| 293 |
+
|
| 294 |
+
# apply update
|
| 295 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 296 |
+
|
| 297 |
+
def _update_g(self, p, g, group, momentum):
|
| 298 |
+
# calc update
|
| 299 |
+
state = self.state[p]
|
| 300 |
+
if "momentum_buffer" not in state:
|
| 301 |
+
state["momentum_buffer"] = torch.zeros_like(g)
|
| 302 |
+
buf = state["momentum_buffer"]
|
| 303 |
+
buf.mul_(momentum).add_(g)
|
| 304 |
+
if group["nesterov"]:
|
| 305 |
+
g = g.add(buf, alpha=momentum)
|
| 306 |
+
else:
|
| 307 |
+
g = buf
|
| 308 |
+
return g
|
| 309 |
+
|
| 310 |
+
def _update_p(self, p, u, lr, wd):
|
| 311 |
+
# scale update
|
| 312 |
+
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 313 |
+
# apply weight decay
|
| 314 |
+
p.data.mul_(1 - lr * wd)
|
| 315 |
+
# apply update
|
| 316 |
+
p.data.add_(u, alpha=-adjusted_lr)
|
| 317 |
+
|
| 318 |
+
def parallel(self, params, group, lr, wd, momentum):
|
| 319 |
+
"""
|
| 320 |
+
Perform a parallel optimization step using Muon.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
for p in params:
|
| 324 |
+
g = p.grad
|
| 325 |
+
if g is None:
|
| 326 |
+
continue
|
| 327 |
+
if g.ndim > 2:
|
| 328 |
+
g = g.view(g.size(0), -1)
|
| 329 |
+
|
| 330 |
+
# Update g in the local rank
|
| 331 |
+
g = self._update_g(
|
| 332 |
+
p,
|
| 333 |
+
g,
|
| 334 |
+
group,
|
| 335 |
+
momentum=momentum,
|
| 336 |
+
)
|
| 337 |
+
p.grad = g
|
| 338 |
+
|
| 339 |
+
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 340 |
+
params, group
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
def enqueue_gathers(start_idx, chunk_size):
|
| 344 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 345 |
+
state = param_to_state[id(p)]
|
| 346 |
+
_gather(p, state, self.rank, self.comm_stream)
|
| 347 |
+
|
| 348 |
+
def enqueue_computes(start_idx, chunk_size):
|
| 349 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 350 |
+
state = param_to_state[id(p)]
|
| 351 |
+
_compute_u(state, group["ns_steps"], self.rank, self.compute_stream)
|
| 352 |
+
|
| 353 |
+
def enqueue_scatters(start_idx, chunk_size):
|
| 354 |
+
for p in ordered_params[start_idx : start_idx + chunk_size]:
|
| 355 |
+
state = param_to_state[id(p)]
|
| 356 |
+
_scatter(p, state, self.rank, self.comm_stream)
|
| 357 |
+
|
| 358 |
+
chunk_size = params[0].device_mesh.mesh.numel()
|
| 359 |
+
|
| 360 |
+
# Wait grad update
|
| 361 |
+
self.comm_stream.wait_stream(torch.cuda.current_stream())
|
| 362 |
+
|
| 363 |
+
enqueue_gathers(0, chunk_size)
|
| 364 |
+
for i in range(0, len(params) + chunk_size - 1, chunk_size):
|
| 365 |
+
enqueue_computes(i, chunk_size)
|
| 366 |
+
enqueue_gathers(i + chunk_size, chunk_size)
|
| 367 |
+
enqueue_scatters(i, chunk_size)
|
| 368 |
+
|
| 369 |
+
torch.cuda.current_stream().wait_stream(self.comm_stream)
|
| 370 |
+
|
| 371 |
+
for p in params:
|
| 372 |
+
g = p.grad
|
| 373 |
+
if g is None:
|
| 374 |
+
continue
|
| 375 |
+
|
| 376 |
+
# Update p with sharded u
|
| 377 |
+
state = param_to_state[id(p)]
|
| 378 |
+
self._update_p(
|
| 379 |
+
p,
|
| 380 |
+
state.scattered_u,
|
| 381 |
+
lr=lr,
|
| 382 |
+
wd=wd,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
def step(self, closure=None):
|
| 386 |
+
"""Perform a single optimization step.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
closure (Callable, optional): A closure that reevaluates the model
|
| 390 |
+
and returns the loss.
|
| 391 |
+
"""
|
| 392 |
+
loss = None
|
| 393 |
+
if closure is not None:
|
| 394 |
+
with torch.enable_grad():
|
| 395 |
+
loss = closure()
|
| 396 |
+
|
| 397 |
+
for group in self.param_groups:
|
| 398 |
+
############################
|
| 399 |
+
# Muon #
|
| 400 |
+
############################
|
| 401 |
+
|
| 402 |
+
params = [p for p in group["params"] if self.state[p]["use_muon"]]
|
| 403 |
+
lr = group["lr"]
|
| 404 |
+
wd = group["wd"]
|
| 405 |
+
momentum = group["momentum"]
|
| 406 |
+
|
| 407 |
+
if isinstance(params[0].data, DTensor):
|
| 408 |
+
self.parallel(
|
| 409 |
+
params,
|
| 410 |
+
group,
|
| 411 |
+
lr=lr,
|
| 412 |
+
wd=wd,
|
| 413 |
+
momentum=momentum,
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
self.base(
|
| 417 |
+
params,
|
| 418 |
+
group,
|
| 419 |
+
lr=lr,
|
| 420 |
+
wd=wd,
|
| 421 |
+
momentum=momentum,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
############################
|
| 425 |
+
# AdamW backup #
|
| 426 |
+
############################
|
| 427 |
+
|
| 428 |
+
params = [p for p in group["params"] if not self.state[p]["use_muon"]]
|
| 429 |
+
lr = group["lr"]
|
| 430 |
+
beta1, beta2 = group["adamw_betas"]
|
| 431 |
+
eps = group["adamw_eps"]
|
| 432 |
+
weight_decay = group["wd"]
|
| 433 |
+
|
| 434 |
+
for p in params:
|
| 435 |
+
g = p.grad
|
| 436 |
+
if g is None:
|
| 437 |
+
continue
|
| 438 |
+
state = self.state[p]
|
| 439 |
+
if "step" not in state:
|
| 440 |
+
state["step"] = 0
|
| 441 |
+
state["moment1"] = torch.zeros_like(g)
|
| 442 |
+
state["moment2"] = torch.zeros_like(g)
|
| 443 |
+
state["step"] += 1
|
| 444 |
+
step = state["step"]
|
| 445 |
+
buf1 = state["moment1"]
|
| 446 |
+
buf2 = state["moment2"]
|
| 447 |
+
buf1.lerp_(g, 1 - beta1)
|
| 448 |
+
buf2.lerp_(g.square(), 1 - beta2)
|
| 449 |
+
|
| 450 |
+
g = buf1 / (eps + buf2.sqrt())
|
| 451 |
+
|
| 452 |
+
bias_correction1 = 1 - beta1**step
|
| 453 |
+
bias_correction2 = 1 - beta2**step
|
| 454 |
+
scale = bias_correction1 / bias_correction2**0.5
|
| 455 |
+
p.data.mul_(1 - lr * weight_decay)
|
| 456 |
+
p.data.add_(g, alpha=-lr / scale)
|
| 457 |
+
|
| 458 |
+
return loss
|