feat(muon_clip) : add muon clip (#6)
Browse files* feat(muon_clip) : add muon clip
* fix(muon_clip): delete comment
* fix(muon_clip): delete comment
* fix(muon_clip): considering when nkvheadgroup>1
* docs(muon_clip): refine __init__ docstring and add clip_info argument description
* refactor(muon_clip): refactor clip info using dataclass
* fix(muon_clip): change min -> new_scaling compare
* test(muon): add qk_clip=False case to model comparison
* test(muon): show results
* fix(muon_clip): change default is muon func
* Add built binary [ci skip]
---------
Co-authored-by: dongseokmotif <[email protected]>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/{_optimizer_4043ece_dirty.abi3.so β _optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch27-cxx11-cu118-x86_64-linux/optimizer/muon.py +198 -39
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/_ops.py +3 -3
- build/{torch28-cxx11-cu126-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch27-cxx11-cu126-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch27-cxx11-cu126-x86_64-linux/optimizer/muon.py +198 -39
- build/torch27-cxx11-cu128-x86_64-linux/optimizer/_ops.py +3 -3
- build/{torch28-cxx11-cu128-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch27-cxx11-cu128-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch27-cxx11-cu128-x86_64-linux/optimizer/muon.py +198 -39
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/{_optimizer_4043ece_dirty.abi3.so β _optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch27-cxx11-rocm63-x86_64-linux/optimizer/muon.py +198 -39
- build/torch28-cxx11-cu126-x86_64-linux/optimizer/_ops.py +3 -3
- build/{torch27-cxx11-cu126-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch28-cxx11-cu126-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch28-cxx11-cu126-x86_64-linux/optimizer/muon.py +198 -39
- build/torch28-cxx11-cu128-x86_64-linux/optimizer/_ops.py +3 -3
- build/{torch28-cxx11-cu129-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch28-cxx11-cu128-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch28-cxx11-cu128-x86_64-linux/optimizer/muon.py +198 -39
- build/torch28-cxx11-cu129-x86_64-linux/optimizer/_ops.py +3 -3
- build/{torch27-cxx11-cu128-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch28-cxx11-cu129-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch28-cxx11-cu129-x86_64-linux/optimizer/muon.py +198 -39
- build/torch28-cxx11-rocm63-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch28-cxx11-rocm63-x86_64-linux/optimizer/{_optimizer_4043ece_dirty.abi3.so β _optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch28-cxx11-rocm63-x86_64-linux/optimizer/muon.py +198 -39
- build/torch28-cxx11-rocm64-x86_64-linux/optimizer/_ops.py +3 -3
- build/torch28-cxx11-rocm64-x86_64-linux/optimizer/{_optimizer_4043ece_dirty.abi3.so β _optimizer_9c21645_dirty.abi3.so} +1 -1
- build/torch28-cxx11-rocm64-x86_64-linux/optimizer/muon.py +198 -39
- test/test_muon/test.py +47 -14
- torch-ext/optimizer/muon.py +198 -39
build/torch27-cxx11-cu118-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/{_optimizer_4043ece_dirty.abi3.so β _optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1787368
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf8b97161714dff91953d26ae0bf59ebc9f3653ce57a3998723cc08aa97b71e6
|
| 3 |
size 1787368
|
build/torch27-cxx11-cu118-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/{torch28-cxx11-cu126-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch27-cxx11-cu126-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1824256
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42ae6ac1cf967d7d23cac7930c8db635105f60631220a60b9cee060d082f40ae
|
| 3 |
size 1824256
|
build/torch27-cxx11-cu126-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
build/torch27-cxx11-cu128-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/{torch28-cxx11-cu128-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch27-cxx11-cu128-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1883344
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dae71b7e998e72130093a86f8c983c3379510e23525e3cdcd4afe5c21bf4d3db
|
| 3 |
size 1883344
|
build/torch27-cxx11-cu128-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/{_optimizer_4043ece_dirty.abi3.so β _optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1749776
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41492cb1479920b654768a5597d88670dd0caeedbdcd73fd63afa31ffc6961d6
|
| 3 |
size 1749776
|
build/torch27-cxx11-rocm63-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
build/torch28-cxx11-cu126-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/{torch27-cxx11-cu126-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch28-cxx11-cu126-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1824256
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42ae6ac1cf967d7d23cac7930c8db635105f60631220a60b9cee060d082f40ae
|
| 3 |
size 1824256
|
build/torch28-cxx11-cu126-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
build/torch28-cxx11-cu128-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/{torch28-cxx11-cu129-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch28-cxx11-cu128-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1883344
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dae71b7e998e72130093a86f8c983c3379510e23525e3cdcd4afe5c21bf4d3db
|
| 3 |
size 1883344
|
build/torch28-cxx11-cu128-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
build/torch28-cxx11-cu129-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/{torch27-cxx11-cu128-x86_64-linux/optimizer/_optimizer_4043ece_dirty.abi3.so β torch28-cxx11-cu129-x86_64-linux/optimizer/_optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1883344
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb40a06623bb3668b82ff248b5a3c1bcf41e7f3f860888b261505b3a71257bc7
|
| 3 |
size 1883344
|
build/torch28-cxx11-cu129-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
build/torch28-cxx11-rocm63-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/torch28-cxx11-rocm63-x86_64-linux/optimizer/{_optimizer_4043ece_dirty.abi3.so β _optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1749936
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8f845b8df6426eb5db57e4525b8dd3c80004c44759b01a3e39cc37a817813b5
|
| 3 |
size 1749936
|
build/torch28-cxx11-rocm63-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
build/torch28-cxx11-rocm64-x86_64-linux/optimizer/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _optimizer_9c21645_dirty
|
| 3 |
+
ops = torch.ops._optimizer_9c21645_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_optimizer_9c21645_dirty::{op_name}"
|
build/torch28-cxx11-rocm64-x86_64-linux/optimizer/{_optimizer_4043ece_dirty.abi3.so β _optimizer_9c21645_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1750024
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a477575e3cc30e54d355b3e778240dc25fb0dab30362f3540dc5f925ac03ba1
|
| 3 |
size 1750024
|
build/torch28-cxx11-rocm64-x86_64-linux/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|
test/test_muon/test.py
CHANGED
|
@@ -20,7 +20,6 @@ def load_model(fsdp: bool) -> torch.nn.Module:
|
|
| 20 |
trust_remote_code=True,
|
| 21 |
).bfloat16().cuda()
|
| 22 |
|
| 23 |
-
torch.manual_seed(0)
|
| 24 |
random_grads = []
|
| 25 |
for param in model.parameters():
|
| 26 |
random_grad = torch.randn_like(param,
|
|
@@ -52,17 +51,57 @@ def load_model(fsdp: bool) -> torch.nn.Module:
|
|
| 52 |
return model
|
| 53 |
|
| 54 |
|
| 55 |
-
def run_muon(fsdp: bool) -> torch.nn.Module:
|
|
|
|
|
|
|
|
|
|
| 56 |
model = load_model(fsdp=fsdp)
|
| 57 |
params = get_default_muon_param_groups(model)
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
return model
|
| 62 |
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
def compare_results(parallel_muon_result: torch.nn.Module,
|
| 65 |
-
sequential_muon_result: torch.nn.Module
|
|
|
|
|
|
|
| 66 |
for (name_p, p), (name_s,
|
| 67 |
s) in zip(parallel_muon_result.named_parameters(),
|
| 68 |
sequential_muon_result.named_parameters()):
|
|
@@ -71,16 +110,10 @@ def compare_results(parallel_muon_result: torch.nn.Module,
|
|
| 71 |
# Parallel Muon should exactly match Sequential Muon
|
| 72 |
if torch.abs(p - s).max() > 0:
|
| 73 |
max_diff_index = torch.argmax(torch.abs(p - s))
|
| 74 |
-
logger.
|
| 75 |
-
|
| 76 |
-
logger.info("Models match!")
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def test_muon():
|
| 80 |
-
parallel_muon_result = run_muon(fsdp=True)
|
| 81 |
-
sequential_muon_result = run_muon(fsdp=False)
|
| 82 |
|
| 83 |
-
|
| 84 |
|
| 85 |
|
| 86 |
if __name__ == "__main__":
|
|
|
|
| 20 |
trust_remote_code=True,
|
| 21 |
).bfloat16().cuda()
|
| 22 |
|
|
|
|
| 23 |
random_grads = []
|
| 24 |
for param in model.parameters():
|
| 25 |
random_grad = torch.randn_like(param,
|
|
|
|
| 51 |
return model
|
| 52 |
|
| 53 |
|
| 54 |
+
def run_muon(fsdp: bool, qk_clip: bool, seed: int) -> torch.nn.Module:
|
| 55 |
+
torch.manual_seed(seed)
|
| 56 |
+
if torch.cuda.is_available():
|
| 57 |
+
torch.cuda.manual_seed_all(seed)
|
| 58 |
model = load_model(fsdp=fsdp)
|
| 59 |
params = get_default_muon_param_groups(model)
|
| 60 |
+
qk_logits = None
|
| 61 |
+
if qk_clip:
|
| 62 |
+
qk_logits = {
|
| 63 |
+
i: torch.rand(model.config.num_attention_heads)
|
| 64 |
+
for i in range(model.config.num_hidden_layers)
|
| 65 |
+
}
|
| 66 |
+
optim = Muon(
|
| 67 |
+
params=params,
|
| 68 |
+
clip_config={
|
| 69 |
+
"q_indices": list(range(model.config.num_attention_heads)),
|
| 70 |
+
"k_indices": list(range(model.config.num_attention_heads)),
|
| 71 |
+
"head_dim":
|
| 72 |
+
model.config.hidden_size // model.config.num_attention_heads,
|
| 73 |
+
"threshold": 0.5
|
| 74 |
+
})
|
| 75 |
+
optim.step(qk_logits=qk_logits)
|
| 76 |
|
| 77 |
return model
|
| 78 |
|
| 79 |
|
| 80 |
+
def run_case(qk_clip: bool, seed: int = 0):
|
| 81 |
+
parallel_muon_result = run_muon(fsdp=True, qk_clip=qk_clip, seed=seed)
|
| 82 |
+
sequential_muon_result = run_muon(fsdp=False, qk_clip=qk_clip, seed=seed)
|
| 83 |
+
label = f"qk_clip={'ON' if qk_clip else 'OFF'}"
|
| 84 |
+
success = compare_results(parallel_muon_result,
|
| 85 |
+
sequential_muon_result,
|
| 86 |
+
label=label)
|
| 87 |
+
|
| 88 |
+
return success, label
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def test_muon():
|
| 92 |
+
|
| 93 |
+
base_result = run_case(qk_clip=False, seed=0)
|
| 94 |
+
clip_result = run_case(qk_clip=True, seed=0)
|
| 95 |
+
|
| 96 |
+
for success, label in [base_result, clip_result]:
|
| 97 |
+
if success:
|
| 98 |
+
logger.info(f"[{label}] Models match")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
def compare_results(parallel_muon_result: torch.nn.Module,
|
| 102 |
+
sequential_muon_result: torch.nn.Module,
|
| 103 |
+
label: str) -> None:
|
| 104 |
+
success = True
|
| 105 |
for (name_p, p), (name_s,
|
| 106 |
s) in zip(parallel_muon_result.named_parameters(),
|
| 107 |
sequential_muon_result.named_parameters()):
|
|
|
|
| 110 |
# Parallel Muon should exactly match Sequential Muon
|
| 111 |
if torch.abs(p - s).max() > 0:
|
| 112 |
max_diff_index = torch.argmax(torch.abs(p - s))
|
| 113 |
+
logger.info(f"Models differ at parameter {name_p}")
|
| 114 |
+
success = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
+
return success
|
| 117 |
|
| 118 |
|
| 119 |
if __name__ == "__main__":
|
torch-ext/optimizer/muon.py
CHANGED
|
@@ -2,7 +2,7 @@ import logging
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
-
from typing import Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
@@ -66,6 +66,7 @@ class _muon_state:
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
@torch.no_grad()
|
|
@@ -193,32 +194,93 @@ def _update_param(p, state, lr, adjusted_lr, weight_decay, rank,
|
|
| 193 |
state.scattered_u = None
|
| 194 |
u_dtensor = None
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def default_is_muon(name, x):
|
| 198 |
-
|
|
|
|
| 199 |
|
| 200 |
|
| 201 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
return [
|
| 203 |
{
|
| 204 |
-
"params":
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
],
|
| 208 |
-
"use_muon":
|
| 209 |
-
True
|
| 210 |
},
|
| 211 |
{
|
| 212 |
-
"params":
|
| 213 |
-
|
| 214 |
-
if (not is_muon_func(n, p) and p.requires_grad)
|
| 215 |
-
],
|
| 216 |
-
"use_muon":
|
| 217 |
-
False
|
| 218 |
},
|
| 219 |
]
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
class Muon(torch.optim.Optimizer):
|
| 223 |
"""
|
| 224 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
@@ -246,21 +308,38 @@ class Muon(torch.optim.Optimizer):
|
|
| 246 |
adamw_eps: The epsilon for the internal AdamW.
|
| 247 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 248 |
debug: Whether to print debug information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
"""
|
| 250 |
|
| 251 |
-
def __init__(
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
defaults = dict(
|
| 265 |
lr=lr,
|
| 266 |
weight_decay=weight_decay,
|
|
@@ -292,6 +371,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 292 |
self.comm_stream = torch.cuda.Stream()
|
| 293 |
self.compute_stream = torch.cuda.Stream()
|
| 294 |
self.debug = debug
|
|
|
|
| 295 |
|
| 296 |
def _calc_flops(self, G, steps):
|
| 297 |
assert len(G.shape) == 2
|
|
@@ -327,7 +407,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 327 |
else:
|
| 328 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 329 |
|
| 330 |
-
def init_state_and_assign_params(self, params, group):
|
| 331 |
param_to_state = {}
|
| 332 |
param_to_flops = {}
|
| 333 |
|
|
@@ -346,15 +426,21 @@ class Muon(torch.optim.Optimizer):
|
|
| 346 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 347 |
flush=True)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
round_robin = 0
|
| 354 |
mesh = None
|
| 355 |
shard_mesh = None
|
| 356 |
process_group = None
|
| 357 |
-
for p in ordered_params:
|
| 358 |
if mesh is None:
|
| 359 |
mesh = p.device_mesh
|
| 360 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
@@ -364,14 +450,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 364 |
param_to_state[id(p)] = _muon_state()
|
| 365 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 366 |
param_to_state[id(p)].process_group = process_group
|
| 367 |
-
|
|
|
|
| 368 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 369 |
|
| 370 |
return param_to_state, ordered_params
|
| 371 |
|
| 372 |
-
def base(self, params, group, lr, weight_decay, momentum
|
|
|
|
| 373 |
# generate weight updates in distributed fashion
|
| 374 |
-
for p in params:
|
| 375 |
g = p.grad
|
| 376 |
if g is None:
|
| 377 |
continue
|
|
@@ -396,6 +484,12 @@ class Muon(torch.optim.Optimizer):
|
|
| 396 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 397 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
def _update_g(self, p, g, group, momentum):
|
| 400 |
# calc update
|
| 401 |
state = self.state[p]
|
|
@@ -416,7 +510,58 @@ class Muon(torch.optim.Optimizer):
|
|
| 416 |
# apply update
|
| 417 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 418 |
|
| 419 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
"""
|
| 421 |
Perform a parallel optimization step using Muon.
|
| 422 |
"""
|
|
@@ -438,7 +583,7 @@ class Muon(torch.optim.Optimizer):
|
|
| 438 |
p.grad = g
|
| 439 |
|
| 440 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 441 |
-
params, group)
|
| 442 |
|
| 443 |
def enqueue_gathers(start_idx, chunk_size):
|
| 444 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
@@ -553,12 +698,16 @@ class Muon(torch.optim.Optimizer):
|
|
| 553 |
maximize=maximize,
|
| 554 |
)
|
| 555 |
|
| 556 |
-
def step(self, closure=None):
|
| 557 |
"""Perform a single optimization step.
|
| 558 |
|
| 559 |
Args:
|
| 560 |
closure (Callable, optional): A closure that reevaluates the model
|
| 561 |
and returns the loss.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
"""
|
| 563 |
loss = None
|
| 564 |
if closure is not None:
|
|
@@ -575,11 +724,14 @@ class Muon(torch.optim.Optimizer):
|
|
| 575 |
lr = group["lr"]
|
| 576 |
weight_decay = group["weight_decay"]
|
| 577 |
momentum = group["momentum"]
|
|
|
|
| 578 |
|
| 579 |
param_dtensors = []
|
| 580 |
param_tensors = []
|
|
|
|
|
|
|
| 581 |
|
| 582 |
-
for p in params:
|
| 583 |
if p is None or p.grad is None:
|
| 584 |
continue
|
| 585 |
if isinstance(p.data, DTensor):
|
|
@@ -587,10 +739,13 @@ class Muon(torch.optim.Optimizer):
|
|
| 587 |
isinstance(placement, Replicate)
|
| 588 |
for placement in p.placements):
|
| 589 |
param_tensors.append(p)
|
|
|
|
| 590 |
else:
|
| 591 |
param_dtensors.append(p)
|
|
|
|
| 592 |
elif isinstance(p.data, torch.Tensor):
|
| 593 |
param_tensors.append(p)
|
|
|
|
| 594 |
else:
|
| 595 |
raise TypeError(
|
| 596 |
f"Unsupported parameter type: {type(p.data)}")
|
|
@@ -608,20 +763,24 @@ class Muon(torch.optim.Optimizer):
|
|
| 608 |
)
|
| 609 |
|
| 610 |
self.parallel(
|
|
|
|
| 611 |
param_dtensors,
|
| 612 |
group,
|
| 613 |
lr=lr,
|
| 614 |
weight_decay=weight_decay,
|
| 615 |
momentum=momentum,
|
|
|
|
| 616 |
)
|
| 617 |
|
| 618 |
if len(param_tensors) > 0:
|
| 619 |
self.base(
|
|
|
|
| 620 |
param_tensors,
|
| 621 |
group,
|
| 622 |
lr=lr,
|
| 623 |
weight_decay=weight_decay,
|
| 624 |
momentum=momentum,
|
|
|
|
| 625 |
)
|
| 626 |
|
| 627 |
else:
|
|
|
|
| 2 |
import math
|
| 3 |
import types
|
| 4 |
from dataclasses import dataclass
|
| 5 |
+
from typing import List, Optional, Union, cast
|
| 6 |
|
| 7 |
import torch
|
| 8 |
import torch.distributed as dist
|
|
|
|
| 66 |
compute_event: torch.cuda.Event | None = None
|
| 67 |
scatter_event: torch.cuda.Event | None = None
|
| 68 |
process_group = None
|
| 69 |
+
qk_clip_state = None
|
| 70 |
|
| 71 |
|
| 72 |
@torch.no_grad()
|
|
|
|
| 194 |
state.scattered_u = None
|
| 195 |
u_dtensor = None
|
| 196 |
|
| 197 |
+
scales_full = Muon._compute_scales(p, state.qk_clip_state)
|
| 198 |
+
if scales_full is not None:
|
| 199 |
+
num_ranks = dist.get_world_size(group=state.process_group)
|
| 200 |
+
local_rank = dist.get_rank(group=state.process_group)
|
| 201 |
+
scales_local = scales_full.chunk(num_ranks, dim=0)[local_rank]
|
| 202 |
+
scales_local = DTensor.from_local(
|
| 203 |
+
scales_local,
|
| 204 |
+
placements=p.placements,
|
| 205 |
+
device_mesh=p.device_mesh,
|
| 206 |
+
)
|
| 207 |
+
Muon._qk_clip(p, scales_local, state.qk_clip_state.head_dim)
|
| 208 |
+
|
| 209 |
|
| 210 |
def default_is_muon(name, x):
|
| 211 |
+
skip_keys = ["embed_tokens", "lm_head", "tok_embeddings", "output"]
|
| 212 |
+
return x.ndim >= 2 and not any(key in name for key in skip_keys)
|
| 213 |
|
| 214 |
|
| 215 |
def get_default_muon_param_groups(model, is_muon_func=default_is_muon):
|
| 216 |
+
muon_params, muon_names = [], []
|
| 217 |
+
non_muon_params = []
|
| 218 |
+
|
| 219 |
+
for n, p in model.named_parameters():
|
| 220 |
+
if not p.requires_grad:
|
| 221 |
+
continue
|
| 222 |
+
if is_muon_func(n, p):
|
| 223 |
+
muon_params.append(p)
|
| 224 |
+
muon_names.append(n)
|
| 225 |
+
else:
|
| 226 |
+
non_muon_params.append(p)
|
| 227 |
+
|
| 228 |
return [
|
| 229 |
{
|
| 230 |
+
"params": muon_params,
|
| 231 |
+
"names": muon_names,
|
| 232 |
+
"use_muon": True,
|
|
|
|
|
|
|
|
|
|
| 233 |
},
|
| 234 |
{
|
| 235 |
+
"params": non_muon_params,
|
| 236 |
+
"use_muon": False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
},
|
| 238 |
]
|
| 239 |
|
| 240 |
|
| 241 |
+
def parse_qk_layer(name: str) -> tuple[str | None, int]:
|
| 242 |
+
"""
|
| 243 |
+
Parse a parameter name to check if it is a query/key projection layer
|
| 244 |
+
('wq', 'wk', 'q_proj', 'k_proj') and return (kind, layer_index).
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
(kind, layer_idx) or (None, -1) if not matched.
|
| 248 |
+
|
| 249 |
+
Example:
|
| 250 |
+
'model.3.attn.wq.weight' -> ('wq', 3)
|
| 251 |
+
'model.5.attn.wk.weight' -> ('wk', 5)
|
| 252 |
+
'model.2.attn.q_proj.weight' -> ('q_proj', 2)
|
| 253 |
+
'model.7.attn.k_proj.weight' -> ('k_proj', 7)
|
| 254 |
+
'model.4.attn.v_proj.weight' -> (None, -1)
|
| 255 |
+
"""
|
| 256 |
+
parts = name.split('.')
|
| 257 |
+
if len(parts) < 3:
|
| 258 |
+
return None, -1
|
| 259 |
+
|
| 260 |
+
kind = parts[-2]
|
| 261 |
+
|
| 262 |
+
layer_idx = -1
|
| 263 |
+
for part in reversed(parts):
|
| 264 |
+
if part.isdigit():
|
| 265 |
+
layer_idx = int(part)
|
| 266 |
+
break
|
| 267 |
+
|
| 268 |
+
if kind in ('wq', 'wk', 'q_proj', 'k_proj'):
|
| 269 |
+
return kind, layer_idx
|
| 270 |
+
|
| 271 |
+
return None, -1
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
@dataclass
|
| 275 |
+
class QKClipInfo:
|
| 276 |
+
"""Per-parameter dynamic info computed from config + runtime logits."""
|
| 277 |
+
kind: Optional[str] # 'wq'/'q_proj' or 'wk'/'k_proj' or None
|
| 278 |
+
indices: List[int] # which heads to consider for clipping
|
| 279 |
+
head_dim: int # from config
|
| 280 |
+
threshold: float # from config
|
| 281 |
+
logit: Optional[torch.Tensor]
|
| 282 |
+
|
| 283 |
+
|
| 284 |
class Muon(torch.optim.Optimizer):
|
| 285 |
"""
|
| 286 |
Muon - MomentUm Orthogonalized by Newton-schulz
|
|
|
|
| 308 |
adamw_eps: The epsilon for the internal AdamW.
|
| 309 |
none_grad: Whether to set p.grad to None after gathering the gradients. This can save memory.
|
| 310 |
debug: Whether to print debug information.
|
| 311 |
+
clip_info : Configuration for QK clipping. Expected keys:
|
| 312 |
+
- "q_indices" (list[int]): Indices of query heads to consider.
|
| 313 |
+
- "k_indices" (list[int]): Indices of key heads to consider.
|
| 314 |
+
- "head_dim" (int): Dimensionality of each attention head.
|
| 315 |
+
- "threshold" (float): Threshold value; heads whose QK logits exceed
|
| 316 |
+
this value will be scaled down.
|
| 317 |
+
Default is:
|
| 318 |
+
{
|
| 319 |
+
"q_indices": [],
|
| 320 |
+
"k_indices": [],
|
| 321 |
+
"head_dim": 128,
|
| 322 |
+
"threshold": 100
|
| 323 |
+
}
|
| 324 |
"""
|
| 325 |
|
| 326 |
+
def __init__(self,
|
| 327 |
+
params,
|
| 328 |
+
lr=1e-3,
|
| 329 |
+
momentum=0.95,
|
| 330 |
+
nesterov=True,
|
| 331 |
+
ns_steps=5,
|
| 332 |
+
weight_decay=0.1,
|
| 333 |
+
adamw_betas=(0.9, 0.95),
|
| 334 |
+
adamw_eps=1e-8,
|
| 335 |
+
none_grad=True,
|
| 336 |
+
debug=False,
|
| 337 |
+
clip_config={
|
| 338 |
+
"q_indices": [],
|
| 339 |
+
"k_indices": [],
|
| 340 |
+
"head_dim": 128,
|
| 341 |
+
"threshold": 100
|
| 342 |
+
}):
|
| 343 |
defaults = dict(
|
| 344 |
lr=lr,
|
| 345 |
weight_decay=weight_decay,
|
|
|
|
| 371 |
self.comm_stream = torch.cuda.Stream()
|
| 372 |
self.compute_stream = torch.cuda.Stream()
|
| 373 |
self.debug = debug
|
| 374 |
+
self.clip_config = clip_config
|
| 375 |
|
| 376 |
def _calc_flops(self, G, steps):
|
| 377 |
assert len(G.shape) == 2
|
|
|
|
| 407 |
else:
|
| 408 |
raise ValueError(f"Unsupported placements ({p.placements}).")
|
| 409 |
|
| 410 |
+
def init_state_and_assign_params(self, names, params, group, qk_logits):
|
| 411 |
param_to_state = {}
|
| 412 |
param_to_flops = {}
|
| 413 |
|
|
|
|
| 426 |
print(f"Total TFLOPs for Muon: {total_flops / 1e12:.2f} TFLOPs",
|
| 427 |
flush=True)
|
| 428 |
|
| 429 |
+
paired = list(zip(names, params))
|
| 430 |
+
|
| 431 |
+
paired_sorted = sorted(paired,
|
| 432 |
+
key=lambda x: param_to_flops[id(x[1])],
|
| 433 |
+
reverse=True)
|
| 434 |
+
|
| 435 |
+
names_sorted, params_sorted = zip(*paired_sorted)
|
| 436 |
+
ordered_names = list(names_sorted)
|
| 437 |
+
ordered_params = list(params_sorted)
|
| 438 |
|
| 439 |
round_robin = 0
|
| 440 |
mesh = None
|
| 441 |
shard_mesh = None
|
| 442 |
process_group = None
|
| 443 |
+
for n, p in zip(ordered_names, ordered_params):
|
| 444 |
if mesh is None:
|
| 445 |
mesh = p.device_mesh
|
| 446 |
shard_mesh, process_group = self.get_shard_mesh(p, self.rank)
|
|
|
|
| 450 |
param_to_state[id(p)] = _muon_state()
|
| 451 |
param_to_state[id(p)].worker_rank = shard_mesh[round_robin].item()
|
| 452 |
param_to_state[id(p)].process_group = process_group
|
| 453 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 454 |
+
param_to_state[id(p)].qk_clip_state = qk_clip_state
|
| 455 |
round_robin = (round_robin + 1) % len(shard_mesh)
|
| 456 |
|
| 457 |
return param_to_state, ordered_params
|
| 458 |
|
| 459 |
+
def base(self, names, params, group, lr, weight_decay, momentum,
|
| 460 |
+
qk_logits):
|
| 461 |
# generate weight updates in distributed fashion
|
| 462 |
+
for n, p in zip(names, params):
|
| 463 |
g = p.grad
|
| 464 |
if g is None:
|
| 465 |
continue
|
|
|
|
| 484 |
adjusted_lr = self.adjust_lr_for_muon(lr, p.shape)
|
| 485 |
Muon._update_p(p, u, lr, adjusted_lr, weight_decay)
|
| 486 |
|
| 487 |
+
qk_clip_state = self.get_qk_clip_info(n, qk_logits)
|
| 488 |
+
|
| 489 |
+
scales_full = self._compute_scales(p, qk_clip_state)
|
| 490 |
+
if scales_full is not None:
|
| 491 |
+
Muon._qk_clip(p, scales_full, qk_clip_state.head_dim)
|
| 492 |
+
|
| 493 |
def _update_g(self, p, g, group, momentum):
|
| 494 |
# calc update
|
| 495 |
state = self.state[p]
|
|
|
|
| 510 |
# apply update
|
| 511 |
p.data.add_(u, alpha=-adjusted_lr)
|
| 512 |
|
| 513 |
+
def get_qk_clip_info(self, n, qk_logits):
|
| 514 |
+
head_dim = self.clip_config.get('head_dim')
|
| 515 |
+
threshold = self.clip_config.get('threshold')
|
| 516 |
+
kind, layer_idx = parse_qk_layer(n)
|
| 517 |
+
|
| 518 |
+
logit, indices = None, []
|
| 519 |
+
if qk_logits is not None and kind is not None:
|
| 520 |
+
logit = qk_logits[layer_idx]
|
| 521 |
+
indices_key = 'q_indices' if 'q' in kind else 'k_indices'
|
| 522 |
+
indices = self.clip_config.get(indices_key, []) or []
|
| 523 |
+
|
| 524 |
+
return QKClipInfo(
|
| 525 |
+
kind=kind,
|
| 526 |
+
indices=indices,
|
| 527 |
+
head_dim=head_dim,
|
| 528 |
+
threshold=threshold,
|
| 529 |
+
logit=logit,
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
@staticmethod
|
| 533 |
+
def _compute_scales(p, qk_clip_state):
|
| 534 |
+
kind = qk_clip_state.kind
|
| 535 |
+
indices = qk_clip_state.indices
|
| 536 |
+
head_dim = qk_clip_state.head_dim
|
| 537 |
+
threshold = qk_clip_state.threshold
|
| 538 |
+
logit = qk_clip_state.logit
|
| 539 |
+
|
| 540 |
+
H_global = p.shape[0] // head_dim
|
| 541 |
+
scales_full = torch.ones(H_global, device=p.data.device)
|
| 542 |
+
scaling = 0
|
| 543 |
+
|
| 544 |
+
for logit_idx, head_idx in enumerate(indices):
|
| 545 |
+
v_ele = float(logit[logit_idx])
|
| 546 |
+
if v_ele > threshold:
|
| 547 |
+
new_scale = math.sqrt(threshold / v_ele)
|
| 548 |
+
if new_scale < scales_full[head_idx]:
|
| 549 |
+
scales_full[head_idx] = new_scale
|
| 550 |
+
logger.info(
|
| 551 |
+
f"[{kind}] Head {head_idx} exceeded threshold "
|
| 552 |
+
f"(value={v_ele:.4f}, threshold={threshold:.4f}) -> applying scale={new_scale:.4f}"
|
| 553 |
+
)
|
| 554 |
+
scaling += 1
|
| 555 |
+
|
| 556 |
+
return scales_full if scaling > 0 else None
|
| 557 |
+
|
| 558 |
+
@staticmethod
|
| 559 |
+
def _qk_clip(p, scales, head_dim):
|
| 560 |
+
W = p.data.view(-1, head_dim, p.data.shape[1])
|
| 561 |
+
W.mul_(scales.view(-1, 1, 1))
|
| 562 |
+
|
| 563 |
+
def parallel(self, names, params, group, lr, weight_decay, momentum,
|
| 564 |
+
qk_logits):
|
| 565 |
"""
|
| 566 |
Perform a parallel optimization step using Muon.
|
| 567 |
"""
|
|
|
|
| 583 |
p.grad = g
|
| 584 |
|
| 585 |
param_to_state, ordered_params = self.init_state_and_assign_params(
|
| 586 |
+
names, params, group, qk_logits)
|
| 587 |
|
| 588 |
def enqueue_gathers(start_idx, chunk_size):
|
| 589 |
for p in ordered_params[start_idx:start_idx + chunk_size]:
|
|
|
|
| 698 |
maximize=maximize,
|
| 699 |
)
|
| 700 |
|
| 701 |
+
def step(self, closure=None, qk_logits=None):
|
| 702 |
"""Perform a single optimization step.
|
| 703 |
|
| 704 |
Args:
|
| 705 |
closure (Callable, optional): A closure that reevaluates the model
|
| 706 |
and returns the loss.
|
| 707 |
+
qk_logits (dict[int, Tensor], optional): A dictionary mapping layer indices
|
| 708 |
+
to 1D tensors of shape (num_heads,), representing the maximum
|
| 709 |
+
QK logits across all tokens, computed as
|
| 710 |
+
(1 / sqrt(head_dim)) * (Q @ K^T).
|
| 711 |
"""
|
| 712 |
loss = None
|
| 713 |
if closure is not None:
|
|
|
|
| 724 |
lr = group["lr"]
|
| 725 |
weight_decay = group["weight_decay"]
|
| 726 |
momentum = group["momentum"]
|
| 727 |
+
names = group["names"]
|
| 728 |
|
| 729 |
param_dtensors = []
|
| 730 |
param_tensors = []
|
| 731 |
+
name_dtensors = []
|
| 732 |
+
name_tensors = []
|
| 733 |
|
| 734 |
+
for n, p in zip(names, params):
|
| 735 |
if p is None or p.grad is None:
|
| 736 |
continue
|
| 737 |
if isinstance(p.data, DTensor):
|
|
|
|
| 739 |
isinstance(placement, Replicate)
|
| 740 |
for placement in p.placements):
|
| 741 |
param_tensors.append(p)
|
| 742 |
+
name_tensors.append(n)
|
| 743 |
else:
|
| 744 |
param_dtensors.append(p)
|
| 745 |
+
name_dtensors.append(n)
|
| 746 |
elif isinstance(p.data, torch.Tensor):
|
| 747 |
param_tensors.append(p)
|
| 748 |
+
name_tensors.append(n)
|
| 749 |
else:
|
| 750 |
raise TypeError(
|
| 751 |
f"Unsupported parameter type: {type(p.data)}")
|
|
|
|
| 763 |
)
|
| 764 |
|
| 765 |
self.parallel(
|
| 766 |
+
name_dtensors,
|
| 767 |
param_dtensors,
|
| 768 |
group,
|
| 769 |
lr=lr,
|
| 770 |
weight_decay=weight_decay,
|
| 771 |
momentum=momentum,
|
| 772 |
+
qk_logits=qk_logits,
|
| 773 |
)
|
| 774 |
|
| 775 |
if len(param_tensors) > 0:
|
| 776 |
self.base(
|
| 777 |
+
name_tensors,
|
| 778 |
param_tensors,
|
| 779 |
group,
|
| 780 |
lr=lr,
|
| 781 |
weight_decay=weight_decay,
|
| 782 |
momentum=momentum,
|
| 783 |
+
qk_logits=qk_logits,
|
| 784 |
)
|
| 785 |
|
| 786 |
else:
|