Commit
·
63c505b
1
Parent(s):
330f2dc
Update README.md
Browse files
README.md
CHANGED
|
@@ -13,6 +13,8 @@ model-index:
|
|
| 13 |
dataset:
|
| 14 |
type: mteb/amazon_counterfactual
|
| 15 |
name: MTEB AmazonCounterfactualClassification (en)
|
|
|
|
|
|
|
| 16 |
metrics:
|
| 17 |
- type: accuracy
|
| 18 |
value: 61.23880597014926
|
|
@@ -25,6 +27,8 @@ model-index:
|
|
| 25 |
dataset:
|
| 26 |
type: mteb/amazon_counterfactual
|
| 27 |
name: MTEB AmazonCounterfactualClassification (de)
|
|
|
|
|
|
|
| 28 |
metrics:
|
| 29 |
- type: accuracy
|
| 30 |
value: 56.88436830835117
|
|
@@ -37,6 +41,8 @@ model-index:
|
|
| 37 |
dataset:
|
| 38 |
type: mteb/amazon_counterfactual
|
| 39 |
name: MTEB AmazonCounterfactualClassification (en-ext)
|
|
|
|
|
|
|
| 40 |
metrics:
|
| 41 |
- type: accuracy
|
| 42 |
value: 58.27586206896551
|
|
@@ -49,6 +55,8 @@ model-index:
|
|
| 49 |
dataset:
|
| 50 |
type: mteb/amazon_counterfactual
|
| 51 |
name: MTEB AmazonCounterfactualClassification (ja)
|
|
|
|
|
|
|
| 52 |
metrics:
|
| 53 |
- type: accuracy
|
| 54 |
value: 54.64668094218415
|
|
@@ -61,6 +69,8 @@ model-index:
|
|
| 61 |
dataset:
|
| 62 |
type: mteb/amazon_polarity
|
| 63 |
name: MTEB AmazonPolarityClassification
|
|
|
|
|
|
|
| 64 |
metrics:
|
| 65 |
- type: accuracy
|
| 66 |
value: 65.401225
|
|
@@ -73,6 +83,8 @@ model-index:
|
|
| 73 |
dataset:
|
| 74 |
type: mteb/amazon_reviews_multi
|
| 75 |
name: MTEB AmazonReviewsClassification (en)
|
|
|
|
|
|
|
| 76 |
metrics:
|
| 77 |
- type: accuracy
|
| 78 |
value: 31.165999999999993
|
|
@@ -83,6 +95,8 @@ model-index:
|
|
| 83 |
dataset:
|
| 84 |
type: mteb/amazon_reviews_multi
|
| 85 |
name: MTEB AmazonReviewsClassification (de)
|
|
|
|
|
|
|
| 86 |
metrics:
|
| 87 |
- type: accuracy
|
| 88 |
value: 24.79
|
|
@@ -93,6 +107,8 @@ model-index:
|
|
| 93 |
dataset:
|
| 94 |
type: mteb/amazon_reviews_multi
|
| 95 |
name: MTEB AmazonReviewsClassification (es)
|
|
|
|
|
|
|
| 96 |
metrics:
|
| 97 |
- type: accuracy
|
| 98 |
value: 26.643999999999995
|
|
@@ -103,6 +119,8 @@ model-index:
|
|
| 103 |
dataset:
|
| 104 |
type: mteb/amazon_reviews_multi
|
| 105 |
name: MTEB AmazonReviewsClassification (fr)
|
|
|
|
|
|
|
| 106 |
metrics:
|
| 107 |
- type: accuracy
|
| 108 |
value: 26.386000000000003
|
|
@@ -113,6 +131,8 @@ model-index:
|
|
| 113 |
dataset:
|
| 114 |
type: mteb/amazon_reviews_multi
|
| 115 |
name: MTEB AmazonReviewsClassification (ja)
|
|
|
|
|
|
|
| 116 |
metrics:
|
| 117 |
- type: accuracy
|
| 118 |
value: 22.078000000000003
|
|
@@ -123,6 +143,8 @@ model-index:
|
|
| 123 |
dataset:
|
| 124 |
type: mteb/amazon_reviews_multi
|
| 125 |
name: MTEB AmazonReviewsClassification (zh)
|
|
|
|
|
|
|
| 126 |
metrics:
|
| 127 |
- type: accuracy
|
| 128 |
value: 24.274
|
|
@@ -133,6 +155,8 @@ model-index:
|
|
| 133 |
dataset:
|
| 134 |
type: arguana
|
| 135 |
name: MTEB ArguAna
|
|
|
|
|
|
|
| 136 |
metrics:
|
| 137 |
- type: map_at_1
|
| 138 |
value: 22.404
|
|
@@ -199,6 +223,8 @@ model-index:
|
|
| 199 |
dataset:
|
| 200 |
type: mteb/arxiv-clustering-p2p
|
| 201 |
name: MTEB ArxivClusteringP2P
|
|
|
|
|
|
|
| 202 |
metrics:
|
| 203 |
- type: v_measure
|
| 204 |
value: 39.70858340673288
|
|
@@ -207,6 +233,8 @@ model-index:
|
|
| 207 |
dataset:
|
| 208 |
type: mteb/arxiv-clustering-s2s
|
| 209 |
name: MTEB ArxivClusteringS2S
|
|
|
|
|
|
|
| 210 |
metrics:
|
| 211 |
- type: v_measure
|
| 212 |
value: 28.242847713721048
|
|
@@ -215,6 +243,8 @@ model-index:
|
|
| 215 |
dataset:
|
| 216 |
type: mteb/askubuntudupquestions-reranking
|
| 217 |
name: MTEB AskUbuntuDupQuestions
|
|
|
|
|
|
|
| 218 |
metrics:
|
| 219 |
- type: map
|
| 220 |
value: 55.83700395192393
|
|
@@ -225,6 +255,8 @@ model-index:
|
|
| 225 |
dataset:
|
| 226 |
type: mteb/biosses-sts
|
| 227 |
name: MTEB BIOSSES
|
|
|
|
|
|
|
| 228 |
metrics:
|
| 229 |
- type: cos_sim_pearson
|
| 230 |
value: 79.25366801756223
|
|
@@ -243,6 +275,8 @@ model-index:
|
|
| 243 |
dataset:
|
| 244 |
type: mteb/banking77
|
| 245 |
name: MTEB Banking77Classification
|
|
|
|
|
|
|
| 246 |
metrics:
|
| 247 |
- type: accuracy
|
| 248 |
value: 77.70454545454545
|
|
@@ -253,6 +287,8 @@ model-index:
|
|
| 253 |
dataset:
|
| 254 |
type: mteb/biorxiv-clustering-p2p
|
| 255 |
name: MTEB BiorxivClusteringP2P
|
|
|
|
|
|
|
| 256 |
metrics:
|
| 257 |
- type: v_measure
|
| 258 |
value: 33.63260395543984
|
|
@@ -261,6 +297,8 @@ model-index:
|
|
| 261 |
dataset:
|
| 262 |
type: mteb/biorxiv-clustering-s2s
|
| 263 |
name: MTEB BiorxivClusteringS2S
|
|
|
|
|
|
|
| 264 |
metrics:
|
| 265 |
- type: v_measure
|
| 266 |
value: 27.038042665369925
|
|
@@ -269,6 +307,8 @@ model-index:
|
|
| 269 |
dataset:
|
| 270 |
type: BeIR/cqadupstack
|
| 271 |
name: MTEB CQADupstackAndroidRetrieval
|
|
|
|
|
|
|
| 272 |
metrics:
|
| 273 |
- type: map_at_1
|
| 274 |
value: 22.139
|
|
@@ -335,6 +375,8 @@ model-index:
|
|
| 335 |
dataset:
|
| 336 |
type: BeIR/cqadupstack
|
| 337 |
name: MTEB CQADupstackEnglishRetrieval
|
|
|
|
|
|
|
| 338 |
metrics:
|
| 339 |
- type: map_at_1
|
| 340 |
value: 20.652
|
|
@@ -401,6 +443,8 @@ model-index:
|
|
| 401 |
dataset:
|
| 402 |
type: BeIR/cqadupstack
|
| 403 |
name: MTEB CQADupstackGamingRetrieval
|
|
|
|
|
|
|
| 404 |
metrics:
|
| 405 |
- type: map_at_1
|
| 406 |
value: 25.180000000000003
|
|
@@ -467,6 +511,8 @@ model-index:
|
|
| 467 |
dataset:
|
| 468 |
type: BeIR/cqadupstack
|
| 469 |
name: MTEB CQADupstackGisRetrieval
|
|
|
|
|
|
|
| 470 |
metrics:
|
| 471 |
- type: map_at_1
|
| 472 |
value: 16.303
|
|
@@ -533,6 +579,8 @@ model-index:
|
|
| 533 |
dataset:
|
| 534 |
type: BeIR/cqadupstack
|
| 535 |
name: MTEB CQADupstackMathematicaRetrieval
|
|
|
|
|
|
|
| 536 |
metrics:
|
| 537 |
- type: map_at_1
|
| 538 |
value: 10.133000000000001
|
|
@@ -599,6 +647,8 @@ model-index:
|
|
| 599 |
dataset:
|
| 600 |
type: BeIR/cqadupstack
|
| 601 |
name: MTEB CQADupstackPhysicsRetrieval
|
|
|
|
|
|
|
| 602 |
metrics:
|
| 603 |
- type: map_at_1
|
| 604 |
value: 19.991999999999997
|
|
@@ -665,6 +715,8 @@ model-index:
|
|
| 665 |
dataset:
|
| 666 |
type: BeIR/cqadupstack
|
| 667 |
name: MTEB CQADupstackProgrammersRetrieval
|
|
|
|
|
|
|
| 668 |
metrics:
|
| 669 |
- type: map_at_1
|
| 670 |
value: 17.896
|
|
@@ -731,6 +783,8 @@ model-index:
|
|
| 731 |
dataset:
|
| 732 |
type: BeIR/cqadupstack
|
| 733 |
name: MTEB CQADupstackRetrieval
|
|
|
|
|
|
|
| 734 |
metrics:
|
| 735 |
- type: map_at_1
|
| 736 |
value: 17.195166666666665
|
|
@@ -797,6 +851,8 @@ model-index:
|
|
| 797 |
dataset:
|
| 798 |
type: BeIR/cqadupstack
|
| 799 |
name: MTEB CQADupstackStatsRetrieval
|
|
|
|
|
|
|
| 800 |
metrics:
|
| 801 |
- type: map_at_1
|
| 802 |
value: 16.779
|
|
@@ -863,6 +919,8 @@ model-index:
|
|
| 863 |
dataset:
|
| 864 |
type: BeIR/cqadupstack
|
| 865 |
name: MTEB CQADupstackTexRetrieval
|
|
|
|
|
|
|
| 866 |
metrics:
|
| 867 |
- type: map_at_1
|
| 868 |
value: 9.279
|
|
@@ -929,6 +987,8 @@ model-index:
|
|
| 929 |
dataset:
|
| 930 |
type: BeIR/cqadupstack
|
| 931 |
name: MTEB CQADupstackUnixRetrieval
|
|
|
|
|
|
|
| 932 |
metrics:
|
| 933 |
- type: map_at_1
|
| 934 |
value: 16.36
|
|
@@ -995,6 +1055,8 @@ model-index:
|
|
| 995 |
dataset:
|
| 996 |
type: BeIR/cqadupstack
|
| 997 |
name: MTEB CQADupstackWebmastersRetrieval
|
|
|
|
|
|
|
| 998 |
metrics:
|
| 999 |
- type: map_at_1
|
| 1000 |
value: 17.39
|
|
@@ -1061,6 +1123,8 @@ model-index:
|
|
| 1061 |
dataset:
|
| 1062 |
type: BeIR/cqadupstack
|
| 1063 |
name: MTEB CQADupstackWordpressRetrieval
|
|
|
|
|
|
|
| 1064 |
metrics:
|
| 1065 |
- type: map_at_1
|
| 1066 |
value: 14.238999999999999
|
|
@@ -1127,6 +1191,8 @@ model-index:
|
|
| 1127 |
dataset:
|
| 1128 |
type: climate-fever
|
| 1129 |
name: MTEB ClimateFEVER
|
|
|
|
|
|
|
| 1130 |
metrics:
|
| 1131 |
- type: map_at_1
|
| 1132 |
value: 8.828
|
|
@@ -1193,6 +1259,8 @@ model-index:
|
|
| 1193 |
dataset:
|
| 1194 |
type: dbpedia-entity
|
| 1195 |
name: MTEB DBPedia
|
|
|
|
|
|
|
| 1196 |
metrics:
|
| 1197 |
- type: map_at_1
|
| 1198 |
value: 5.586
|
|
@@ -1259,6 +1327,8 @@ model-index:
|
|
| 1259 |
dataset:
|
| 1260 |
type: mteb/emotion
|
| 1261 |
name: MTEB EmotionClassification
|
|
|
|
|
|
|
| 1262 |
metrics:
|
| 1263 |
- type: accuracy
|
| 1264 |
value: 39.075
|
|
@@ -1269,6 +1339,8 @@ model-index:
|
|
| 1269 |
dataset:
|
| 1270 |
type: fever
|
| 1271 |
name: MTEB FEVER
|
|
|
|
|
|
|
| 1272 |
metrics:
|
| 1273 |
- type: map_at_1
|
| 1274 |
value: 43.519999999999996
|
|
@@ -1335,6 +1407,8 @@ model-index:
|
|
| 1335 |
dataset:
|
| 1336 |
type: fiqa
|
| 1337 |
name: MTEB FiQA2018
|
|
|
|
|
|
|
| 1338 |
metrics:
|
| 1339 |
- type: map_at_1
|
| 1340 |
value: 9.549000000000001
|
|
@@ -1401,6 +1475,8 @@ model-index:
|
|
| 1401 |
dataset:
|
| 1402 |
type: hotpotqa
|
| 1403 |
name: MTEB HotpotQA
|
|
|
|
|
|
|
| 1404 |
metrics:
|
| 1405 |
- type: map_at_1
|
| 1406 |
value: 25.544
|
|
@@ -1467,6 +1543,8 @@ model-index:
|
|
| 1467 |
dataset:
|
| 1468 |
type: mteb/imdb
|
| 1469 |
name: MTEB ImdbClassification
|
|
|
|
|
|
|
| 1470 |
metrics:
|
| 1471 |
- type: accuracy
|
| 1472 |
value: 58.6696
|
|
@@ -1479,6 +1557,8 @@ model-index:
|
|
| 1479 |
dataset:
|
| 1480 |
type: msmarco
|
| 1481 |
name: MTEB MSMARCO
|
|
|
|
|
|
|
| 1482 |
metrics:
|
| 1483 |
- type: map_at_1
|
| 1484 |
value: 14.442
|
|
@@ -1545,6 +1625,8 @@ model-index:
|
|
| 1545 |
dataset:
|
| 1546 |
type: mteb/mtop_domain
|
| 1547 |
name: MTEB MTOPDomainClassification (en)
|
|
|
|
|
|
|
| 1548 |
metrics:
|
| 1549 |
- type: accuracy
|
| 1550 |
value: 86.95622435020519
|
|
@@ -1555,6 +1637,8 @@ model-index:
|
|
| 1555 |
dataset:
|
| 1556 |
type: mteb/mtop_domain
|
| 1557 |
name: MTEB MTOPDomainClassification (de)
|
|
|
|
|
|
|
| 1558 |
metrics:
|
| 1559 |
- type: accuracy
|
| 1560 |
value: 62.73034657650043
|
|
@@ -1565,6 +1649,8 @@ model-index:
|
|
| 1565 |
dataset:
|
| 1566 |
type: mteb/mtop_domain
|
| 1567 |
name: MTEB MTOPDomainClassification (es)
|
|
|
|
|
|
|
| 1568 |
metrics:
|
| 1569 |
- type: accuracy
|
| 1570 |
value: 67.54503002001334
|
|
@@ -1575,6 +1661,8 @@ model-index:
|
|
| 1575 |
dataset:
|
| 1576 |
type: mteb/mtop_domain
|
| 1577 |
name: MTEB MTOPDomainClassification (fr)
|
|
|
|
|
|
|
| 1578 |
metrics:
|
| 1579 |
- type: accuracy
|
| 1580 |
value: 65.35233322893829
|
|
@@ -1585,6 +1673,8 @@ model-index:
|
|
| 1585 |
dataset:
|
| 1586 |
type: mteb/mtop_domain
|
| 1587 |
name: MTEB MTOPDomainClassification (hi)
|
|
|
|
|
|
|
| 1588 |
metrics:
|
| 1589 |
- type: accuracy
|
| 1590 |
value: 45.37110075295806
|
|
@@ -1595,6 +1685,8 @@ model-index:
|
|
| 1595 |
dataset:
|
| 1596 |
type: mteb/mtop_domain
|
| 1597 |
name: MTEB MTOPDomainClassification (th)
|
|
|
|
|
|
|
| 1598 |
metrics:
|
| 1599 |
- type: accuracy
|
| 1600 |
value: 55.276672694394215
|
|
@@ -1605,6 +1697,8 @@ model-index:
|
|
| 1605 |
dataset:
|
| 1606 |
type: mteb/mtop_intent
|
| 1607 |
name: MTEB MTOPIntentClassification (en)
|
|
|
|
|
|
|
| 1608 |
metrics:
|
| 1609 |
- type: accuracy
|
| 1610 |
value: 62.25262197902417
|
|
@@ -1615,6 +1709,8 @@ model-index:
|
|
| 1615 |
dataset:
|
| 1616 |
type: mteb/mtop_intent
|
| 1617 |
name: MTEB MTOPIntentClassification (de)
|
|
|
|
|
|
|
| 1618 |
metrics:
|
| 1619 |
- type: accuracy
|
| 1620 |
value: 49.56043956043956
|
|
@@ -1625,6 +1721,8 @@ model-index:
|
|
| 1625 |
dataset:
|
| 1626 |
type: mteb/mtop_intent
|
| 1627 |
name: MTEB MTOPIntentClassification (es)
|
|
|
|
|
|
|
| 1628 |
metrics:
|
| 1629 |
- type: accuracy
|
| 1630 |
value: 49.93995997331555
|
|
@@ -1635,6 +1733,8 @@ model-index:
|
|
| 1635 |
dataset:
|
| 1636 |
type: mteb/mtop_intent
|
| 1637 |
name: MTEB MTOPIntentClassification (fr)
|
|
|
|
|
|
|
| 1638 |
metrics:
|
| 1639 |
- type: accuracy
|
| 1640 |
value: 46.32947071719386
|
|
@@ -1645,6 +1745,8 @@ model-index:
|
|
| 1645 |
dataset:
|
| 1646 |
type: mteb/mtop_intent
|
| 1647 |
name: MTEB MTOPIntentClassification (hi)
|
|
|
|
|
|
|
| 1648 |
metrics:
|
| 1649 |
- type: accuracy
|
| 1650 |
value: 32.208676945141626
|
|
@@ -1655,6 +1757,8 @@ model-index:
|
|
| 1655 |
dataset:
|
| 1656 |
type: mteb/mtop_intent
|
| 1657 |
name: MTEB MTOPIntentClassification (th)
|
|
|
|
|
|
|
| 1658 |
metrics:
|
| 1659 |
- type: accuracy
|
| 1660 |
value: 43.627486437613015
|
|
@@ -1665,6 +1769,8 @@ model-index:
|
|
| 1665 |
dataset:
|
| 1666 |
type: mteb/amazon_massive_intent
|
| 1667 |
name: MTEB MassiveIntentClassification (af)
|
|
|
|
|
|
|
| 1668 |
metrics:
|
| 1669 |
- type: accuracy
|
| 1670 |
value: 40.548083389374575
|
|
@@ -1675,6 +1781,8 @@ model-index:
|
|
| 1675 |
dataset:
|
| 1676 |
type: mteb/amazon_massive_intent
|
| 1677 |
name: MTEB MassiveIntentClassification (am)
|
|
|
|
|
|
|
| 1678 |
metrics:
|
| 1679 |
- type: accuracy
|
| 1680 |
value: 24.18291862811029
|
|
@@ -1685,6 +1793,8 @@ model-index:
|
|
| 1685 |
dataset:
|
| 1686 |
type: mteb/amazon_massive_intent
|
| 1687 |
name: MTEB MassiveIntentClassification (ar)
|
|
|
|
|
|
|
| 1688 |
metrics:
|
| 1689 |
- type: accuracy
|
| 1690 |
value: 30.134498991257562
|
|
@@ -1695,6 +1805,8 @@ model-index:
|
|
| 1695 |
dataset:
|
| 1696 |
type: mteb/amazon_massive_intent
|
| 1697 |
name: MTEB MassiveIntentClassification (az)
|
|
|
|
|
|
|
| 1698 |
metrics:
|
| 1699 |
- type: accuracy
|
| 1700 |
value: 35.88433086751849
|
|
@@ -1705,6 +1817,8 @@ model-index:
|
|
| 1705 |
dataset:
|
| 1706 |
type: mteb/amazon_massive_intent
|
| 1707 |
name: MTEB MassiveIntentClassification (bn)
|
|
|
|
|
|
|
| 1708 |
metrics:
|
| 1709 |
- type: accuracy
|
| 1710 |
value: 29.17283120376597
|
|
@@ -1715,6 +1829,8 @@ model-index:
|
|
| 1715 |
dataset:
|
| 1716 |
type: mteb/amazon_massive_intent
|
| 1717 |
name: MTEB MassiveIntentClassification (cy)
|
|
|
|
|
|
|
| 1718 |
metrics:
|
| 1719 |
- type: accuracy
|
| 1720 |
value: 41.788836583725626
|
|
@@ -1725,6 +1841,8 @@ model-index:
|
|
| 1725 |
dataset:
|
| 1726 |
type: mteb/amazon_massive_intent
|
| 1727 |
name: MTEB MassiveIntentClassification (da)
|
|
|
|
|
|
|
| 1728 |
metrics:
|
| 1729 |
- type: accuracy
|
| 1730 |
value: 44.176193678547406
|
|
@@ -1735,6 +1853,8 @@ model-index:
|
|
| 1735 |
dataset:
|
| 1736 |
type: mteb/amazon_massive_intent
|
| 1737 |
name: MTEB MassiveIntentClassification (de)
|
|
|
|
|
|
|
| 1738 |
metrics:
|
| 1739 |
- type: accuracy
|
| 1740 |
value: 42.07464694014795
|
|
@@ -1745,6 +1865,8 @@ model-index:
|
|
| 1745 |
dataset:
|
| 1746 |
type: mteb/amazon_massive_intent
|
| 1747 |
name: MTEB MassiveIntentClassification (el)
|
|
|
|
|
|
|
| 1748 |
metrics:
|
| 1749 |
- type: accuracy
|
| 1750 |
value: 36.254203093476804
|
|
@@ -1755,6 +1877,8 @@ model-index:
|
|
| 1755 |
dataset:
|
| 1756 |
type: mteb/amazon_massive_intent
|
| 1757 |
name: MTEB MassiveIntentClassification (en)
|
|
|
|
|
|
|
| 1758 |
metrics:
|
| 1759 |
- type: accuracy
|
| 1760 |
value: 61.40887693342301
|
|
@@ -1765,6 +1889,8 @@ model-index:
|
|
| 1765 |
dataset:
|
| 1766 |
type: mteb/amazon_massive_intent
|
| 1767 |
name: MTEB MassiveIntentClassification (es)
|
|
|
|
|
|
|
| 1768 |
metrics:
|
| 1769 |
- type: accuracy
|
| 1770 |
value: 42.679892400807
|
|
@@ -1775,6 +1901,8 @@ model-index:
|
|
| 1775 |
dataset:
|
| 1776 |
type: mteb/amazon_massive_intent
|
| 1777 |
name: MTEB MassiveIntentClassification (fa)
|
|
|
|
|
|
|
| 1778 |
metrics:
|
| 1779 |
- type: accuracy
|
| 1780 |
value: 35.59179556153329
|
|
@@ -1785,6 +1913,8 @@ model-index:
|
|
| 1785 |
dataset:
|
| 1786 |
type: mteb/amazon_massive_intent
|
| 1787 |
name: MTEB MassiveIntentClassification (fi)
|
|
|
|
|
|
|
| 1788 |
metrics:
|
| 1789 |
- type: accuracy
|
| 1790 |
value: 40.036987222595826
|
|
@@ -1795,6 +1925,8 @@ model-index:
|
|
| 1795 |
dataset:
|
| 1796 |
type: mteb/amazon_massive_intent
|
| 1797 |
name: MTEB MassiveIntentClassification (fr)
|
|
|
|
|
|
|
| 1798 |
metrics:
|
| 1799 |
- type: accuracy
|
| 1800 |
value: 43.43981170141224
|
|
@@ -1805,6 +1937,8 @@ model-index:
|
|
| 1805 |
dataset:
|
| 1806 |
type: mteb/amazon_massive_intent
|
| 1807 |
name: MTEB MassiveIntentClassification (he)
|
|
|
|
|
|
|
| 1808 |
metrics:
|
| 1809 |
- type: accuracy
|
| 1810 |
value: 31.593813046402154
|
|
@@ -1815,6 +1949,8 @@ model-index:
|
|
| 1815 |
dataset:
|
| 1816 |
type: mteb/amazon_massive_intent
|
| 1817 |
name: MTEB MassiveIntentClassification (hi)
|
|
|
|
|
|
|
| 1818 |
metrics:
|
| 1819 |
- type: accuracy
|
| 1820 |
value: 27.044384667114997
|
|
@@ -1825,6 +1961,8 @@ model-index:
|
|
| 1825 |
dataset:
|
| 1826 |
type: mteb/amazon_massive_intent
|
| 1827 |
name: MTEB MassiveIntentClassification (hu)
|
|
|
|
|
|
|
| 1828 |
metrics:
|
| 1829 |
- type: accuracy
|
| 1830 |
value: 38.453261600538
|
|
@@ -1835,6 +1973,8 @@ model-index:
|
|
| 1835 |
dataset:
|
| 1836 |
type: mteb/amazon_massive_intent
|
| 1837 |
name: MTEB MassiveIntentClassification (hy)
|
|
|
|
|
|
|
| 1838 |
metrics:
|
| 1839 |
- type: accuracy
|
| 1840 |
value: 27.979152656355076
|
|
@@ -1845,6 +1985,8 @@ model-index:
|
|
| 1845 |
dataset:
|
| 1846 |
type: mteb/amazon_massive_intent
|
| 1847 |
name: MTEB MassiveIntentClassification (id)
|
|
|
|
|
|
|
| 1848 |
metrics:
|
| 1849 |
- type: accuracy
|
| 1850 |
value: 43.97108271687963
|
|
@@ -1855,6 +1997,8 @@ model-index:
|
|
| 1855 |
dataset:
|
| 1856 |
type: mteb/amazon_massive_intent
|
| 1857 |
name: MTEB MassiveIntentClassification (is)
|
|
|
|
|
|
|
| 1858 |
metrics:
|
| 1859 |
- type: accuracy
|
| 1860 |
value: 40.302622730329524
|
|
@@ -1865,6 +2009,8 @@ model-index:
|
|
| 1865 |
dataset:
|
| 1866 |
type: mteb/amazon_massive_intent
|
| 1867 |
name: MTEB MassiveIntentClassification (it)
|
|
|
|
|
|
|
| 1868 |
metrics:
|
| 1869 |
- type: accuracy
|
| 1870 |
value: 45.474108944182916
|
|
@@ -1875,6 +2021,8 @@ model-index:
|
|
| 1875 |
dataset:
|
| 1876 |
type: mteb/amazon_massive_intent
|
| 1877 |
name: MTEB MassiveIntentClassification (ja)
|
|
|
|
|
|
|
| 1878 |
metrics:
|
| 1879 |
- type: accuracy
|
| 1880 |
value: 45.60860793544048
|
|
@@ -1885,6 +2033,8 @@ model-index:
|
|
| 1885 |
dataset:
|
| 1886 |
type: mteb/amazon_massive_intent
|
| 1887 |
name: MTEB MassiveIntentClassification (jv)
|
|
|
|
|
|
|
| 1888 |
metrics:
|
| 1889 |
- type: accuracy
|
| 1890 |
value: 38.668459986550104
|
|
@@ -1895,6 +2045,8 @@ model-index:
|
|
| 1895 |
dataset:
|
| 1896 |
type: mteb/amazon_massive_intent
|
| 1897 |
name: MTEB MassiveIntentClassification (ka)
|
|
|
|
|
|
|
| 1898 |
metrics:
|
| 1899 |
- type: accuracy
|
| 1900 |
value: 25.6523201075992
|
|
@@ -1905,6 +2057,8 @@ model-index:
|
|
| 1905 |
dataset:
|
| 1906 |
type: mteb/amazon_massive_intent
|
| 1907 |
name: MTEB MassiveIntentClassification (km)
|
|
|
|
|
|
|
| 1908 |
metrics:
|
| 1909 |
- type: accuracy
|
| 1910 |
value: 28.295225285810353
|
|
@@ -1915,6 +2069,8 @@ model-index:
|
|
| 1915 |
dataset:
|
| 1916 |
type: mteb/amazon_massive_intent
|
| 1917 |
name: MTEB MassiveIntentClassification (kn)
|
|
|
|
|
|
|
| 1918 |
metrics:
|
| 1919 |
- type: accuracy
|
| 1920 |
value: 23.480161398789505
|
|
@@ -1925,6 +2081,8 @@ model-index:
|
|
| 1925 |
dataset:
|
| 1926 |
type: mteb/amazon_massive_intent
|
| 1927 |
name: MTEB MassiveIntentClassification (ko)
|
|
|
|
|
|
|
| 1928 |
metrics:
|
| 1929 |
- type: accuracy
|
| 1930 |
value: 36.55682582380632
|
|
@@ -1935,6 +2093,8 @@ model-index:
|
|
| 1935 |
dataset:
|
| 1936 |
type: mteb/amazon_massive_intent
|
| 1937 |
name: MTEB MassiveIntentClassification (lv)
|
|
|
|
|
|
|
| 1938 |
metrics:
|
| 1939 |
- type: accuracy
|
| 1940 |
value: 41.84936112979153
|
|
@@ -1945,6 +2105,8 @@ model-index:
|
|
| 1945 |
dataset:
|
| 1946 |
type: mteb/amazon_massive_intent
|
| 1947 |
name: MTEB MassiveIntentClassification (ml)
|
|
|
|
|
|
|
| 1948 |
metrics:
|
| 1949 |
- type: accuracy
|
| 1950 |
value: 24.90921318090114
|
|
@@ -1955,6 +2117,8 @@ model-index:
|
|
| 1955 |
dataset:
|
| 1956 |
type: mteb/amazon_massive_intent
|
| 1957 |
name: MTEB MassiveIntentClassification (mn)
|
|
|
|
|
|
|
| 1958 |
metrics:
|
| 1959 |
- type: accuracy
|
| 1960 |
value: 29.86213853396099
|
|
@@ -1965,6 +2129,8 @@ model-index:
|
|
| 1965 |
dataset:
|
| 1966 |
type: mteb/amazon_massive_intent
|
| 1967 |
name: MTEB MassiveIntentClassification (ms)
|
|
|
|
|
|
|
| 1968 |
metrics:
|
| 1969 |
- type: accuracy
|
| 1970 |
value: 42.42098184263618
|
|
@@ -1975,6 +2141,8 @@ model-index:
|
|
| 1975 |
dataset:
|
| 1976 |
type: mteb/amazon_massive_intent
|
| 1977 |
name: MTEB MassiveIntentClassification (my)
|
|
|
|
|
|
|
| 1978 |
metrics:
|
| 1979 |
- type: accuracy
|
| 1980 |
value: 25.131136516476126
|
|
@@ -1985,6 +2153,8 @@ model-index:
|
|
| 1985 |
dataset:
|
| 1986 |
type: mteb/amazon_massive_intent
|
| 1987 |
name: MTEB MassiveIntentClassification (nb)
|
|
|
|
|
|
|
| 1988 |
metrics:
|
| 1989 |
- type: accuracy
|
| 1990 |
value: 39.81506388702084
|
|
@@ -1995,6 +2165,8 @@ model-index:
|
|
| 1995 |
dataset:
|
| 1996 |
type: mteb/amazon_massive_intent
|
| 1997 |
name: MTEB MassiveIntentClassification (nl)
|
|
|
|
|
|
|
| 1998 |
metrics:
|
| 1999 |
- type: accuracy
|
| 2000 |
value: 43.62138533960995
|
|
@@ -2005,6 +2177,8 @@ model-index:
|
|
| 2005 |
dataset:
|
| 2006 |
type: mteb/amazon_massive_intent
|
| 2007 |
name: MTEB MassiveIntentClassification (pl)
|
|
|
|
|
|
|
| 2008 |
metrics:
|
| 2009 |
- type: accuracy
|
| 2010 |
value: 42.19569603227976
|
|
@@ -2015,6 +2189,8 @@ model-index:
|
|
| 2015 |
dataset:
|
| 2016 |
type: mteb/amazon_massive_intent
|
| 2017 |
name: MTEB MassiveIntentClassification (pt)
|
|
|
|
|
|
|
| 2018 |
metrics:
|
| 2019 |
- type: accuracy
|
| 2020 |
value: 45.20847343644923
|
|
@@ -2025,6 +2201,8 @@ model-index:
|
|
| 2025 |
dataset:
|
| 2026 |
type: mteb/amazon_massive_intent
|
| 2027 |
name: MTEB MassiveIntentClassification (ro)
|
|
|
|
|
|
|
| 2028 |
metrics:
|
| 2029 |
- type: accuracy
|
| 2030 |
value: 41.80901143241426
|
|
@@ -2035,6 +2213,8 @@ model-index:
|
|
| 2035 |
dataset:
|
| 2036 |
type: mteb/amazon_massive_intent
|
| 2037 |
name: MTEB MassiveIntentClassification (ru)
|
|
|
|
|
|
|
| 2038 |
metrics:
|
| 2039 |
- type: accuracy
|
| 2040 |
value: 35.96839273705447
|
|
@@ -2045,6 +2225,8 @@ model-index:
|
|
| 2045 |
dataset:
|
| 2046 |
type: mteb/amazon_massive_intent
|
| 2047 |
name: MTEB MassiveIntentClassification (sl)
|
|
|
|
|
|
|
| 2048 |
metrics:
|
| 2049 |
- type: accuracy
|
| 2050 |
value: 40.60524546065905
|
|
@@ -2055,6 +2237,8 @@ model-index:
|
|
| 2055 |
dataset:
|
| 2056 |
type: mteb/amazon_massive_intent
|
| 2057 |
name: MTEB MassiveIntentClassification (sq)
|
|
|
|
|
|
|
| 2058 |
metrics:
|
| 2059 |
- type: accuracy
|
| 2060 |
value: 42.75722932078009
|
|
@@ -2065,6 +2249,8 @@ model-index:
|
|
| 2065 |
dataset:
|
| 2066 |
type: mteb/amazon_massive_intent
|
| 2067 |
name: MTEB MassiveIntentClassification (sv)
|
|
|
|
|
|
|
| 2068 |
metrics:
|
| 2069 |
- type: accuracy
|
| 2070 |
value: 42.347007397444514
|
|
@@ -2075,6 +2261,8 @@ model-index:
|
|
| 2075 |
dataset:
|
| 2076 |
type: mteb/amazon_massive_intent
|
| 2077 |
name: MTEB MassiveIntentClassification (sw)
|
|
|
|
|
|
|
| 2078 |
metrics:
|
| 2079 |
- type: accuracy
|
| 2080 |
value: 41.12306657700067
|
|
@@ -2085,6 +2273,8 @@ model-index:
|
|
| 2085 |
dataset:
|
| 2086 |
type: mteb/amazon_massive_intent
|
| 2087 |
name: MTEB MassiveIntentClassification (ta)
|
|
|
|
|
|
|
| 2088 |
metrics:
|
| 2089 |
- type: accuracy
|
| 2090 |
value: 24.603227975790183
|
|
@@ -2095,6 +2285,8 @@ model-index:
|
|
| 2095 |
dataset:
|
| 2096 |
type: mteb/amazon_massive_intent
|
| 2097 |
name: MTEB MassiveIntentClassification (te)
|
|
|
|
|
|
|
| 2098 |
metrics:
|
| 2099 |
- type: accuracy
|
| 2100 |
value: 25.03698722259583
|
|
@@ -2105,6 +2297,8 @@ model-index:
|
|
| 2105 |
dataset:
|
| 2106 |
type: mteb/amazon_massive_intent
|
| 2107 |
name: MTEB MassiveIntentClassification (th)
|
|
|
|
|
|
|
| 2108 |
metrics:
|
| 2109 |
- type: accuracy
|
| 2110 |
value: 35.40013449899126
|
|
@@ -2115,6 +2309,8 @@ model-index:
|
|
| 2115 |
dataset:
|
| 2116 |
type: mteb/amazon_massive_intent
|
| 2117 |
name: MTEB MassiveIntentClassification (tl)
|
|
|
|
|
|
|
| 2118 |
metrics:
|
| 2119 |
- type: accuracy
|
| 2120 |
value: 41.19031607262945
|
|
@@ -2125,6 +2321,8 @@ model-index:
|
|
| 2125 |
dataset:
|
| 2126 |
type: mteb/amazon_massive_intent
|
| 2127 |
name: MTEB MassiveIntentClassification (tr)
|
|
|
|
|
|
|
| 2128 |
metrics:
|
| 2129 |
- type: accuracy
|
| 2130 |
value: 36.405514458641555
|
|
@@ -2135,6 +2333,8 @@ model-index:
|
|
| 2135 |
dataset:
|
| 2136 |
type: mteb/amazon_massive_intent
|
| 2137 |
name: MTEB MassiveIntentClassification (ur)
|
|
|
|
|
|
|
| 2138 |
metrics:
|
| 2139 |
- type: accuracy
|
| 2140 |
value: 25.934767989240076
|
|
@@ -2145,6 +2345,8 @@ model-index:
|
|
| 2145 |
dataset:
|
| 2146 |
type: mteb/amazon_massive_intent
|
| 2147 |
name: MTEB MassiveIntentClassification (vi)
|
|
|
|
|
|
|
| 2148 |
metrics:
|
| 2149 |
- type: accuracy
|
| 2150 |
value: 38.79959650302622
|
|
@@ -2155,6 +2357,8 @@ model-index:
|
|
| 2155 |
dataset:
|
| 2156 |
type: mteb/amazon_massive_intent
|
| 2157 |
name: MTEB MassiveIntentClassification (zh-CN)
|
|
|
|
|
|
|
| 2158 |
metrics:
|
| 2159 |
- type: accuracy
|
| 2160 |
value: 46.244115669132476
|
|
@@ -2165,6 +2369,8 @@ model-index:
|
|
| 2165 |
dataset:
|
| 2166 |
type: mteb/amazon_massive_intent
|
| 2167 |
name: MTEB MassiveIntentClassification (zh-TW)
|
|
|
|
|
|
|
| 2168 |
metrics:
|
| 2169 |
- type: accuracy
|
| 2170 |
value: 42.30665770006724
|
|
@@ -2175,6 +2381,8 @@ model-index:
|
|
| 2175 |
dataset:
|
| 2176 |
type: mteb/amazon_massive_scenario
|
| 2177 |
name: MTEB MassiveScenarioClassification (af)
|
|
|
|
|
|
|
| 2178 |
metrics:
|
| 2179 |
- type: accuracy
|
| 2180 |
value: 43.2481506388702
|
|
@@ -2185,6 +2393,8 @@ model-index:
|
|
| 2185 |
dataset:
|
| 2186 |
type: mteb/amazon_massive_scenario
|
| 2187 |
name: MTEB MassiveScenarioClassification (am)
|
|
|
|
|
|
|
| 2188 |
metrics:
|
| 2189 |
- type: accuracy
|
| 2190 |
value: 25.30262273032952
|
|
@@ -2195,6 +2405,8 @@ model-index:
|
|
| 2195 |
dataset:
|
| 2196 |
type: mteb/amazon_massive_scenario
|
| 2197 |
name: MTEB MassiveScenarioClassification (ar)
|
|
|
|
|
|
|
| 2198 |
metrics:
|
| 2199 |
- type: accuracy
|
| 2200 |
value: 32.07128446536651
|
|
@@ -2205,6 +2417,8 @@ model-index:
|
|
| 2205 |
dataset:
|
| 2206 |
type: mteb/amazon_massive_scenario
|
| 2207 |
name: MTEB MassiveScenarioClassification (az)
|
|
|
|
|
|
|
| 2208 |
metrics:
|
| 2209 |
- type: accuracy
|
| 2210 |
value: 36.681237390719566
|
|
@@ -2215,6 +2429,8 @@ model-index:
|
|
| 2215 |
dataset:
|
| 2216 |
type: mteb/amazon_massive_scenario
|
| 2217 |
name: MTEB MassiveScenarioClassification (bn)
|
|
|
|
|
|
|
| 2218 |
metrics:
|
| 2219 |
- type: accuracy
|
| 2220 |
value: 29.56624075319435
|
|
@@ -2225,6 +2441,8 @@ model-index:
|
|
| 2225 |
dataset:
|
| 2226 |
type: mteb/amazon_massive_scenario
|
| 2227 |
name: MTEB MassiveScenarioClassification (cy)
|
|
|
|
|
|
|
| 2228 |
metrics:
|
| 2229 |
- type: accuracy
|
| 2230 |
value: 42.1049092131809
|
|
@@ -2235,6 +2453,8 @@ model-index:
|
|
| 2235 |
dataset:
|
| 2236 |
type: mteb/amazon_massive_scenario
|
| 2237 |
name: MTEB MassiveScenarioClassification (da)
|
|
|
|
|
|
|
| 2238 |
metrics:
|
| 2239 |
- type: accuracy
|
| 2240 |
value: 45.44384667114997
|
|
@@ -2245,6 +2465,8 @@ model-index:
|
|
| 2245 |
dataset:
|
| 2246 |
type: mteb/amazon_massive_scenario
|
| 2247 |
name: MTEB MassiveScenarioClassification (de)
|
|
|
|
|
|
|
| 2248 |
metrics:
|
| 2249 |
- type: accuracy
|
| 2250 |
value: 43.211163416274374
|
|
@@ -2255,6 +2477,8 @@ model-index:
|
|
| 2255 |
dataset:
|
| 2256 |
type: mteb/amazon_massive_scenario
|
| 2257 |
name: MTEB MassiveScenarioClassification (el)
|
|
|
|
|
|
|
| 2258 |
metrics:
|
| 2259 |
- type: accuracy
|
| 2260 |
value: 36.503026227303295
|
|
@@ -2265,6 +2489,8 @@ model-index:
|
|
| 2265 |
dataset:
|
| 2266 |
type: mteb/amazon_massive_scenario
|
| 2267 |
name: MTEB MassiveScenarioClassification (en)
|
|
|
|
|
|
|
| 2268 |
metrics:
|
| 2269 |
- type: accuracy
|
| 2270 |
value: 69.73772696704773
|
|
@@ -2275,6 +2501,8 @@ model-index:
|
|
| 2275 |
dataset:
|
| 2276 |
type: mteb/amazon_massive_scenario
|
| 2277 |
name: MTEB MassiveScenarioClassification (es)
|
|
|
|
|
|
|
| 2278 |
metrics:
|
| 2279 |
- type: accuracy
|
| 2280 |
value: 44.078681909885674
|
|
@@ -2285,6 +2513,8 @@ model-index:
|
|
| 2285 |
dataset:
|
| 2286 |
type: mteb/amazon_massive_scenario
|
| 2287 |
name: MTEB MassiveScenarioClassification (fa)
|
|
|
|
|
|
|
| 2288 |
metrics:
|
| 2289 |
- type: accuracy
|
| 2290 |
value: 32.61264290517821
|
|
@@ -2295,6 +2525,8 @@ model-index:
|
|
| 2295 |
dataset:
|
| 2296 |
type: mteb/amazon_massive_scenario
|
| 2297 |
name: MTEB MassiveScenarioClassification (fi)
|
|
|
|
|
|
|
| 2298 |
metrics:
|
| 2299 |
- type: accuracy
|
| 2300 |
value: 40.35642232683255
|
|
@@ -2305,6 +2537,8 @@ model-index:
|
|
| 2305 |
dataset:
|
| 2306 |
type: mteb/amazon_massive_scenario
|
| 2307 |
name: MTEB MassiveScenarioClassification (fr)
|
|
|
|
|
|
|
| 2308 |
metrics:
|
| 2309 |
- type: accuracy
|
| 2310 |
value: 45.06724949562878
|
|
@@ -2315,6 +2549,8 @@ model-index:
|
|
| 2315 |
dataset:
|
| 2316 |
type: mteb/amazon_massive_scenario
|
| 2317 |
name: MTEB MassiveScenarioClassification (he)
|
|
|
|
|
|
|
| 2318 |
metrics:
|
| 2319 |
- type: accuracy
|
| 2320 |
value: 32.178883658372555
|
|
@@ -2325,6 +2561,8 @@ model-index:
|
|
| 2325 |
dataset:
|
| 2326 |
type: mteb/amazon_massive_scenario
|
| 2327 |
name: MTEB MassiveScenarioClassification (hi)
|
|
|
|
|
|
|
| 2328 |
metrics:
|
| 2329 |
- type: accuracy
|
| 2330 |
value: 26.903160726294555
|
|
@@ -2335,6 +2573,8 @@ model-index:
|
|
| 2335 |
dataset:
|
| 2336 |
type: mteb/amazon_massive_scenario
|
| 2337 |
name: MTEB MassiveScenarioClassification (hu)
|
|
|
|
|
|
|
| 2338 |
metrics:
|
| 2339 |
- type: accuracy
|
| 2340 |
value: 40.379959650302624
|
|
@@ -2345,6 +2585,8 @@ model-index:
|
|
| 2345 |
dataset:
|
| 2346 |
type: mteb/amazon_massive_scenario
|
| 2347 |
name: MTEB MassiveScenarioClassification (hy)
|
|
|
|
|
|
|
| 2348 |
metrics:
|
| 2349 |
- type: accuracy
|
| 2350 |
value: 28.375924680564896
|
|
@@ -2355,6 +2597,8 @@ model-index:
|
|
| 2355 |
dataset:
|
| 2356 |
type: mteb/amazon_massive_scenario
|
| 2357 |
name: MTEB MassiveScenarioClassification (id)
|
|
|
|
|
|
|
| 2358 |
metrics:
|
| 2359 |
- type: accuracy
|
| 2360 |
value: 44.361129791526565
|
|
@@ -2365,6 +2609,8 @@ model-index:
|
|
| 2365 |
dataset:
|
| 2366 |
type: mteb/amazon_massive_scenario
|
| 2367 |
name: MTEB MassiveScenarioClassification (is)
|
|
|
|
|
|
|
| 2368 |
metrics:
|
| 2369 |
- type: accuracy
|
| 2370 |
value: 39.290517821116346
|
|
@@ -2375,6 +2621,8 @@ model-index:
|
|
| 2375 |
dataset:
|
| 2376 |
type: mteb/amazon_massive_scenario
|
| 2377 |
name: MTEB MassiveScenarioClassification (it)
|
|
|
|
|
|
|
| 2378 |
metrics:
|
| 2379 |
- type: accuracy
|
| 2380 |
value: 46.4694014794889
|
|
@@ -2385,6 +2633,8 @@ model-index:
|
|
| 2385 |
dataset:
|
| 2386 |
type: mteb/amazon_massive_scenario
|
| 2387 |
name: MTEB MassiveScenarioClassification (ja)
|
|
|
|
|
|
|
| 2388 |
metrics:
|
| 2389 |
- type: accuracy
|
| 2390 |
value: 46.25756556825824
|
|
@@ -2395,6 +2645,8 @@ model-index:
|
|
| 2395 |
dataset:
|
| 2396 |
type: mteb/amazon_massive_scenario
|
| 2397 |
name: MTEB MassiveScenarioClassification (jv)
|
|
|
|
|
|
|
| 2398 |
metrics:
|
| 2399 |
- type: accuracy
|
| 2400 |
value: 41.12642905178212
|
|
@@ -2405,6 +2657,8 @@ model-index:
|
|
| 2405 |
dataset:
|
| 2406 |
type: mteb/amazon_massive_scenario
|
| 2407 |
name: MTEB MassiveScenarioClassification (ka)
|
|
|
|
|
|
|
| 2408 |
metrics:
|
| 2409 |
- type: accuracy
|
| 2410 |
value: 24.72763954270343
|
|
@@ -2415,6 +2669,8 @@ model-index:
|
|
| 2415 |
dataset:
|
| 2416 |
type: mteb/amazon_massive_scenario
|
| 2417 |
name: MTEB MassiveScenarioClassification (km)
|
|
|
|
|
|
|
| 2418 |
metrics:
|
| 2419 |
- type: accuracy
|
| 2420 |
value: 29.741089441829182
|
|
@@ -2425,6 +2681,8 @@ model-index:
|
|
| 2425 |
dataset:
|
| 2426 |
type: mteb/amazon_massive_scenario
|
| 2427 |
name: MTEB MassiveScenarioClassification (kn)
|
|
|
|
|
|
|
| 2428 |
metrics:
|
| 2429 |
- type: accuracy
|
| 2430 |
value: 23.850033624747816
|
|
@@ -2435,6 +2693,8 @@ model-index:
|
|
| 2435 |
dataset:
|
| 2436 |
type: mteb/amazon_massive_scenario
|
| 2437 |
name: MTEB MassiveScenarioClassification (ko)
|
|
|
|
|
|
|
| 2438 |
metrics:
|
| 2439 |
- type: accuracy
|
| 2440 |
value: 36.56691324815064
|
|
@@ -2445,6 +2705,8 @@ model-index:
|
|
| 2445 |
dataset:
|
| 2446 |
type: mteb/amazon_massive_scenario
|
| 2447 |
name: MTEB MassiveScenarioClassification (lv)
|
|
|
|
|
|
|
| 2448 |
metrics:
|
| 2449 |
- type: accuracy
|
| 2450 |
value: 40.928043039677206
|
|
@@ -2455,6 +2717,8 @@ model-index:
|
|
| 2455 |
dataset:
|
| 2456 |
type: mteb/amazon_massive_scenario
|
| 2457 |
name: MTEB MassiveScenarioClassification (ml)
|
|
|
|
|
|
|
| 2458 |
metrics:
|
| 2459 |
- type: accuracy
|
| 2460 |
value: 25.527908540685946
|
|
@@ -2465,6 +2729,8 @@ model-index:
|
|
| 2465 |
dataset:
|
| 2466 |
type: mteb/amazon_massive_scenario
|
| 2467 |
name: MTEB MassiveScenarioClassification (mn)
|
|
|
|
|
|
|
| 2468 |
metrics:
|
| 2469 |
- type: accuracy
|
| 2470 |
value: 29.105581708137183
|
|
@@ -2475,6 +2741,8 @@ model-index:
|
|
| 2475 |
dataset:
|
| 2476 |
type: mteb/amazon_massive_scenario
|
| 2477 |
name: MTEB MassiveScenarioClassification (ms)
|
|
|
|
|
|
|
| 2478 |
metrics:
|
| 2479 |
- type: accuracy
|
| 2480 |
value: 43.78614660390047
|
|
@@ -2485,6 +2753,8 @@ model-index:
|
|
| 2485 |
dataset:
|
| 2486 |
type: mteb/amazon_massive_scenario
|
| 2487 |
name: MTEB MassiveScenarioClassification (my)
|
|
|
|
|
|
|
| 2488 |
metrics:
|
| 2489 |
- type: accuracy
|
| 2490 |
value: 27.269670477471415
|
|
@@ -2495,6 +2765,8 @@ model-index:
|
|
| 2495 |
dataset:
|
| 2496 |
type: mteb/amazon_massive_scenario
|
| 2497 |
name: MTEB MassiveScenarioClassification (nb)
|
|
|
|
|
|
|
| 2498 |
metrics:
|
| 2499 |
- type: accuracy
|
| 2500 |
value: 39.018157363819775
|
|
@@ -2505,6 +2777,8 @@ model-index:
|
|
| 2505 |
dataset:
|
| 2506 |
type: mteb/amazon_massive_scenario
|
| 2507 |
name: MTEB MassiveScenarioClassification (nl)
|
|
|
|
|
|
|
| 2508 |
metrics:
|
| 2509 |
- type: accuracy
|
| 2510 |
value: 45.35978480161399
|
|
@@ -2515,6 +2789,8 @@ model-index:
|
|
| 2515 |
dataset:
|
| 2516 |
type: mteb/amazon_massive_scenario
|
| 2517 |
name: MTEB MassiveScenarioClassification (pl)
|
|
|
|
|
|
|
| 2518 |
metrics:
|
| 2519 |
- type: accuracy
|
| 2520 |
value: 41.89307330195023
|
|
@@ -2525,6 +2801,8 @@ model-index:
|
|
| 2525 |
dataset:
|
| 2526 |
type: mteb/amazon_massive_scenario
|
| 2527 |
name: MTEB MassiveScenarioClassification (pt)
|
|
|
|
|
|
|
| 2528 |
metrics:
|
| 2529 |
- type: accuracy
|
| 2530 |
value: 45.901143241425686
|
|
@@ -2535,6 +2813,8 @@ model-index:
|
|
| 2535 |
dataset:
|
| 2536 |
type: mteb/amazon_massive_scenario
|
| 2537 |
name: MTEB MassiveScenarioClassification (ro)
|
|
|
|
|
|
|
| 2538 |
metrics:
|
| 2539 |
- type: accuracy
|
| 2540 |
value: 44.11566913248151
|
|
@@ -2545,6 +2825,8 @@ model-index:
|
|
| 2545 |
dataset:
|
| 2546 |
type: mteb/amazon_massive_scenario
|
| 2547 |
name: MTEB MassiveScenarioClassification (ru)
|
|
|
|
|
|
|
| 2548 |
metrics:
|
| 2549 |
- type: accuracy
|
| 2550 |
value: 32.76395427034297
|
|
@@ -2555,6 +2837,8 @@ model-index:
|
|
| 2555 |
dataset:
|
| 2556 |
type: mteb/amazon_massive_scenario
|
| 2557 |
name: MTEB MassiveScenarioClassification (sl)
|
|
|
|
|
|
|
| 2558 |
metrics:
|
| 2559 |
- type: accuracy
|
| 2560 |
value: 40.504371217215876
|
|
@@ -2565,6 +2849,8 @@ model-index:
|
|
| 2565 |
dataset:
|
| 2566 |
type: mteb/amazon_massive_scenario
|
| 2567 |
name: MTEB MassiveScenarioClassification (sq)
|
|
|
|
|
|
|
| 2568 |
metrics:
|
| 2569 |
- type: accuracy
|
| 2570 |
value: 42.51849361129792
|
|
@@ -2575,6 +2861,8 @@ model-index:
|
|
| 2575 |
dataset:
|
| 2576 |
type: mteb/amazon_massive_scenario
|
| 2577 |
name: MTEB MassiveScenarioClassification (sv)
|
|
|
|
|
|
|
| 2578 |
metrics:
|
| 2579 |
- type: accuracy
|
| 2580 |
value: 42.293207800941495
|
|
@@ -2585,6 +2873,8 @@ model-index:
|
|
| 2585 |
dataset:
|
| 2586 |
type: mteb/amazon_massive_scenario
|
| 2587 |
name: MTEB MassiveScenarioClassification (sw)
|
|
|
|
|
|
|
| 2588 |
metrics:
|
| 2589 |
- type: accuracy
|
| 2590 |
value: 42.9993275050437
|
|
@@ -2595,6 +2885,8 @@ model-index:
|
|
| 2595 |
dataset:
|
| 2596 |
type: mteb/amazon_massive_scenario
|
| 2597 |
name: MTEB MassiveScenarioClassification (ta)
|
|
|
|
|
|
|
| 2598 |
metrics:
|
| 2599 |
- type: accuracy
|
| 2600 |
value: 28.32548755884331
|
|
@@ -2605,6 +2897,8 @@ model-index:
|
|
| 2605 |
dataset:
|
| 2606 |
type: mteb/amazon_massive_scenario
|
| 2607 |
name: MTEB MassiveScenarioClassification (te)
|
|
|
|
|
|
|
| 2608 |
metrics:
|
| 2609 |
- type: accuracy
|
| 2610 |
value: 26.593813046402154
|
|
@@ -2615,6 +2909,8 @@ model-index:
|
|
| 2615 |
dataset:
|
| 2616 |
type: mteb/amazon_massive_scenario
|
| 2617 |
name: MTEB MassiveScenarioClassification (th)
|
|
|
|
|
|
|
| 2618 |
metrics:
|
| 2619 |
- type: accuracy
|
| 2620 |
value: 36.788836583725626
|
|
@@ -2625,6 +2921,8 @@ model-index:
|
|
| 2625 |
dataset:
|
| 2626 |
type: mteb/amazon_massive_scenario
|
| 2627 |
name: MTEB MassiveScenarioClassification (tl)
|
|
|
|
|
|
|
| 2628 |
metrics:
|
| 2629 |
- type: accuracy
|
| 2630 |
value: 42.5689307330195
|
|
@@ -2635,6 +2933,8 @@ model-index:
|
|
| 2635 |
dataset:
|
| 2636 |
type: mteb/amazon_massive_scenario
|
| 2637 |
name: MTEB MassiveScenarioClassification (tr)
|
|
|
|
|
|
|
| 2638 |
metrics:
|
| 2639 |
- type: accuracy
|
| 2640 |
value: 37.09482178883658
|
|
@@ -2645,6 +2945,8 @@ model-index:
|
|
| 2645 |
dataset:
|
| 2646 |
type: mteb/amazon_massive_scenario
|
| 2647 |
name: MTEB MassiveScenarioClassification (ur)
|
|
|
|
|
|
|
| 2648 |
metrics:
|
| 2649 |
- type: accuracy
|
| 2650 |
value: 28.836583725622063
|
|
@@ -2655,6 +2957,8 @@ model-index:
|
|
| 2655 |
dataset:
|
| 2656 |
type: mteb/amazon_massive_scenario
|
| 2657 |
name: MTEB MassiveScenarioClassification (vi)
|
|
|
|
|
|
|
| 2658 |
metrics:
|
| 2659 |
- type: accuracy
|
| 2660 |
value: 37.357094821788834
|
|
@@ -2665,6 +2969,8 @@ model-index:
|
|
| 2665 |
dataset:
|
| 2666 |
type: mteb/amazon_massive_scenario
|
| 2667 |
name: MTEB MassiveScenarioClassification (zh-CN)
|
|
|
|
|
|
|
| 2668 |
metrics:
|
| 2669 |
- type: accuracy
|
| 2670 |
value: 49.37794216543375
|
|
@@ -2675,6 +2981,8 @@ model-index:
|
|
| 2675 |
dataset:
|
| 2676 |
type: mteb/amazon_massive_scenario
|
| 2677 |
name: MTEB MassiveScenarioClassification (zh-TW)
|
|
|
|
|
|
|
| 2678 |
metrics:
|
| 2679 |
- type: accuracy
|
| 2680 |
value: 44.42165433759248
|
|
@@ -2685,6 +2993,8 @@ model-index:
|
|
| 2685 |
dataset:
|
| 2686 |
type: mteb/medrxiv-clustering-p2p
|
| 2687 |
name: MTEB MedrxivClusteringP2P
|
|
|
|
|
|
|
| 2688 |
metrics:
|
| 2689 |
- type: v_measure
|
| 2690 |
value: 31.374938993074252
|
|
@@ -2693,6 +3003,8 @@ model-index:
|
|
| 2693 |
dataset:
|
| 2694 |
type: mteb/medrxiv-clustering-s2s
|
| 2695 |
name: MTEB MedrxivClusteringS2S
|
|
|
|
|
|
|
| 2696 |
metrics:
|
| 2697 |
- type: v_measure
|
| 2698 |
value: 26.871455379644093
|
|
@@ -2701,6 +3013,8 @@ model-index:
|
|
| 2701 |
dataset:
|
| 2702 |
type: mteb/mind_small
|
| 2703 |
name: MTEB MindSmallReranking
|
|
|
|
|
|
|
| 2704 |
metrics:
|
| 2705 |
- type: map
|
| 2706 |
value: 30.402396942935333
|
|
@@ -2711,6 +3025,8 @@ model-index:
|
|
| 2711 |
dataset:
|
| 2712 |
type: nfcorpus
|
| 2713 |
name: MTEB NFCorpus
|
|
|
|
|
|
|
| 2714 |
metrics:
|
| 2715 |
- type: map_at_1
|
| 2716 |
value: 3.7740000000000005
|
|
@@ -2777,6 +3093,8 @@ model-index:
|
|
| 2777 |
dataset:
|
| 2778 |
type: nq
|
| 2779 |
name: MTEB NQ
|
|
|
|
|
|
|
| 2780 |
metrics:
|
| 2781 |
- type: map_at_1
|
| 2782 |
value: 15.620999999999999
|
|
@@ -2843,6 +3161,8 @@ model-index:
|
|
| 2843 |
dataset:
|
| 2844 |
type: quora
|
| 2845 |
name: MTEB QuoraRetrieval
|
|
|
|
|
|
|
| 2846 |
metrics:
|
| 2847 |
- type: map_at_1
|
| 2848 |
value: 54.717000000000006
|
|
@@ -2909,6 +3229,8 @@ model-index:
|
|
| 2909 |
dataset:
|
| 2910 |
type: mteb/reddit-clustering
|
| 2911 |
name: MTEB RedditClustering
|
|
|
|
|
|
|
| 2912 |
metrics:
|
| 2913 |
- type: v_measure
|
| 2914 |
value: 40.23390747226228
|
|
@@ -2917,6 +3239,8 @@ model-index:
|
|
| 2917 |
dataset:
|
| 2918 |
type: mteb/reddit-clustering-p2p
|
| 2919 |
name: MTEB RedditClusteringP2P
|
|
|
|
|
|
|
| 2920 |
metrics:
|
| 2921 |
- type: v_measure
|
| 2922 |
value: 49.090518272935626
|
|
@@ -2925,6 +3249,8 @@ model-index:
|
|
| 2925 |
dataset:
|
| 2926 |
type: scidocs
|
| 2927 |
name: MTEB SCIDOCS
|
|
|
|
|
|
|
| 2928 |
metrics:
|
| 2929 |
- type: map_at_1
|
| 2930 |
value: 3.028
|
|
@@ -2991,6 +3317,8 @@ model-index:
|
|
| 2991 |
dataset:
|
| 2992 |
type: mteb/sickr-sts
|
| 2993 |
name: MTEB SICK-R
|
|
|
|
|
|
|
| 2994 |
metrics:
|
| 2995 |
- type: cos_sim_pearson
|
| 2996 |
value: 76.62983928119752
|
|
@@ -3009,6 +3337,8 @@ model-index:
|
|
| 3009 |
dataset:
|
| 3010 |
type: mteb/sts12-sts
|
| 3011 |
name: MTEB STS12
|
|
|
|
|
|
|
| 3012 |
metrics:
|
| 3013 |
- type: cos_sim_pearson
|
| 3014 |
value: 74.42679147085553
|
|
@@ -3027,6 +3357,8 @@ model-index:
|
|
| 3027 |
dataset:
|
| 3028 |
type: mteb/sts13-sts
|
| 3029 |
name: MTEB STS13
|
|
|
|
|
|
|
| 3030 |
metrics:
|
| 3031 |
- type: cos_sim_pearson
|
| 3032 |
value: 75.62472426599543
|
|
@@ -3045,6 +3377,8 @@ model-index:
|
|
| 3045 |
dataset:
|
| 3046 |
type: mteb/sts14-sts
|
| 3047 |
name: MTEB STS14
|
|
|
|
|
|
|
| 3048 |
metrics:
|
| 3049 |
- type: cos_sim_pearson
|
| 3050 |
value: 74.48227705407035
|
|
@@ -3063,6 +3397,8 @@ model-index:
|
|
| 3063 |
dataset:
|
| 3064 |
type: mteb/sts15-sts
|
| 3065 |
name: MTEB STS15
|
|
|
|
|
|
|
| 3066 |
metrics:
|
| 3067 |
- type: cos_sim_pearson
|
| 3068 |
value: 78.1566527175902
|
|
@@ -3081,6 +3417,8 @@ model-index:
|
|
| 3081 |
dataset:
|
| 3082 |
type: mteb/sts16-sts
|
| 3083 |
name: MTEB STS16
|
|
|
|
|
|
|
| 3084 |
metrics:
|
| 3085 |
- type: cos_sim_pearson
|
| 3086 |
value: 75.068454465977
|
|
@@ -3099,6 +3437,8 @@ model-index:
|
|
| 3099 |
dataset:
|
| 3100 |
type: mteb/sts17-crosslingual-sts
|
| 3101 |
name: MTEB STS17 (ko-ko)
|
|
|
|
|
|
|
| 3102 |
metrics:
|
| 3103 |
- type: cos_sim_pearson
|
| 3104 |
value: 39.43327289939437
|
|
@@ -3117,6 +3457,8 @@ model-index:
|
|
| 3117 |
dataset:
|
| 3118 |
type: mteb/sts17-crosslingual-sts
|
| 3119 |
name: MTEB STS17 (ar-ar)
|
|
|
|
|
|
|
| 3120 |
metrics:
|
| 3121 |
- type: cos_sim_pearson
|
| 3122 |
value: 55.54431928210687
|
|
@@ -3135,6 +3477,8 @@ model-index:
|
|
| 3135 |
dataset:
|
| 3136 |
type: mteb/sts17-crosslingual-sts
|
| 3137 |
name: MTEB STS17 (en-ar)
|
|
|
|
|
|
|
| 3138 |
metrics:
|
| 3139 |
- type: cos_sim_pearson
|
| 3140 |
value: 11.378463868809098
|
|
@@ -3153,6 +3497,8 @@ model-index:
|
|
| 3153 |
dataset:
|
| 3154 |
type: mteb/sts17-crosslingual-sts
|
| 3155 |
name: MTEB STS17 (en-de)
|
|
|
|
|
|
|
| 3156 |
metrics:
|
| 3157 |
- type: cos_sim_pearson
|
| 3158 |
value: 32.71403560929013
|
|
@@ -3171,6 +3517,8 @@ model-index:
|
|
| 3171 |
dataset:
|
| 3172 |
type: mteb/sts17-crosslingual-sts
|
| 3173 |
name: MTEB STS17 (en-en)
|
|
|
|
|
|
|
| 3174 |
metrics:
|
| 3175 |
- type: cos_sim_pearson
|
| 3176 |
value: 83.36340470799158
|
|
@@ -3189,6 +3537,8 @@ model-index:
|
|
| 3189 |
dataset:
|
| 3190 |
type: mteb/sts17-crosslingual-sts
|
| 3191 |
name: MTEB STS17 (en-tr)
|
|
|
|
|
|
|
| 3192 |
metrics:
|
| 3193 |
- type: cos_sim_pearson
|
| 3194 |
value: 1.9200044163754912
|
|
@@ -3207,6 +3557,8 @@ model-index:
|
|
| 3207 |
dataset:
|
| 3208 |
type: mteb/sts17-crosslingual-sts
|
| 3209 |
name: MTEB STS17 (es-en)
|
|
|
|
|
|
|
| 3210 |
metrics:
|
| 3211 |
- type: cos_sim_pearson
|
| 3212 |
value: 26.561262451099577
|
|
@@ -3225,6 +3577,8 @@ model-index:
|
|
| 3225 |
dataset:
|
| 3226 |
type: mteb/sts17-crosslingual-sts
|
| 3227 |
name: MTEB STS17 (es-es)
|
|
|
|
|
|
|
| 3228 |
metrics:
|
| 3229 |
- type: cos_sim_pearson
|
| 3230 |
value: 69.7544202001433
|
|
@@ -3243,6 +3597,8 @@ model-index:
|
|
| 3243 |
dataset:
|
| 3244 |
type: mteb/sts17-crosslingual-sts
|
| 3245 |
name: MTEB STS17 (fr-en)
|
|
|
|
|
|
|
| 3246 |
metrics:
|
| 3247 |
- type: cos_sim_pearson
|
| 3248 |
value: 27.70511842301491
|
|
@@ -3261,6 +3617,8 @@ model-index:
|
|
| 3261 |
dataset:
|
| 3262 |
type: mteb/sts17-crosslingual-sts
|
| 3263 |
name: MTEB STS17 (it-en)
|
|
|
|
|
|
|
| 3264 |
metrics:
|
| 3265 |
- type: cos_sim_pearson
|
| 3266 |
value: 24.226521799447692
|
|
@@ -3279,6 +3637,8 @@ model-index:
|
|
| 3279 |
dataset:
|
| 3280 |
type: mteb/sts17-crosslingual-sts
|
| 3281 |
name: MTEB STS17 (nl-en)
|
|
|
|
|
|
|
| 3282 |
metrics:
|
| 3283 |
- type: cos_sim_pearson
|
| 3284 |
value: 29.131412364061234
|
|
@@ -3297,6 +3657,8 @@ model-index:
|
|
| 3297 |
dataset:
|
| 3298 |
type: mteb/sts22-crosslingual-sts
|
| 3299 |
name: MTEB STS22 (en)
|
|
|
|
|
|
|
| 3300 |
metrics:
|
| 3301 |
- type: cos_sim_pearson
|
| 3302 |
value: 64.04750650962879
|
|
@@ -3315,6 +3677,8 @@ model-index:
|
|
| 3315 |
dataset:
|
| 3316 |
type: mteb/sts22-crosslingual-sts
|
| 3317 |
name: MTEB STS22 (de)
|
|
|
|
|
|
|
| 3318 |
metrics:
|
| 3319 |
- type: cos_sim_pearson
|
| 3320 |
value: 19.26519187000913
|
|
@@ -3333,6 +3697,8 @@ model-index:
|
|
| 3333 |
dataset:
|
| 3334 |
type: mteb/sts22-crosslingual-sts
|
| 3335 |
name: MTEB STS22 (es)
|
|
|
|
|
|
|
| 3336 |
metrics:
|
| 3337 |
- type: cos_sim_pearson
|
| 3338 |
value: 34.221261828226936
|
|
@@ -3351,6 +3717,8 @@ model-index:
|
|
| 3351 |
dataset:
|
| 3352 |
type: mteb/sts22-crosslingual-sts
|
| 3353 |
name: MTEB STS22 (pl)
|
|
|
|
|
|
|
| 3354 |
metrics:
|
| 3355 |
- type: cos_sim_pearson
|
| 3356 |
value: 3.620381732096531
|
|
@@ -3369,6 +3737,8 @@ model-index:
|
|
| 3369 |
dataset:
|
| 3370 |
type: mteb/sts22-crosslingual-sts
|
| 3371 |
name: MTEB STS22 (tr)
|
|
|
|
|
|
|
| 3372 |
metrics:
|
| 3373 |
- type: cos_sim_pearson
|
| 3374 |
value: 16.69489628726267
|
|
@@ -3387,6 +3757,8 @@ model-index:
|
|
| 3387 |
dataset:
|
| 3388 |
type: mteb/sts22-crosslingual-sts
|
| 3389 |
name: MTEB STS22 (ar)
|
|
|
|
|
|
|
| 3390 |
metrics:
|
| 3391 |
- type: cos_sim_pearson
|
| 3392 |
value: 9.134927430889528
|
|
@@ -3405,6 +3777,8 @@ model-index:
|
|
| 3405 |
dataset:
|
| 3406 |
type: mteb/sts22-crosslingual-sts
|
| 3407 |
name: MTEB STS22 (ru)
|
|
|
|
|
|
|
| 3408 |
metrics:
|
| 3409 |
- type: cos_sim_pearson
|
| 3410 |
value: 3.6386482942352085
|
|
@@ -3423,6 +3797,8 @@ model-index:
|
|
| 3423 |
dataset:
|
| 3424 |
type: mteb/sts22-crosslingual-sts
|
| 3425 |
name: MTEB STS22 (zh)
|
|
|
|
|
|
|
| 3426 |
metrics:
|
| 3427 |
- type: cos_sim_pearson
|
| 3428 |
value: 2.972091574908432
|
|
@@ -3441,6 +3817,8 @@ model-index:
|
|
| 3441 |
dataset:
|
| 3442 |
type: mteb/sts22-crosslingual-sts
|
| 3443 |
name: MTEB STS22 (fr)
|
|
|
|
|
|
|
| 3444 |
metrics:
|
| 3445 |
- type: cos_sim_pearson
|
| 3446 |
value: 54.4745185734135
|
|
@@ -3459,6 +3837,8 @@ model-index:
|
|
| 3459 |
dataset:
|
| 3460 |
type: mteb/sts22-crosslingual-sts
|
| 3461 |
name: MTEB STS22 (de-en)
|
|
|
|
|
|
|
| 3462 |
metrics:
|
| 3463 |
- type: cos_sim_pearson
|
| 3464 |
value: 49.37865412588201
|
|
@@ -3477,6 +3857,8 @@ model-index:
|
|
| 3477 |
dataset:
|
| 3478 |
type: mteb/sts22-crosslingual-sts
|
| 3479 |
name: MTEB STS22 (es-en)
|
|
|
|
|
|
|
| 3480 |
metrics:
|
| 3481 |
- type: cos_sim_pearson
|
| 3482 |
value: 44.925652392562135
|
|
@@ -3495,6 +3877,8 @@ model-index:
|
|
| 3495 |
dataset:
|
| 3496 |
type: mteb/sts22-crosslingual-sts
|
| 3497 |
name: MTEB STS22 (it)
|
|
|
|
|
|
|
| 3498 |
metrics:
|
| 3499 |
- type: cos_sim_pearson
|
| 3500 |
value: 45.241690321111875
|
|
@@ -3513,6 +3897,8 @@ model-index:
|
|
| 3513 |
dataset:
|
| 3514 |
type: mteb/sts22-crosslingual-sts
|
| 3515 |
name: MTEB STS22 (pl-en)
|
|
|
|
|
|
|
| 3516 |
metrics:
|
| 3517 |
- type: cos_sim_pearson
|
| 3518 |
value: 36.42138324083909
|
|
@@ -3531,6 +3917,8 @@ model-index:
|
|
| 3531 |
dataset:
|
| 3532 |
type: mteb/sts22-crosslingual-sts
|
| 3533 |
name: MTEB STS22 (zh-en)
|
|
|
|
|
|
|
| 3534 |
metrics:
|
| 3535 |
- type: cos_sim_pearson
|
| 3536 |
value: 26.55350664089358
|
|
@@ -3549,6 +3937,8 @@ model-index:
|
|
| 3549 |
dataset:
|
| 3550 |
type: mteb/sts22-crosslingual-sts
|
| 3551 |
name: MTEB STS22 (es-it)
|
|
|
|
|
|
|
| 3552 |
metrics:
|
| 3553 |
- type: cos_sim_pearson
|
| 3554 |
value: 38.54682179114309
|
|
@@ -3567,6 +3957,8 @@ model-index:
|
|
| 3567 |
dataset:
|
| 3568 |
type: mteb/sts22-crosslingual-sts
|
| 3569 |
name: MTEB STS22 (de-fr)
|
|
|
|
|
|
|
| 3570 |
metrics:
|
| 3571 |
- type: cos_sim_pearson
|
| 3572 |
value: 35.12956772546032
|
|
@@ -3585,6 +3977,8 @@ model-index:
|
|
| 3585 |
dataset:
|
| 3586 |
type: mteb/sts22-crosslingual-sts
|
| 3587 |
name: MTEB STS22 (de-pl)
|
|
|
|
|
|
|
| 3588 |
metrics:
|
| 3589 |
- type: cos_sim_pearson
|
| 3590 |
value: 30.507667380509634
|
|
@@ -3603,6 +3997,8 @@ model-index:
|
|
| 3603 |
dataset:
|
| 3604 |
type: mteb/sts22-crosslingual-sts
|
| 3605 |
name: MTEB STS22 (fr-pl)
|
|
|
|
|
|
|
| 3606 |
metrics:
|
| 3607 |
- type: cos_sim_pearson
|
| 3608 |
value: 71.10820459712156
|
|
@@ -3621,6 +4017,8 @@ model-index:
|
|
| 3621 |
dataset:
|
| 3622 |
type: mteb/stsbenchmark-sts
|
| 3623 |
name: MTEB STSBenchmark
|
|
|
|
|
|
|
| 3624 |
metrics:
|
| 3625 |
- type: cos_sim_pearson
|
| 3626 |
value: 76.53032504460737
|
|
@@ -3639,6 +4037,8 @@ model-index:
|
|
| 3639 |
dataset:
|
| 3640 |
type: mteb/scidocs-reranking
|
| 3641 |
name: MTEB SciDocsRR
|
|
|
|
|
|
|
| 3642 |
metrics:
|
| 3643 |
- type: map
|
| 3644 |
value: 71.33941904192648
|
|
@@ -3649,6 +4049,8 @@ model-index:
|
|
| 3649 |
dataset:
|
| 3650 |
type: scifact
|
| 3651 |
name: MTEB SciFact
|
|
|
|
|
|
|
| 3652 |
metrics:
|
| 3653 |
- type: map_at_1
|
| 3654 |
value: 43.333
|
|
@@ -3715,6 +4117,8 @@ model-index:
|
|
| 3715 |
dataset:
|
| 3716 |
type: mteb/sprintduplicatequestions-pairclassification
|
| 3717 |
name: MTEB SprintDuplicateQuestions
|
|
|
|
|
|
|
| 3718 |
metrics:
|
| 3719 |
- type: cos_sim_accuracy
|
| 3720 |
value: 99.7
|
|
@@ -3767,6 +4171,8 @@ model-index:
|
|
| 3767 |
dataset:
|
| 3768 |
type: mteb/stackexchange-clustering
|
| 3769 |
name: MTEB StackExchangeClustering
|
|
|
|
|
|
|
| 3770 |
metrics:
|
| 3771 |
- type: v_measure
|
| 3772 |
value: 52.74481093815175
|
|
@@ -3775,6 +4181,8 @@ model-index:
|
|
| 3775 |
dataset:
|
| 3776 |
type: mteb/stackexchange-clustering-p2p
|
| 3777 |
name: MTEB StackExchangeClusteringP2P
|
|
|
|
|
|
|
| 3778 |
metrics:
|
| 3779 |
- type: v_measure
|
| 3780 |
value: 32.65999453562101
|
|
@@ -3783,6 +4191,8 @@ model-index:
|
|
| 3783 |
dataset:
|
| 3784 |
type: mteb/stackoverflowdupquestions-reranking
|
| 3785 |
name: MTEB StackOverflowDupQuestions
|
|
|
|
|
|
|
| 3786 |
metrics:
|
| 3787 |
- type: map
|
| 3788 |
value: 44.74498464555465
|
|
@@ -3793,6 +4203,8 @@ model-index:
|
|
| 3793 |
dataset:
|
| 3794 |
type: mteb/summeval
|
| 3795 |
name: MTEB SummEval
|
|
|
|
|
|
|
| 3796 |
metrics:
|
| 3797 |
- type: cos_sim_pearson
|
| 3798 |
value: 29.5961822471627
|
|
@@ -3807,6 +4219,8 @@ model-index:
|
|
| 3807 |
dataset:
|
| 3808 |
type: trec-covid
|
| 3809 |
name: MTEB TRECCOVID
|
|
|
|
|
|
|
| 3810 |
metrics:
|
| 3811 |
- type: map_at_1
|
| 3812 |
value: 0.241
|
|
@@ -3873,6 +4287,8 @@ model-index:
|
|
| 3873 |
dataset:
|
| 3874 |
type: webis-touche2020
|
| 3875 |
name: MTEB Touche2020
|
|
|
|
|
|
|
| 3876 |
metrics:
|
| 3877 |
- type: map_at_1
|
| 3878 |
value: 2.782
|
|
@@ -3939,6 +4355,8 @@ model-index:
|
|
| 3939 |
dataset:
|
| 3940 |
type: mteb/toxic_conversations_50k
|
| 3941 |
name: MTEB ToxicConversationsClassification
|
|
|
|
|
|
|
| 3942 |
metrics:
|
| 3943 |
- type: accuracy
|
| 3944 |
value: 62.657999999999994
|
|
@@ -3951,6 +4369,8 @@ model-index:
|
|
| 3951 |
dataset:
|
| 3952 |
type: mteb/tweet_sentiment_extraction
|
| 3953 |
name: MTEB TweetSentimentExtractionClassification
|
|
|
|
|
|
|
| 3954 |
metrics:
|
| 3955 |
- type: accuracy
|
| 3956 |
value: 52.40803621958121
|
|
@@ -3961,6 +4381,8 @@ model-index:
|
|
| 3961 |
dataset:
|
| 3962 |
type: mteb/twentynewsgroups-clustering
|
| 3963 |
name: MTEB TwentyNewsgroupsClustering
|
|
|
|
|
|
|
| 3964 |
metrics:
|
| 3965 |
- type: v_measure
|
| 3966 |
value: 32.12697126747911
|
|
@@ -3969,6 +4391,8 @@ model-index:
|
|
| 3969 |
dataset:
|
| 3970 |
type: mteb/twittersemeval2015-pairclassification
|
| 3971 |
name: MTEB TwitterSemEval2015
|
|
|
|
|
|
|
| 3972 |
metrics:
|
| 3973 |
- type: cos_sim_accuracy
|
| 3974 |
value: 80.69976753889253
|
|
@@ -4021,6 +4445,8 @@ model-index:
|
|
| 4021 |
dataset:
|
| 4022 |
type: mteb/twitterurlcorpus-pairclassification
|
| 4023 |
name: MTEB TwitterURLCorpus
|
|
|
|
|
|
|
| 4024 |
metrics:
|
| 4025 |
- type: cos_sim_accuracy
|
| 4026 |
value: 86.90573213800597
|
|
|
|
| 13 |
dataset:
|
| 14 |
type: mteb/amazon_counterfactual
|
| 15 |
name: MTEB AmazonCounterfactualClassification (en)
|
| 16 |
+
config: en
|
| 17 |
+
split: test
|
| 18 |
metrics:
|
| 19 |
- type: accuracy
|
| 20 |
value: 61.23880597014926
|
|
|
|
| 27 |
dataset:
|
| 28 |
type: mteb/amazon_counterfactual
|
| 29 |
name: MTEB AmazonCounterfactualClassification (de)
|
| 30 |
+
config: de
|
| 31 |
+
split: test
|
| 32 |
metrics:
|
| 33 |
- type: accuracy
|
| 34 |
value: 56.88436830835117
|
|
|
|
| 41 |
dataset:
|
| 42 |
type: mteb/amazon_counterfactual
|
| 43 |
name: MTEB AmazonCounterfactualClassification (en-ext)
|
| 44 |
+
config: en-ext
|
| 45 |
+
split: test
|
| 46 |
metrics:
|
| 47 |
- type: accuracy
|
| 48 |
value: 58.27586206896551
|
|
|
|
| 55 |
dataset:
|
| 56 |
type: mteb/amazon_counterfactual
|
| 57 |
name: MTEB AmazonCounterfactualClassification (ja)
|
| 58 |
+
config: ja
|
| 59 |
+
split: test
|
| 60 |
metrics:
|
| 61 |
- type: accuracy
|
| 62 |
value: 54.64668094218415
|
|
|
|
| 69 |
dataset:
|
| 70 |
type: mteb/amazon_polarity
|
| 71 |
name: MTEB AmazonPolarityClassification
|
| 72 |
+
config: default
|
| 73 |
+
split: test
|
| 74 |
metrics:
|
| 75 |
- type: accuracy
|
| 76 |
value: 65.401225
|
|
|
|
| 83 |
dataset:
|
| 84 |
type: mteb/amazon_reviews_multi
|
| 85 |
name: MTEB AmazonReviewsClassification (en)
|
| 86 |
+
config: en
|
| 87 |
+
split: test
|
| 88 |
metrics:
|
| 89 |
- type: accuracy
|
| 90 |
value: 31.165999999999993
|
|
|
|
| 95 |
dataset:
|
| 96 |
type: mteb/amazon_reviews_multi
|
| 97 |
name: MTEB AmazonReviewsClassification (de)
|
| 98 |
+
config: de
|
| 99 |
+
split: test
|
| 100 |
metrics:
|
| 101 |
- type: accuracy
|
| 102 |
value: 24.79
|
|
|
|
| 107 |
dataset:
|
| 108 |
type: mteb/amazon_reviews_multi
|
| 109 |
name: MTEB AmazonReviewsClassification (es)
|
| 110 |
+
config: es
|
| 111 |
+
split: test
|
| 112 |
metrics:
|
| 113 |
- type: accuracy
|
| 114 |
value: 26.643999999999995
|
|
|
|
| 119 |
dataset:
|
| 120 |
type: mteb/amazon_reviews_multi
|
| 121 |
name: MTEB AmazonReviewsClassification (fr)
|
| 122 |
+
config: fr
|
| 123 |
+
split: test
|
| 124 |
metrics:
|
| 125 |
- type: accuracy
|
| 126 |
value: 26.386000000000003
|
|
|
|
| 131 |
dataset:
|
| 132 |
type: mteb/amazon_reviews_multi
|
| 133 |
name: MTEB AmazonReviewsClassification (ja)
|
| 134 |
+
config: ja
|
| 135 |
+
split: test
|
| 136 |
metrics:
|
| 137 |
- type: accuracy
|
| 138 |
value: 22.078000000000003
|
|
|
|
| 143 |
dataset:
|
| 144 |
type: mteb/amazon_reviews_multi
|
| 145 |
name: MTEB AmazonReviewsClassification (zh)
|
| 146 |
+
config: zh
|
| 147 |
+
split: test
|
| 148 |
metrics:
|
| 149 |
- type: accuracy
|
| 150 |
value: 24.274
|
|
|
|
| 155 |
dataset:
|
| 156 |
type: arguana
|
| 157 |
name: MTEB ArguAna
|
| 158 |
+
config: default
|
| 159 |
+
split: test
|
| 160 |
metrics:
|
| 161 |
- type: map_at_1
|
| 162 |
value: 22.404
|
|
|
|
| 223 |
dataset:
|
| 224 |
type: mteb/arxiv-clustering-p2p
|
| 225 |
name: MTEB ArxivClusteringP2P
|
| 226 |
+
config: default
|
| 227 |
+
split: test
|
| 228 |
metrics:
|
| 229 |
- type: v_measure
|
| 230 |
value: 39.70858340673288
|
|
|
|
| 233 |
dataset:
|
| 234 |
type: mteb/arxiv-clustering-s2s
|
| 235 |
name: MTEB ArxivClusteringS2S
|
| 236 |
+
config: default
|
| 237 |
+
split: test
|
| 238 |
metrics:
|
| 239 |
- type: v_measure
|
| 240 |
value: 28.242847713721048
|
|
|
|
| 243 |
dataset:
|
| 244 |
type: mteb/askubuntudupquestions-reranking
|
| 245 |
name: MTEB AskUbuntuDupQuestions
|
| 246 |
+
config: default
|
| 247 |
+
split: test
|
| 248 |
metrics:
|
| 249 |
- type: map
|
| 250 |
value: 55.83700395192393
|
|
|
|
| 255 |
dataset:
|
| 256 |
type: mteb/biosses-sts
|
| 257 |
name: MTEB BIOSSES
|
| 258 |
+
config: default
|
| 259 |
+
split: test
|
| 260 |
metrics:
|
| 261 |
- type: cos_sim_pearson
|
| 262 |
value: 79.25366801756223
|
|
|
|
| 275 |
dataset:
|
| 276 |
type: mteb/banking77
|
| 277 |
name: MTEB Banking77Classification
|
| 278 |
+
config: default
|
| 279 |
+
split: test
|
| 280 |
metrics:
|
| 281 |
- type: accuracy
|
| 282 |
value: 77.70454545454545
|
|
|
|
| 287 |
dataset:
|
| 288 |
type: mteb/biorxiv-clustering-p2p
|
| 289 |
name: MTEB BiorxivClusteringP2P
|
| 290 |
+
config: default
|
| 291 |
+
split: test
|
| 292 |
metrics:
|
| 293 |
- type: v_measure
|
| 294 |
value: 33.63260395543984
|
|
|
|
| 297 |
dataset:
|
| 298 |
type: mteb/biorxiv-clustering-s2s
|
| 299 |
name: MTEB BiorxivClusteringS2S
|
| 300 |
+
config: default
|
| 301 |
+
split: test
|
| 302 |
metrics:
|
| 303 |
- type: v_measure
|
| 304 |
value: 27.038042665369925
|
|
|
|
| 307 |
dataset:
|
| 308 |
type: BeIR/cqadupstack
|
| 309 |
name: MTEB CQADupstackAndroidRetrieval
|
| 310 |
+
config: default
|
| 311 |
+
split: test
|
| 312 |
metrics:
|
| 313 |
- type: map_at_1
|
| 314 |
value: 22.139
|
|
|
|
| 375 |
dataset:
|
| 376 |
type: BeIR/cqadupstack
|
| 377 |
name: MTEB CQADupstackEnglishRetrieval
|
| 378 |
+
config: default
|
| 379 |
+
split: test
|
| 380 |
metrics:
|
| 381 |
- type: map_at_1
|
| 382 |
value: 20.652
|
|
|
|
| 443 |
dataset:
|
| 444 |
type: BeIR/cqadupstack
|
| 445 |
name: MTEB CQADupstackGamingRetrieval
|
| 446 |
+
config: default
|
| 447 |
+
split: test
|
| 448 |
metrics:
|
| 449 |
- type: map_at_1
|
| 450 |
value: 25.180000000000003
|
|
|
|
| 511 |
dataset:
|
| 512 |
type: BeIR/cqadupstack
|
| 513 |
name: MTEB CQADupstackGisRetrieval
|
| 514 |
+
config: default
|
| 515 |
+
split: test
|
| 516 |
metrics:
|
| 517 |
- type: map_at_1
|
| 518 |
value: 16.303
|
|
|
|
| 579 |
dataset:
|
| 580 |
type: BeIR/cqadupstack
|
| 581 |
name: MTEB CQADupstackMathematicaRetrieval
|
| 582 |
+
config: default
|
| 583 |
+
split: test
|
| 584 |
metrics:
|
| 585 |
- type: map_at_1
|
| 586 |
value: 10.133000000000001
|
|
|
|
| 647 |
dataset:
|
| 648 |
type: BeIR/cqadupstack
|
| 649 |
name: MTEB CQADupstackPhysicsRetrieval
|
| 650 |
+
config: default
|
| 651 |
+
split: test
|
| 652 |
metrics:
|
| 653 |
- type: map_at_1
|
| 654 |
value: 19.991999999999997
|
|
|
|
| 715 |
dataset:
|
| 716 |
type: BeIR/cqadupstack
|
| 717 |
name: MTEB CQADupstackProgrammersRetrieval
|
| 718 |
+
config: default
|
| 719 |
+
split: test
|
| 720 |
metrics:
|
| 721 |
- type: map_at_1
|
| 722 |
value: 17.896
|
|
|
|
| 783 |
dataset:
|
| 784 |
type: BeIR/cqadupstack
|
| 785 |
name: MTEB CQADupstackRetrieval
|
| 786 |
+
config: default
|
| 787 |
+
split: test
|
| 788 |
metrics:
|
| 789 |
- type: map_at_1
|
| 790 |
value: 17.195166666666665
|
|
|
|
| 851 |
dataset:
|
| 852 |
type: BeIR/cqadupstack
|
| 853 |
name: MTEB CQADupstackStatsRetrieval
|
| 854 |
+
config: default
|
| 855 |
+
split: test
|
| 856 |
metrics:
|
| 857 |
- type: map_at_1
|
| 858 |
value: 16.779
|
|
|
|
| 919 |
dataset:
|
| 920 |
type: BeIR/cqadupstack
|
| 921 |
name: MTEB CQADupstackTexRetrieval
|
| 922 |
+
config: default
|
| 923 |
+
split: test
|
| 924 |
metrics:
|
| 925 |
- type: map_at_1
|
| 926 |
value: 9.279
|
|
|
|
| 987 |
dataset:
|
| 988 |
type: BeIR/cqadupstack
|
| 989 |
name: MTEB CQADupstackUnixRetrieval
|
| 990 |
+
config: default
|
| 991 |
+
split: test
|
| 992 |
metrics:
|
| 993 |
- type: map_at_1
|
| 994 |
value: 16.36
|
|
|
|
| 1055 |
dataset:
|
| 1056 |
type: BeIR/cqadupstack
|
| 1057 |
name: MTEB CQADupstackWebmastersRetrieval
|
| 1058 |
+
config: default
|
| 1059 |
+
split: test
|
| 1060 |
metrics:
|
| 1061 |
- type: map_at_1
|
| 1062 |
value: 17.39
|
|
|
|
| 1123 |
dataset:
|
| 1124 |
type: BeIR/cqadupstack
|
| 1125 |
name: MTEB CQADupstackWordpressRetrieval
|
| 1126 |
+
config: default
|
| 1127 |
+
split: test
|
| 1128 |
metrics:
|
| 1129 |
- type: map_at_1
|
| 1130 |
value: 14.238999999999999
|
|
|
|
| 1191 |
dataset:
|
| 1192 |
type: climate-fever
|
| 1193 |
name: MTEB ClimateFEVER
|
| 1194 |
+
config: default
|
| 1195 |
+
split: test
|
| 1196 |
metrics:
|
| 1197 |
- type: map_at_1
|
| 1198 |
value: 8.828
|
|
|
|
| 1259 |
dataset:
|
| 1260 |
type: dbpedia-entity
|
| 1261 |
name: MTEB DBPedia
|
| 1262 |
+
config: default
|
| 1263 |
+
split: test
|
| 1264 |
metrics:
|
| 1265 |
- type: map_at_1
|
| 1266 |
value: 5.586
|
|
|
|
| 1327 |
dataset:
|
| 1328 |
type: mteb/emotion
|
| 1329 |
name: MTEB EmotionClassification
|
| 1330 |
+
config: default
|
| 1331 |
+
split: test
|
| 1332 |
metrics:
|
| 1333 |
- type: accuracy
|
| 1334 |
value: 39.075
|
|
|
|
| 1339 |
dataset:
|
| 1340 |
type: fever
|
| 1341 |
name: MTEB FEVER
|
| 1342 |
+
config: default
|
| 1343 |
+
split: test
|
| 1344 |
metrics:
|
| 1345 |
- type: map_at_1
|
| 1346 |
value: 43.519999999999996
|
|
|
|
| 1407 |
dataset:
|
| 1408 |
type: fiqa
|
| 1409 |
name: MTEB FiQA2018
|
| 1410 |
+
config: default
|
| 1411 |
+
split: test
|
| 1412 |
metrics:
|
| 1413 |
- type: map_at_1
|
| 1414 |
value: 9.549000000000001
|
|
|
|
| 1475 |
dataset:
|
| 1476 |
type: hotpotqa
|
| 1477 |
name: MTEB HotpotQA
|
| 1478 |
+
config: default
|
| 1479 |
+
split: test
|
| 1480 |
metrics:
|
| 1481 |
- type: map_at_1
|
| 1482 |
value: 25.544
|
|
|
|
| 1543 |
dataset:
|
| 1544 |
type: mteb/imdb
|
| 1545 |
name: MTEB ImdbClassification
|
| 1546 |
+
config: default
|
| 1547 |
+
split: test
|
| 1548 |
metrics:
|
| 1549 |
- type: accuracy
|
| 1550 |
value: 58.6696
|
|
|
|
| 1557 |
dataset:
|
| 1558 |
type: msmarco
|
| 1559 |
name: MTEB MSMARCO
|
| 1560 |
+
config: default
|
| 1561 |
+
split: validation
|
| 1562 |
metrics:
|
| 1563 |
- type: map_at_1
|
| 1564 |
value: 14.442
|
|
|
|
| 1625 |
dataset:
|
| 1626 |
type: mteb/mtop_domain
|
| 1627 |
name: MTEB MTOPDomainClassification (en)
|
| 1628 |
+
config: en
|
| 1629 |
+
split: test
|
| 1630 |
metrics:
|
| 1631 |
- type: accuracy
|
| 1632 |
value: 86.95622435020519
|
|
|
|
| 1637 |
dataset:
|
| 1638 |
type: mteb/mtop_domain
|
| 1639 |
name: MTEB MTOPDomainClassification (de)
|
| 1640 |
+
config: de
|
| 1641 |
+
split: test
|
| 1642 |
metrics:
|
| 1643 |
- type: accuracy
|
| 1644 |
value: 62.73034657650043
|
|
|
|
| 1649 |
dataset:
|
| 1650 |
type: mteb/mtop_domain
|
| 1651 |
name: MTEB MTOPDomainClassification (es)
|
| 1652 |
+
config: es
|
| 1653 |
+
split: test
|
| 1654 |
metrics:
|
| 1655 |
- type: accuracy
|
| 1656 |
value: 67.54503002001334
|
|
|
|
| 1661 |
dataset:
|
| 1662 |
type: mteb/mtop_domain
|
| 1663 |
name: MTEB MTOPDomainClassification (fr)
|
| 1664 |
+
config: fr
|
| 1665 |
+
split: test
|
| 1666 |
metrics:
|
| 1667 |
- type: accuracy
|
| 1668 |
value: 65.35233322893829
|
|
|
|
| 1673 |
dataset:
|
| 1674 |
type: mteb/mtop_domain
|
| 1675 |
name: MTEB MTOPDomainClassification (hi)
|
| 1676 |
+
config: hi
|
| 1677 |
+
split: test
|
| 1678 |
metrics:
|
| 1679 |
- type: accuracy
|
| 1680 |
value: 45.37110075295806
|
|
|
|
| 1685 |
dataset:
|
| 1686 |
type: mteb/mtop_domain
|
| 1687 |
name: MTEB MTOPDomainClassification (th)
|
| 1688 |
+
config: th
|
| 1689 |
+
split: test
|
| 1690 |
metrics:
|
| 1691 |
- type: accuracy
|
| 1692 |
value: 55.276672694394215
|
|
|
|
| 1697 |
dataset:
|
| 1698 |
type: mteb/mtop_intent
|
| 1699 |
name: MTEB MTOPIntentClassification (en)
|
| 1700 |
+
config: en
|
| 1701 |
+
split: test
|
| 1702 |
metrics:
|
| 1703 |
- type: accuracy
|
| 1704 |
value: 62.25262197902417
|
|
|
|
| 1709 |
dataset:
|
| 1710 |
type: mteb/mtop_intent
|
| 1711 |
name: MTEB MTOPIntentClassification (de)
|
| 1712 |
+
config: de
|
| 1713 |
+
split: test
|
| 1714 |
metrics:
|
| 1715 |
- type: accuracy
|
| 1716 |
value: 49.56043956043956
|
|
|
|
| 1721 |
dataset:
|
| 1722 |
type: mteb/mtop_intent
|
| 1723 |
name: MTEB MTOPIntentClassification (es)
|
| 1724 |
+
config: es
|
| 1725 |
+
split: test
|
| 1726 |
metrics:
|
| 1727 |
- type: accuracy
|
| 1728 |
value: 49.93995997331555
|
|
|
|
| 1733 |
dataset:
|
| 1734 |
type: mteb/mtop_intent
|
| 1735 |
name: MTEB MTOPIntentClassification (fr)
|
| 1736 |
+
config: fr
|
| 1737 |
+
split: test
|
| 1738 |
metrics:
|
| 1739 |
- type: accuracy
|
| 1740 |
value: 46.32947071719386
|
|
|
|
| 1745 |
dataset:
|
| 1746 |
type: mteb/mtop_intent
|
| 1747 |
name: MTEB MTOPIntentClassification (hi)
|
| 1748 |
+
config: hi
|
| 1749 |
+
split: test
|
| 1750 |
metrics:
|
| 1751 |
- type: accuracy
|
| 1752 |
value: 32.208676945141626
|
|
|
|
| 1757 |
dataset:
|
| 1758 |
type: mteb/mtop_intent
|
| 1759 |
name: MTEB MTOPIntentClassification (th)
|
| 1760 |
+
config: th
|
| 1761 |
+
split: test
|
| 1762 |
metrics:
|
| 1763 |
- type: accuracy
|
| 1764 |
value: 43.627486437613015
|
|
|
|
| 1769 |
dataset:
|
| 1770 |
type: mteb/amazon_massive_intent
|
| 1771 |
name: MTEB MassiveIntentClassification (af)
|
| 1772 |
+
config: af
|
| 1773 |
+
split: test
|
| 1774 |
metrics:
|
| 1775 |
- type: accuracy
|
| 1776 |
value: 40.548083389374575
|
|
|
|
| 1781 |
dataset:
|
| 1782 |
type: mteb/amazon_massive_intent
|
| 1783 |
name: MTEB MassiveIntentClassification (am)
|
| 1784 |
+
config: am
|
| 1785 |
+
split: test
|
| 1786 |
metrics:
|
| 1787 |
- type: accuracy
|
| 1788 |
value: 24.18291862811029
|
|
|
|
| 1793 |
dataset:
|
| 1794 |
type: mteb/amazon_massive_intent
|
| 1795 |
name: MTEB MassiveIntentClassification (ar)
|
| 1796 |
+
config: ar
|
| 1797 |
+
split: test
|
| 1798 |
metrics:
|
| 1799 |
- type: accuracy
|
| 1800 |
value: 30.134498991257562
|
|
|
|
| 1805 |
dataset:
|
| 1806 |
type: mteb/amazon_massive_intent
|
| 1807 |
name: MTEB MassiveIntentClassification (az)
|
| 1808 |
+
config: az
|
| 1809 |
+
split: test
|
| 1810 |
metrics:
|
| 1811 |
- type: accuracy
|
| 1812 |
value: 35.88433086751849
|
|
|
|
| 1817 |
dataset:
|
| 1818 |
type: mteb/amazon_massive_intent
|
| 1819 |
name: MTEB MassiveIntentClassification (bn)
|
| 1820 |
+
config: bn
|
| 1821 |
+
split: test
|
| 1822 |
metrics:
|
| 1823 |
- type: accuracy
|
| 1824 |
value: 29.17283120376597
|
|
|
|
| 1829 |
dataset:
|
| 1830 |
type: mteb/amazon_massive_intent
|
| 1831 |
name: MTEB MassiveIntentClassification (cy)
|
| 1832 |
+
config: cy
|
| 1833 |
+
split: test
|
| 1834 |
metrics:
|
| 1835 |
- type: accuracy
|
| 1836 |
value: 41.788836583725626
|
|
|
|
| 1841 |
dataset:
|
| 1842 |
type: mteb/amazon_massive_intent
|
| 1843 |
name: MTEB MassiveIntentClassification (da)
|
| 1844 |
+
config: da
|
| 1845 |
+
split: test
|
| 1846 |
metrics:
|
| 1847 |
- type: accuracy
|
| 1848 |
value: 44.176193678547406
|
|
|
|
| 1853 |
dataset:
|
| 1854 |
type: mteb/amazon_massive_intent
|
| 1855 |
name: MTEB MassiveIntentClassification (de)
|
| 1856 |
+
config: de
|
| 1857 |
+
split: test
|
| 1858 |
metrics:
|
| 1859 |
- type: accuracy
|
| 1860 |
value: 42.07464694014795
|
|
|
|
| 1865 |
dataset:
|
| 1866 |
type: mteb/amazon_massive_intent
|
| 1867 |
name: MTEB MassiveIntentClassification (el)
|
| 1868 |
+
config: el
|
| 1869 |
+
split: test
|
| 1870 |
metrics:
|
| 1871 |
- type: accuracy
|
| 1872 |
value: 36.254203093476804
|
|
|
|
| 1877 |
dataset:
|
| 1878 |
type: mteb/amazon_massive_intent
|
| 1879 |
name: MTEB MassiveIntentClassification (en)
|
| 1880 |
+
config: en
|
| 1881 |
+
split: test
|
| 1882 |
metrics:
|
| 1883 |
- type: accuracy
|
| 1884 |
value: 61.40887693342301
|
|
|
|
| 1889 |
dataset:
|
| 1890 |
type: mteb/amazon_massive_intent
|
| 1891 |
name: MTEB MassiveIntentClassification (es)
|
| 1892 |
+
config: es
|
| 1893 |
+
split: test
|
| 1894 |
metrics:
|
| 1895 |
- type: accuracy
|
| 1896 |
value: 42.679892400807
|
|
|
|
| 1901 |
dataset:
|
| 1902 |
type: mteb/amazon_massive_intent
|
| 1903 |
name: MTEB MassiveIntentClassification (fa)
|
| 1904 |
+
config: fa
|
| 1905 |
+
split: test
|
| 1906 |
metrics:
|
| 1907 |
- type: accuracy
|
| 1908 |
value: 35.59179556153329
|
|
|
|
| 1913 |
dataset:
|
| 1914 |
type: mteb/amazon_massive_intent
|
| 1915 |
name: MTEB MassiveIntentClassification (fi)
|
| 1916 |
+
config: fi
|
| 1917 |
+
split: test
|
| 1918 |
metrics:
|
| 1919 |
- type: accuracy
|
| 1920 |
value: 40.036987222595826
|
|
|
|
| 1925 |
dataset:
|
| 1926 |
type: mteb/amazon_massive_intent
|
| 1927 |
name: MTEB MassiveIntentClassification (fr)
|
| 1928 |
+
config: fr
|
| 1929 |
+
split: test
|
| 1930 |
metrics:
|
| 1931 |
- type: accuracy
|
| 1932 |
value: 43.43981170141224
|
|
|
|
| 1937 |
dataset:
|
| 1938 |
type: mteb/amazon_massive_intent
|
| 1939 |
name: MTEB MassiveIntentClassification (he)
|
| 1940 |
+
config: he
|
| 1941 |
+
split: test
|
| 1942 |
metrics:
|
| 1943 |
- type: accuracy
|
| 1944 |
value: 31.593813046402154
|
|
|
|
| 1949 |
dataset:
|
| 1950 |
type: mteb/amazon_massive_intent
|
| 1951 |
name: MTEB MassiveIntentClassification (hi)
|
| 1952 |
+
config: hi
|
| 1953 |
+
split: test
|
| 1954 |
metrics:
|
| 1955 |
- type: accuracy
|
| 1956 |
value: 27.044384667114997
|
|
|
|
| 1961 |
dataset:
|
| 1962 |
type: mteb/amazon_massive_intent
|
| 1963 |
name: MTEB MassiveIntentClassification (hu)
|
| 1964 |
+
config: hu
|
| 1965 |
+
split: test
|
| 1966 |
metrics:
|
| 1967 |
- type: accuracy
|
| 1968 |
value: 38.453261600538
|
|
|
|
| 1973 |
dataset:
|
| 1974 |
type: mteb/amazon_massive_intent
|
| 1975 |
name: MTEB MassiveIntentClassification (hy)
|
| 1976 |
+
config: hy
|
| 1977 |
+
split: test
|
| 1978 |
metrics:
|
| 1979 |
- type: accuracy
|
| 1980 |
value: 27.979152656355076
|
|
|
|
| 1985 |
dataset:
|
| 1986 |
type: mteb/amazon_massive_intent
|
| 1987 |
name: MTEB MassiveIntentClassification (id)
|
| 1988 |
+
config: id
|
| 1989 |
+
split: test
|
| 1990 |
metrics:
|
| 1991 |
- type: accuracy
|
| 1992 |
value: 43.97108271687963
|
|
|
|
| 1997 |
dataset:
|
| 1998 |
type: mteb/amazon_massive_intent
|
| 1999 |
name: MTEB MassiveIntentClassification (is)
|
| 2000 |
+
config: is
|
| 2001 |
+
split: test
|
| 2002 |
metrics:
|
| 2003 |
- type: accuracy
|
| 2004 |
value: 40.302622730329524
|
|
|
|
| 2009 |
dataset:
|
| 2010 |
type: mteb/amazon_massive_intent
|
| 2011 |
name: MTEB MassiveIntentClassification (it)
|
| 2012 |
+
config: it
|
| 2013 |
+
split: test
|
| 2014 |
metrics:
|
| 2015 |
- type: accuracy
|
| 2016 |
value: 45.474108944182916
|
|
|
|
| 2021 |
dataset:
|
| 2022 |
type: mteb/amazon_massive_intent
|
| 2023 |
name: MTEB MassiveIntentClassification (ja)
|
| 2024 |
+
config: ja
|
| 2025 |
+
split: test
|
| 2026 |
metrics:
|
| 2027 |
- type: accuracy
|
| 2028 |
value: 45.60860793544048
|
|
|
|
| 2033 |
dataset:
|
| 2034 |
type: mteb/amazon_massive_intent
|
| 2035 |
name: MTEB MassiveIntentClassification (jv)
|
| 2036 |
+
config: jv
|
| 2037 |
+
split: test
|
| 2038 |
metrics:
|
| 2039 |
- type: accuracy
|
| 2040 |
value: 38.668459986550104
|
|
|
|
| 2045 |
dataset:
|
| 2046 |
type: mteb/amazon_massive_intent
|
| 2047 |
name: MTEB MassiveIntentClassification (ka)
|
| 2048 |
+
config: ka
|
| 2049 |
+
split: test
|
| 2050 |
metrics:
|
| 2051 |
- type: accuracy
|
| 2052 |
value: 25.6523201075992
|
|
|
|
| 2057 |
dataset:
|
| 2058 |
type: mteb/amazon_massive_intent
|
| 2059 |
name: MTEB MassiveIntentClassification (km)
|
| 2060 |
+
config: km
|
| 2061 |
+
split: test
|
| 2062 |
metrics:
|
| 2063 |
- type: accuracy
|
| 2064 |
value: 28.295225285810353
|
|
|
|
| 2069 |
dataset:
|
| 2070 |
type: mteb/amazon_massive_intent
|
| 2071 |
name: MTEB MassiveIntentClassification (kn)
|
| 2072 |
+
config: kn
|
| 2073 |
+
split: test
|
| 2074 |
metrics:
|
| 2075 |
- type: accuracy
|
| 2076 |
value: 23.480161398789505
|
|
|
|
| 2081 |
dataset:
|
| 2082 |
type: mteb/amazon_massive_intent
|
| 2083 |
name: MTEB MassiveIntentClassification (ko)
|
| 2084 |
+
config: ko
|
| 2085 |
+
split: test
|
| 2086 |
metrics:
|
| 2087 |
- type: accuracy
|
| 2088 |
value: 36.55682582380632
|
|
|
|
| 2093 |
dataset:
|
| 2094 |
type: mteb/amazon_massive_intent
|
| 2095 |
name: MTEB MassiveIntentClassification (lv)
|
| 2096 |
+
config: lv
|
| 2097 |
+
split: test
|
| 2098 |
metrics:
|
| 2099 |
- type: accuracy
|
| 2100 |
value: 41.84936112979153
|
|
|
|
| 2105 |
dataset:
|
| 2106 |
type: mteb/amazon_massive_intent
|
| 2107 |
name: MTEB MassiveIntentClassification (ml)
|
| 2108 |
+
config: ml
|
| 2109 |
+
split: test
|
| 2110 |
metrics:
|
| 2111 |
- type: accuracy
|
| 2112 |
value: 24.90921318090114
|
|
|
|
| 2117 |
dataset:
|
| 2118 |
type: mteb/amazon_massive_intent
|
| 2119 |
name: MTEB MassiveIntentClassification (mn)
|
| 2120 |
+
config: mn
|
| 2121 |
+
split: test
|
| 2122 |
metrics:
|
| 2123 |
- type: accuracy
|
| 2124 |
value: 29.86213853396099
|
|
|
|
| 2129 |
dataset:
|
| 2130 |
type: mteb/amazon_massive_intent
|
| 2131 |
name: MTEB MassiveIntentClassification (ms)
|
| 2132 |
+
config: ms
|
| 2133 |
+
split: test
|
| 2134 |
metrics:
|
| 2135 |
- type: accuracy
|
| 2136 |
value: 42.42098184263618
|
|
|
|
| 2141 |
dataset:
|
| 2142 |
type: mteb/amazon_massive_intent
|
| 2143 |
name: MTEB MassiveIntentClassification (my)
|
| 2144 |
+
config: my
|
| 2145 |
+
split: test
|
| 2146 |
metrics:
|
| 2147 |
- type: accuracy
|
| 2148 |
value: 25.131136516476126
|
|
|
|
| 2153 |
dataset:
|
| 2154 |
type: mteb/amazon_massive_intent
|
| 2155 |
name: MTEB MassiveIntentClassification (nb)
|
| 2156 |
+
config: nb
|
| 2157 |
+
split: test
|
| 2158 |
metrics:
|
| 2159 |
- type: accuracy
|
| 2160 |
value: 39.81506388702084
|
|
|
|
| 2165 |
dataset:
|
| 2166 |
type: mteb/amazon_massive_intent
|
| 2167 |
name: MTEB MassiveIntentClassification (nl)
|
| 2168 |
+
config: nl
|
| 2169 |
+
split: test
|
| 2170 |
metrics:
|
| 2171 |
- type: accuracy
|
| 2172 |
value: 43.62138533960995
|
|
|
|
| 2177 |
dataset:
|
| 2178 |
type: mteb/amazon_massive_intent
|
| 2179 |
name: MTEB MassiveIntentClassification (pl)
|
| 2180 |
+
config: pl
|
| 2181 |
+
split: test
|
| 2182 |
metrics:
|
| 2183 |
- type: accuracy
|
| 2184 |
value: 42.19569603227976
|
|
|
|
| 2189 |
dataset:
|
| 2190 |
type: mteb/amazon_massive_intent
|
| 2191 |
name: MTEB MassiveIntentClassification (pt)
|
| 2192 |
+
config: pt
|
| 2193 |
+
split: test
|
| 2194 |
metrics:
|
| 2195 |
- type: accuracy
|
| 2196 |
value: 45.20847343644923
|
|
|
|
| 2201 |
dataset:
|
| 2202 |
type: mteb/amazon_massive_intent
|
| 2203 |
name: MTEB MassiveIntentClassification (ro)
|
| 2204 |
+
config: ro
|
| 2205 |
+
split: test
|
| 2206 |
metrics:
|
| 2207 |
- type: accuracy
|
| 2208 |
value: 41.80901143241426
|
|
|
|
| 2213 |
dataset:
|
| 2214 |
type: mteb/amazon_massive_intent
|
| 2215 |
name: MTEB MassiveIntentClassification (ru)
|
| 2216 |
+
config: ru
|
| 2217 |
+
split: test
|
| 2218 |
metrics:
|
| 2219 |
- type: accuracy
|
| 2220 |
value: 35.96839273705447
|
|
|
|
| 2225 |
dataset:
|
| 2226 |
type: mteb/amazon_massive_intent
|
| 2227 |
name: MTEB MassiveIntentClassification (sl)
|
| 2228 |
+
config: sl
|
| 2229 |
+
split: test
|
| 2230 |
metrics:
|
| 2231 |
- type: accuracy
|
| 2232 |
value: 40.60524546065905
|
|
|
|
| 2237 |
dataset:
|
| 2238 |
type: mteb/amazon_massive_intent
|
| 2239 |
name: MTEB MassiveIntentClassification (sq)
|
| 2240 |
+
config: sq
|
| 2241 |
+
split: test
|
| 2242 |
metrics:
|
| 2243 |
- type: accuracy
|
| 2244 |
value: 42.75722932078009
|
|
|
|
| 2249 |
dataset:
|
| 2250 |
type: mteb/amazon_massive_intent
|
| 2251 |
name: MTEB MassiveIntentClassification (sv)
|
| 2252 |
+
config: sv
|
| 2253 |
+
split: test
|
| 2254 |
metrics:
|
| 2255 |
- type: accuracy
|
| 2256 |
value: 42.347007397444514
|
|
|
|
| 2261 |
dataset:
|
| 2262 |
type: mteb/amazon_massive_intent
|
| 2263 |
name: MTEB MassiveIntentClassification (sw)
|
| 2264 |
+
config: sw
|
| 2265 |
+
split: test
|
| 2266 |
metrics:
|
| 2267 |
- type: accuracy
|
| 2268 |
value: 41.12306657700067
|
|
|
|
| 2273 |
dataset:
|
| 2274 |
type: mteb/amazon_massive_intent
|
| 2275 |
name: MTEB MassiveIntentClassification (ta)
|
| 2276 |
+
config: ta
|
| 2277 |
+
split: test
|
| 2278 |
metrics:
|
| 2279 |
- type: accuracy
|
| 2280 |
value: 24.603227975790183
|
|
|
|
| 2285 |
dataset:
|
| 2286 |
type: mteb/amazon_massive_intent
|
| 2287 |
name: MTEB MassiveIntentClassification (te)
|
| 2288 |
+
config: te
|
| 2289 |
+
split: test
|
| 2290 |
metrics:
|
| 2291 |
- type: accuracy
|
| 2292 |
value: 25.03698722259583
|
|
|
|
| 2297 |
dataset:
|
| 2298 |
type: mteb/amazon_massive_intent
|
| 2299 |
name: MTEB MassiveIntentClassification (th)
|
| 2300 |
+
config: th
|
| 2301 |
+
split: test
|
| 2302 |
metrics:
|
| 2303 |
- type: accuracy
|
| 2304 |
value: 35.40013449899126
|
|
|
|
| 2309 |
dataset:
|
| 2310 |
type: mteb/amazon_massive_intent
|
| 2311 |
name: MTEB MassiveIntentClassification (tl)
|
| 2312 |
+
config: tl
|
| 2313 |
+
split: test
|
| 2314 |
metrics:
|
| 2315 |
- type: accuracy
|
| 2316 |
value: 41.19031607262945
|
|
|
|
| 2321 |
dataset:
|
| 2322 |
type: mteb/amazon_massive_intent
|
| 2323 |
name: MTEB MassiveIntentClassification (tr)
|
| 2324 |
+
config: tr
|
| 2325 |
+
split: test
|
| 2326 |
metrics:
|
| 2327 |
- type: accuracy
|
| 2328 |
value: 36.405514458641555
|
|
|
|
| 2333 |
dataset:
|
| 2334 |
type: mteb/amazon_massive_intent
|
| 2335 |
name: MTEB MassiveIntentClassification (ur)
|
| 2336 |
+
config: ur
|
| 2337 |
+
split: test
|
| 2338 |
metrics:
|
| 2339 |
- type: accuracy
|
| 2340 |
value: 25.934767989240076
|
|
|
|
| 2345 |
dataset:
|
| 2346 |
type: mteb/amazon_massive_intent
|
| 2347 |
name: MTEB MassiveIntentClassification (vi)
|
| 2348 |
+
config: vi
|
| 2349 |
+
split: test
|
| 2350 |
metrics:
|
| 2351 |
- type: accuracy
|
| 2352 |
value: 38.79959650302622
|
|
|
|
| 2357 |
dataset:
|
| 2358 |
type: mteb/amazon_massive_intent
|
| 2359 |
name: MTEB MassiveIntentClassification (zh-CN)
|
| 2360 |
+
config: zh-CN
|
| 2361 |
+
split: test
|
| 2362 |
metrics:
|
| 2363 |
- type: accuracy
|
| 2364 |
value: 46.244115669132476
|
|
|
|
| 2369 |
dataset:
|
| 2370 |
type: mteb/amazon_massive_intent
|
| 2371 |
name: MTEB MassiveIntentClassification (zh-TW)
|
| 2372 |
+
config: zh-TW
|
| 2373 |
+
split: test
|
| 2374 |
metrics:
|
| 2375 |
- type: accuracy
|
| 2376 |
value: 42.30665770006724
|
|
|
|
| 2381 |
dataset:
|
| 2382 |
type: mteb/amazon_massive_scenario
|
| 2383 |
name: MTEB MassiveScenarioClassification (af)
|
| 2384 |
+
config: af
|
| 2385 |
+
split: test
|
| 2386 |
metrics:
|
| 2387 |
- type: accuracy
|
| 2388 |
value: 43.2481506388702
|
|
|
|
| 2393 |
dataset:
|
| 2394 |
type: mteb/amazon_massive_scenario
|
| 2395 |
name: MTEB MassiveScenarioClassification (am)
|
| 2396 |
+
config: am
|
| 2397 |
+
split: test
|
| 2398 |
metrics:
|
| 2399 |
- type: accuracy
|
| 2400 |
value: 25.30262273032952
|
|
|
|
| 2405 |
dataset:
|
| 2406 |
type: mteb/amazon_massive_scenario
|
| 2407 |
name: MTEB MassiveScenarioClassification (ar)
|
| 2408 |
+
config: ar
|
| 2409 |
+
split: test
|
| 2410 |
metrics:
|
| 2411 |
- type: accuracy
|
| 2412 |
value: 32.07128446536651
|
|
|
|
| 2417 |
dataset:
|
| 2418 |
type: mteb/amazon_massive_scenario
|
| 2419 |
name: MTEB MassiveScenarioClassification (az)
|
| 2420 |
+
config: az
|
| 2421 |
+
split: test
|
| 2422 |
metrics:
|
| 2423 |
- type: accuracy
|
| 2424 |
value: 36.681237390719566
|
|
|
|
| 2429 |
dataset:
|
| 2430 |
type: mteb/amazon_massive_scenario
|
| 2431 |
name: MTEB MassiveScenarioClassification (bn)
|
| 2432 |
+
config: bn
|
| 2433 |
+
split: test
|
| 2434 |
metrics:
|
| 2435 |
- type: accuracy
|
| 2436 |
value: 29.56624075319435
|
|
|
|
| 2441 |
dataset:
|
| 2442 |
type: mteb/amazon_massive_scenario
|
| 2443 |
name: MTEB MassiveScenarioClassification (cy)
|
| 2444 |
+
config: cy
|
| 2445 |
+
split: test
|
| 2446 |
metrics:
|
| 2447 |
- type: accuracy
|
| 2448 |
value: 42.1049092131809
|
|
|
|
| 2453 |
dataset:
|
| 2454 |
type: mteb/amazon_massive_scenario
|
| 2455 |
name: MTEB MassiveScenarioClassification (da)
|
| 2456 |
+
config: da
|
| 2457 |
+
split: test
|
| 2458 |
metrics:
|
| 2459 |
- type: accuracy
|
| 2460 |
value: 45.44384667114997
|
|
|
|
| 2465 |
dataset:
|
| 2466 |
type: mteb/amazon_massive_scenario
|
| 2467 |
name: MTEB MassiveScenarioClassification (de)
|
| 2468 |
+
config: de
|
| 2469 |
+
split: test
|
| 2470 |
metrics:
|
| 2471 |
- type: accuracy
|
| 2472 |
value: 43.211163416274374
|
|
|
|
| 2477 |
dataset:
|
| 2478 |
type: mteb/amazon_massive_scenario
|
| 2479 |
name: MTEB MassiveScenarioClassification (el)
|
| 2480 |
+
config: el
|
| 2481 |
+
split: test
|
| 2482 |
metrics:
|
| 2483 |
- type: accuracy
|
| 2484 |
value: 36.503026227303295
|
|
|
|
| 2489 |
dataset:
|
| 2490 |
type: mteb/amazon_massive_scenario
|
| 2491 |
name: MTEB MassiveScenarioClassification (en)
|
| 2492 |
+
config: en
|
| 2493 |
+
split: test
|
| 2494 |
metrics:
|
| 2495 |
- type: accuracy
|
| 2496 |
value: 69.73772696704773
|
|
|
|
| 2501 |
dataset:
|
| 2502 |
type: mteb/amazon_massive_scenario
|
| 2503 |
name: MTEB MassiveScenarioClassification (es)
|
| 2504 |
+
config: es
|
| 2505 |
+
split: test
|
| 2506 |
metrics:
|
| 2507 |
- type: accuracy
|
| 2508 |
value: 44.078681909885674
|
|
|
|
| 2513 |
dataset:
|
| 2514 |
type: mteb/amazon_massive_scenario
|
| 2515 |
name: MTEB MassiveScenarioClassification (fa)
|
| 2516 |
+
config: fa
|
| 2517 |
+
split: test
|
| 2518 |
metrics:
|
| 2519 |
- type: accuracy
|
| 2520 |
value: 32.61264290517821
|
|
|
|
| 2525 |
dataset:
|
| 2526 |
type: mteb/amazon_massive_scenario
|
| 2527 |
name: MTEB MassiveScenarioClassification (fi)
|
| 2528 |
+
config: fi
|
| 2529 |
+
split: test
|
| 2530 |
metrics:
|
| 2531 |
- type: accuracy
|
| 2532 |
value: 40.35642232683255
|
|
|
|
| 2537 |
dataset:
|
| 2538 |
type: mteb/amazon_massive_scenario
|
| 2539 |
name: MTEB MassiveScenarioClassification (fr)
|
| 2540 |
+
config: fr
|
| 2541 |
+
split: test
|
| 2542 |
metrics:
|
| 2543 |
- type: accuracy
|
| 2544 |
value: 45.06724949562878
|
|
|
|
| 2549 |
dataset:
|
| 2550 |
type: mteb/amazon_massive_scenario
|
| 2551 |
name: MTEB MassiveScenarioClassification (he)
|
| 2552 |
+
config: he
|
| 2553 |
+
split: test
|
| 2554 |
metrics:
|
| 2555 |
- type: accuracy
|
| 2556 |
value: 32.178883658372555
|
|
|
|
| 2561 |
dataset:
|
| 2562 |
type: mteb/amazon_massive_scenario
|
| 2563 |
name: MTEB MassiveScenarioClassification (hi)
|
| 2564 |
+
config: hi
|
| 2565 |
+
split: test
|
| 2566 |
metrics:
|
| 2567 |
- type: accuracy
|
| 2568 |
value: 26.903160726294555
|
|
|
|
| 2573 |
dataset:
|
| 2574 |
type: mteb/amazon_massive_scenario
|
| 2575 |
name: MTEB MassiveScenarioClassification (hu)
|
| 2576 |
+
config: hu
|
| 2577 |
+
split: test
|
| 2578 |
metrics:
|
| 2579 |
- type: accuracy
|
| 2580 |
value: 40.379959650302624
|
|
|
|
| 2585 |
dataset:
|
| 2586 |
type: mteb/amazon_massive_scenario
|
| 2587 |
name: MTEB MassiveScenarioClassification (hy)
|
| 2588 |
+
config: hy
|
| 2589 |
+
split: test
|
| 2590 |
metrics:
|
| 2591 |
- type: accuracy
|
| 2592 |
value: 28.375924680564896
|
|
|
|
| 2597 |
dataset:
|
| 2598 |
type: mteb/amazon_massive_scenario
|
| 2599 |
name: MTEB MassiveScenarioClassification (id)
|
| 2600 |
+
config: id
|
| 2601 |
+
split: test
|
| 2602 |
metrics:
|
| 2603 |
- type: accuracy
|
| 2604 |
value: 44.361129791526565
|
|
|
|
| 2609 |
dataset:
|
| 2610 |
type: mteb/amazon_massive_scenario
|
| 2611 |
name: MTEB MassiveScenarioClassification (is)
|
| 2612 |
+
config: is
|
| 2613 |
+
split: test
|
| 2614 |
metrics:
|
| 2615 |
- type: accuracy
|
| 2616 |
value: 39.290517821116346
|
|
|
|
| 2621 |
dataset:
|
| 2622 |
type: mteb/amazon_massive_scenario
|
| 2623 |
name: MTEB MassiveScenarioClassification (it)
|
| 2624 |
+
config: it
|
| 2625 |
+
split: test
|
| 2626 |
metrics:
|
| 2627 |
- type: accuracy
|
| 2628 |
value: 46.4694014794889
|
|
|
|
| 2633 |
dataset:
|
| 2634 |
type: mteb/amazon_massive_scenario
|
| 2635 |
name: MTEB MassiveScenarioClassification (ja)
|
| 2636 |
+
config: ja
|
| 2637 |
+
split: test
|
| 2638 |
metrics:
|
| 2639 |
- type: accuracy
|
| 2640 |
value: 46.25756556825824
|
|
|
|
| 2645 |
dataset:
|
| 2646 |
type: mteb/amazon_massive_scenario
|
| 2647 |
name: MTEB MassiveScenarioClassification (jv)
|
| 2648 |
+
config: jv
|
| 2649 |
+
split: test
|
| 2650 |
metrics:
|
| 2651 |
- type: accuracy
|
| 2652 |
value: 41.12642905178212
|
|
|
|
| 2657 |
dataset:
|
| 2658 |
type: mteb/amazon_massive_scenario
|
| 2659 |
name: MTEB MassiveScenarioClassification (ka)
|
| 2660 |
+
config: ka
|
| 2661 |
+
split: test
|
| 2662 |
metrics:
|
| 2663 |
- type: accuracy
|
| 2664 |
value: 24.72763954270343
|
|
|
|
| 2669 |
dataset:
|
| 2670 |
type: mteb/amazon_massive_scenario
|
| 2671 |
name: MTEB MassiveScenarioClassification (km)
|
| 2672 |
+
config: km
|
| 2673 |
+
split: test
|
| 2674 |
metrics:
|
| 2675 |
- type: accuracy
|
| 2676 |
value: 29.741089441829182
|
|
|
|
| 2681 |
dataset:
|
| 2682 |
type: mteb/amazon_massive_scenario
|
| 2683 |
name: MTEB MassiveScenarioClassification (kn)
|
| 2684 |
+
config: kn
|
| 2685 |
+
split: test
|
| 2686 |
metrics:
|
| 2687 |
- type: accuracy
|
| 2688 |
value: 23.850033624747816
|
|
|
|
| 2693 |
dataset:
|
| 2694 |
type: mteb/amazon_massive_scenario
|
| 2695 |
name: MTEB MassiveScenarioClassification (ko)
|
| 2696 |
+
config: ko
|
| 2697 |
+
split: test
|
| 2698 |
metrics:
|
| 2699 |
- type: accuracy
|
| 2700 |
value: 36.56691324815064
|
|
|
|
| 2705 |
dataset:
|
| 2706 |
type: mteb/amazon_massive_scenario
|
| 2707 |
name: MTEB MassiveScenarioClassification (lv)
|
| 2708 |
+
config: lv
|
| 2709 |
+
split: test
|
| 2710 |
metrics:
|
| 2711 |
- type: accuracy
|
| 2712 |
value: 40.928043039677206
|
|
|
|
| 2717 |
dataset:
|
| 2718 |
type: mteb/amazon_massive_scenario
|
| 2719 |
name: MTEB MassiveScenarioClassification (ml)
|
| 2720 |
+
config: ml
|
| 2721 |
+
split: test
|
| 2722 |
metrics:
|
| 2723 |
- type: accuracy
|
| 2724 |
value: 25.527908540685946
|
|
|
|
| 2729 |
dataset:
|
| 2730 |
type: mteb/amazon_massive_scenario
|
| 2731 |
name: MTEB MassiveScenarioClassification (mn)
|
| 2732 |
+
config: mn
|
| 2733 |
+
split: test
|
| 2734 |
metrics:
|
| 2735 |
- type: accuracy
|
| 2736 |
value: 29.105581708137183
|
|
|
|
| 2741 |
dataset:
|
| 2742 |
type: mteb/amazon_massive_scenario
|
| 2743 |
name: MTEB MassiveScenarioClassification (ms)
|
| 2744 |
+
config: ms
|
| 2745 |
+
split: test
|
| 2746 |
metrics:
|
| 2747 |
- type: accuracy
|
| 2748 |
value: 43.78614660390047
|
|
|
|
| 2753 |
dataset:
|
| 2754 |
type: mteb/amazon_massive_scenario
|
| 2755 |
name: MTEB MassiveScenarioClassification (my)
|
| 2756 |
+
config: my
|
| 2757 |
+
split: test
|
| 2758 |
metrics:
|
| 2759 |
- type: accuracy
|
| 2760 |
value: 27.269670477471415
|
|
|
|
| 2765 |
dataset:
|
| 2766 |
type: mteb/amazon_massive_scenario
|
| 2767 |
name: MTEB MassiveScenarioClassification (nb)
|
| 2768 |
+
config: nb
|
| 2769 |
+
split: test
|
| 2770 |
metrics:
|
| 2771 |
- type: accuracy
|
| 2772 |
value: 39.018157363819775
|
|
|
|
| 2777 |
dataset:
|
| 2778 |
type: mteb/amazon_massive_scenario
|
| 2779 |
name: MTEB MassiveScenarioClassification (nl)
|
| 2780 |
+
config: nl
|
| 2781 |
+
split: test
|
| 2782 |
metrics:
|
| 2783 |
- type: accuracy
|
| 2784 |
value: 45.35978480161399
|
|
|
|
| 2789 |
dataset:
|
| 2790 |
type: mteb/amazon_massive_scenario
|
| 2791 |
name: MTEB MassiveScenarioClassification (pl)
|
| 2792 |
+
config: pl
|
| 2793 |
+
split: test
|
| 2794 |
metrics:
|
| 2795 |
- type: accuracy
|
| 2796 |
value: 41.89307330195023
|
|
|
|
| 2801 |
dataset:
|
| 2802 |
type: mteb/amazon_massive_scenario
|
| 2803 |
name: MTEB MassiveScenarioClassification (pt)
|
| 2804 |
+
config: pt
|
| 2805 |
+
split: test
|
| 2806 |
metrics:
|
| 2807 |
- type: accuracy
|
| 2808 |
value: 45.901143241425686
|
|
|
|
| 2813 |
dataset:
|
| 2814 |
type: mteb/amazon_massive_scenario
|
| 2815 |
name: MTEB MassiveScenarioClassification (ro)
|
| 2816 |
+
config: ro
|
| 2817 |
+
split: test
|
| 2818 |
metrics:
|
| 2819 |
- type: accuracy
|
| 2820 |
value: 44.11566913248151
|
|
|
|
| 2825 |
dataset:
|
| 2826 |
type: mteb/amazon_massive_scenario
|
| 2827 |
name: MTEB MassiveScenarioClassification (ru)
|
| 2828 |
+
config: ru
|
| 2829 |
+
split: test
|
| 2830 |
metrics:
|
| 2831 |
- type: accuracy
|
| 2832 |
value: 32.76395427034297
|
|
|
|
| 2837 |
dataset:
|
| 2838 |
type: mteb/amazon_massive_scenario
|
| 2839 |
name: MTEB MassiveScenarioClassification (sl)
|
| 2840 |
+
config: sl
|
| 2841 |
+
split: test
|
| 2842 |
metrics:
|
| 2843 |
- type: accuracy
|
| 2844 |
value: 40.504371217215876
|
|
|
|
| 2849 |
dataset:
|
| 2850 |
type: mteb/amazon_massive_scenario
|
| 2851 |
name: MTEB MassiveScenarioClassification (sq)
|
| 2852 |
+
config: sq
|
| 2853 |
+
split: test
|
| 2854 |
metrics:
|
| 2855 |
- type: accuracy
|
| 2856 |
value: 42.51849361129792
|
|
|
|
| 2861 |
dataset:
|
| 2862 |
type: mteb/amazon_massive_scenario
|
| 2863 |
name: MTEB MassiveScenarioClassification (sv)
|
| 2864 |
+
config: sv
|
| 2865 |
+
split: test
|
| 2866 |
metrics:
|
| 2867 |
- type: accuracy
|
| 2868 |
value: 42.293207800941495
|
|
|
|
| 2873 |
dataset:
|
| 2874 |
type: mteb/amazon_massive_scenario
|
| 2875 |
name: MTEB MassiveScenarioClassification (sw)
|
| 2876 |
+
config: sw
|
| 2877 |
+
split: test
|
| 2878 |
metrics:
|
| 2879 |
- type: accuracy
|
| 2880 |
value: 42.9993275050437
|
|
|
|
| 2885 |
dataset:
|
| 2886 |
type: mteb/amazon_massive_scenario
|
| 2887 |
name: MTEB MassiveScenarioClassification (ta)
|
| 2888 |
+
config: ta
|
| 2889 |
+
split: test
|
| 2890 |
metrics:
|
| 2891 |
- type: accuracy
|
| 2892 |
value: 28.32548755884331
|
|
|
|
| 2897 |
dataset:
|
| 2898 |
type: mteb/amazon_massive_scenario
|
| 2899 |
name: MTEB MassiveScenarioClassification (te)
|
| 2900 |
+
config: te
|
| 2901 |
+
split: test
|
| 2902 |
metrics:
|
| 2903 |
- type: accuracy
|
| 2904 |
value: 26.593813046402154
|
|
|
|
| 2909 |
dataset:
|
| 2910 |
type: mteb/amazon_massive_scenario
|
| 2911 |
name: MTEB MassiveScenarioClassification (th)
|
| 2912 |
+
config: th
|
| 2913 |
+
split: test
|
| 2914 |
metrics:
|
| 2915 |
- type: accuracy
|
| 2916 |
value: 36.788836583725626
|
|
|
|
| 2921 |
dataset:
|
| 2922 |
type: mteb/amazon_massive_scenario
|
| 2923 |
name: MTEB MassiveScenarioClassification (tl)
|
| 2924 |
+
config: tl
|
| 2925 |
+
split: test
|
| 2926 |
metrics:
|
| 2927 |
- type: accuracy
|
| 2928 |
value: 42.5689307330195
|
|
|
|
| 2933 |
dataset:
|
| 2934 |
type: mteb/amazon_massive_scenario
|
| 2935 |
name: MTEB MassiveScenarioClassification (tr)
|
| 2936 |
+
config: tr
|
| 2937 |
+
split: test
|
| 2938 |
metrics:
|
| 2939 |
- type: accuracy
|
| 2940 |
value: 37.09482178883658
|
|
|
|
| 2945 |
dataset:
|
| 2946 |
type: mteb/amazon_massive_scenario
|
| 2947 |
name: MTEB MassiveScenarioClassification (ur)
|
| 2948 |
+
config: ur
|
| 2949 |
+
split: test
|
| 2950 |
metrics:
|
| 2951 |
- type: accuracy
|
| 2952 |
value: 28.836583725622063
|
|
|
|
| 2957 |
dataset:
|
| 2958 |
type: mteb/amazon_massive_scenario
|
| 2959 |
name: MTEB MassiveScenarioClassification (vi)
|
| 2960 |
+
config: vi
|
| 2961 |
+
split: test
|
| 2962 |
metrics:
|
| 2963 |
- type: accuracy
|
| 2964 |
value: 37.357094821788834
|
|
|
|
| 2969 |
dataset:
|
| 2970 |
type: mteb/amazon_massive_scenario
|
| 2971 |
name: MTEB MassiveScenarioClassification (zh-CN)
|
| 2972 |
+
config: zh-CN
|
| 2973 |
+
split: test
|
| 2974 |
metrics:
|
| 2975 |
- type: accuracy
|
| 2976 |
value: 49.37794216543375
|
|
|
|
| 2981 |
dataset:
|
| 2982 |
type: mteb/amazon_massive_scenario
|
| 2983 |
name: MTEB MassiveScenarioClassification (zh-TW)
|
| 2984 |
+
config: zh-TW
|
| 2985 |
+
split: test
|
| 2986 |
metrics:
|
| 2987 |
- type: accuracy
|
| 2988 |
value: 44.42165433759248
|
|
|
|
| 2993 |
dataset:
|
| 2994 |
type: mteb/medrxiv-clustering-p2p
|
| 2995 |
name: MTEB MedrxivClusteringP2P
|
| 2996 |
+
config: default
|
| 2997 |
+
split: test
|
| 2998 |
metrics:
|
| 2999 |
- type: v_measure
|
| 3000 |
value: 31.374938993074252
|
|
|
|
| 3003 |
dataset:
|
| 3004 |
type: mteb/medrxiv-clustering-s2s
|
| 3005 |
name: MTEB MedrxivClusteringS2S
|
| 3006 |
+
config: default
|
| 3007 |
+
split: test
|
| 3008 |
metrics:
|
| 3009 |
- type: v_measure
|
| 3010 |
value: 26.871455379644093
|
|
|
|
| 3013 |
dataset:
|
| 3014 |
type: mteb/mind_small
|
| 3015 |
name: MTEB MindSmallReranking
|
| 3016 |
+
config: default
|
| 3017 |
+
split: test
|
| 3018 |
metrics:
|
| 3019 |
- type: map
|
| 3020 |
value: 30.402396942935333
|
|
|
|
| 3025 |
dataset:
|
| 3026 |
type: nfcorpus
|
| 3027 |
name: MTEB NFCorpus
|
| 3028 |
+
config: default
|
| 3029 |
+
split: test
|
| 3030 |
metrics:
|
| 3031 |
- type: map_at_1
|
| 3032 |
value: 3.7740000000000005
|
|
|
|
| 3093 |
dataset:
|
| 3094 |
type: nq
|
| 3095 |
name: MTEB NQ
|
| 3096 |
+
config: default
|
| 3097 |
+
split: test
|
| 3098 |
metrics:
|
| 3099 |
- type: map_at_1
|
| 3100 |
value: 15.620999999999999
|
|
|
|
| 3161 |
dataset:
|
| 3162 |
type: quora
|
| 3163 |
name: MTEB QuoraRetrieval
|
| 3164 |
+
config: default
|
| 3165 |
+
split: test
|
| 3166 |
metrics:
|
| 3167 |
- type: map_at_1
|
| 3168 |
value: 54.717000000000006
|
|
|
|
| 3229 |
dataset:
|
| 3230 |
type: mteb/reddit-clustering
|
| 3231 |
name: MTEB RedditClustering
|
| 3232 |
+
config: default
|
| 3233 |
+
split: test
|
| 3234 |
metrics:
|
| 3235 |
- type: v_measure
|
| 3236 |
value: 40.23390747226228
|
|
|
|
| 3239 |
dataset:
|
| 3240 |
type: mteb/reddit-clustering-p2p
|
| 3241 |
name: MTEB RedditClusteringP2P
|
| 3242 |
+
config: default
|
| 3243 |
+
split: test
|
| 3244 |
metrics:
|
| 3245 |
- type: v_measure
|
| 3246 |
value: 49.090518272935626
|
|
|
|
| 3249 |
dataset:
|
| 3250 |
type: scidocs
|
| 3251 |
name: MTEB SCIDOCS
|
| 3252 |
+
config: default
|
| 3253 |
+
split: test
|
| 3254 |
metrics:
|
| 3255 |
- type: map_at_1
|
| 3256 |
value: 3.028
|
|
|
|
| 3317 |
dataset:
|
| 3318 |
type: mteb/sickr-sts
|
| 3319 |
name: MTEB SICK-R
|
| 3320 |
+
config: default
|
| 3321 |
+
split: test
|
| 3322 |
metrics:
|
| 3323 |
- type: cos_sim_pearson
|
| 3324 |
value: 76.62983928119752
|
|
|
|
| 3337 |
dataset:
|
| 3338 |
type: mteb/sts12-sts
|
| 3339 |
name: MTEB STS12
|
| 3340 |
+
config: default
|
| 3341 |
+
split: test
|
| 3342 |
metrics:
|
| 3343 |
- type: cos_sim_pearson
|
| 3344 |
value: 74.42679147085553
|
|
|
|
| 3357 |
dataset:
|
| 3358 |
type: mteb/sts13-sts
|
| 3359 |
name: MTEB STS13
|
| 3360 |
+
config: default
|
| 3361 |
+
split: test
|
| 3362 |
metrics:
|
| 3363 |
- type: cos_sim_pearson
|
| 3364 |
value: 75.62472426599543
|
|
|
|
| 3377 |
dataset:
|
| 3378 |
type: mteb/sts14-sts
|
| 3379 |
name: MTEB STS14
|
| 3380 |
+
config: default
|
| 3381 |
+
split: test
|
| 3382 |
metrics:
|
| 3383 |
- type: cos_sim_pearson
|
| 3384 |
value: 74.48227705407035
|
|
|
|
| 3397 |
dataset:
|
| 3398 |
type: mteb/sts15-sts
|
| 3399 |
name: MTEB STS15
|
| 3400 |
+
config: default
|
| 3401 |
+
split: test
|
| 3402 |
metrics:
|
| 3403 |
- type: cos_sim_pearson
|
| 3404 |
value: 78.1566527175902
|
|
|
|
| 3417 |
dataset:
|
| 3418 |
type: mteb/sts16-sts
|
| 3419 |
name: MTEB STS16
|
| 3420 |
+
config: default
|
| 3421 |
+
split: test
|
| 3422 |
metrics:
|
| 3423 |
- type: cos_sim_pearson
|
| 3424 |
value: 75.068454465977
|
|
|
|
| 3437 |
dataset:
|
| 3438 |
type: mteb/sts17-crosslingual-sts
|
| 3439 |
name: MTEB STS17 (ko-ko)
|
| 3440 |
+
config: ko-ko
|
| 3441 |
+
split: test
|
| 3442 |
metrics:
|
| 3443 |
- type: cos_sim_pearson
|
| 3444 |
value: 39.43327289939437
|
|
|
|
| 3457 |
dataset:
|
| 3458 |
type: mteb/sts17-crosslingual-sts
|
| 3459 |
name: MTEB STS17 (ar-ar)
|
| 3460 |
+
config: ar-ar
|
| 3461 |
+
split: test
|
| 3462 |
metrics:
|
| 3463 |
- type: cos_sim_pearson
|
| 3464 |
value: 55.54431928210687
|
|
|
|
| 3477 |
dataset:
|
| 3478 |
type: mteb/sts17-crosslingual-sts
|
| 3479 |
name: MTEB STS17 (en-ar)
|
| 3480 |
+
config: en-ar
|
| 3481 |
+
split: test
|
| 3482 |
metrics:
|
| 3483 |
- type: cos_sim_pearson
|
| 3484 |
value: 11.378463868809098
|
|
|
|
| 3497 |
dataset:
|
| 3498 |
type: mteb/sts17-crosslingual-sts
|
| 3499 |
name: MTEB STS17 (en-de)
|
| 3500 |
+
config: en-de
|
| 3501 |
+
split: test
|
| 3502 |
metrics:
|
| 3503 |
- type: cos_sim_pearson
|
| 3504 |
value: 32.71403560929013
|
|
|
|
| 3517 |
dataset:
|
| 3518 |
type: mteb/sts17-crosslingual-sts
|
| 3519 |
name: MTEB STS17 (en-en)
|
| 3520 |
+
config: en-en
|
| 3521 |
+
split: test
|
| 3522 |
metrics:
|
| 3523 |
- type: cos_sim_pearson
|
| 3524 |
value: 83.36340470799158
|
|
|
|
| 3537 |
dataset:
|
| 3538 |
type: mteb/sts17-crosslingual-sts
|
| 3539 |
name: MTEB STS17 (en-tr)
|
| 3540 |
+
config: en-tr
|
| 3541 |
+
split: test
|
| 3542 |
metrics:
|
| 3543 |
- type: cos_sim_pearson
|
| 3544 |
value: 1.9200044163754912
|
|
|
|
| 3557 |
dataset:
|
| 3558 |
type: mteb/sts17-crosslingual-sts
|
| 3559 |
name: MTEB STS17 (es-en)
|
| 3560 |
+
config: es-en
|
| 3561 |
+
split: test
|
| 3562 |
metrics:
|
| 3563 |
- type: cos_sim_pearson
|
| 3564 |
value: 26.561262451099577
|
|
|
|
| 3577 |
dataset:
|
| 3578 |
type: mteb/sts17-crosslingual-sts
|
| 3579 |
name: MTEB STS17 (es-es)
|
| 3580 |
+
config: es-es
|
| 3581 |
+
split: test
|
| 3582 |
metrics:
|
| 3583 |
- type: cos_sim_pearson
|
| 3584 |
value: 69.7544202001433
|
|
|
|
| 3597 |
dataset:
|
| 3598 |
type: mteb/sts17-crosslingual-sts
|
| 3599 |
name: MTEB STS17 (fr-en)
|
| 3600 |
+
config: fr-en
|
| 3601 |
+
split: test
|
| 3602 |
metrics:
|
| 3603 |
- type: cos_sim_pearson
|
| 3604 |
value: 27.70511842301491
|
|
|
|
| 3617 |
dataset:
|
| 3618 |
type: mteb/sts17-crosslingual-sts
|
| 3619 |
name: MTEB STS17 (it-en)
|
| 3620 |
+
config: it-en
|
| 3621 |
+
split: test
|
| 3622 |
metrics:
|
| 3623 |
- type: cos_sim_pearson
|
| 3624 |
value: 24.226521799447692
|
|
|
|
| 3637 |
dataset:
|
| 3638 |
type: mteb/sts17-crosslingual-sts
|
| 3639 |
name: MTEB STS17 (nl-en)
|
| 3640 |
+
config: nl-en
|
| 3641 |
+
split: test
|
| 3642 |
metrics:
|
| 3643 |
- type: cos_sim_pearson
|
| 3644 |
value: 29.131412364061234
|
|
|
|
| 3657 |
dataset:
|
| 3658 |
type: mteb/sts22-crosslingual-sts
|
| 3659 |
name: MTEB STS22 (en)
|
| 3660 |
+
config: en
|
| 3661 |
+
split: test
|
| 3662 |
metrics:
|
| 3663 |
- type: cos_sim_pearson
|
| 3664 |
value: 64.04750650962879
|
|
|
|
| 3677 |
dataset:
|
| 3678 |
type: mteb/sts22-crosslingual-sts
|
| 3679 |
name: MTEB STS22 (de)
|
| 3680 |
+
config: de
|
| 3681 |
+
split: test
|
| 3682 |
metrics:
|
| 3683 |
- type: cos_sim_pearson
|
| 3684 |
value: 19.26519187000913
|
|
|
|
| 3697 |
dataset:
|
| 3698 |
type: mteb/sts22-crosslingual-sts
|
| 3699 |
name: MTEB STS22 (es)
|
| 3700 |
+
config: es
|
| 3701 |
+
split: test
|
| 3702 |
metrics:
|
| 3703 |
- type: cos_sim_pearson
|
| 3704 |
value: 34.221261828226936
|
|
|
|
| 3717 |
dataset:
|
| 3718 |
type: mteb/sts22-crosslingual-sts
|
| 3719 |
name: MTEB STS22 (pl)
|
| 3720 |
+
config: pl
|
| 3721 |
+
split: test
|
| 3722 |
metrics:
|
| 3723 |
- type: cos_sim_pearson
|
| 3724 |
value: 3.620381732096531
|
|
|
|
| 3737 |
dataset:
|
| 3738 |
type: mteb/sts22-crosslingual-sts
|
| 3739 |
name: MTEB STS22 (tr)
|
| 3740 |
+
config: tr
|
| 3741 |
+
split: test
|
| 3742 |
metrics:
|
| 3743 |
- type: cos_sim_pearson
|
| 3744 |
value: 16.69489628726267
|
|
|
|
| 3757 |
dataset:
|
| 3758 |
type: mteb/sts22-crosslingual-sts
|
| 3759 |
name: MTEB STS22 (ar)
|
| 3760 |
+
config: ar
|
| 3761 |
+
split: test
|
| 3762 |
metrics:
|
| 3763 |
- type: cos_sim_pearson
|
| 3764 |
value: 9.134927430889528
|
|
|
|
| 3777 |
dataset:
|
| 3778 |
type: mteb/sts22-crosslingual-sts
|
| 3779 |
name: MTEB STS22 (ru)
|
| 3780 |
+
config: ru
|
| 3781 |
+
split: test
|
| 3782 |
metrics:
|
| 3783 |
- type: cos_sim_pearson
|
| 3784 |
value: 3.6386482942352085
|
|
|
|
| 3797 |
dataset:
|
| 3798 |
type: mteb/sts22-crosslingual-sts
|
| 3799 |
name: MTEB STS22 (zh)
|
| 3800 |
+
config: zh
|
| 3801 |
+
split: test
|
| 3802 |
metrics:
|
| 3803 |
- type: cos_sim_pearson
|
| 3804 |
value: 2.972091574908432
|
|
|
|
| 3817 |
dataset:
|
| 3818 |
type: mteb/sts22-crosslingual-sts
|
| 3819 |
name: MTEB STS22 (fr)
|
| 3820 |
+
config: fr
|
| 3821 |
+
split: test
|
| 3822 |
metrics:
|
| 3823 |
- type: cos_sim_pearson
|
| 3824 |
value: 54.4745185734135
|
|
|
|
| 3837 |
dataset:
|
| 3838 |
type: mteb/sts22-crosslingual-sts
|
| 3839 |
name: MTEB STS22 (de-en)
|
| 3840 |
+
config: de-en
|
| 3841 |
+
split: test
|
| 3842 |
metrics:
|
| 3843 |
- type: cos_sim_pearson
|
| 3844 |
value: 49.37865412588201
|
|
|
|
| 3857 |
dataset:
|
| 3858 |
type: mteb/sts22-crosslingual-sts
|
| 3859 |
name: MTEB STS22 (es-en)
|
| 3860 |
+
config: es-en
|
| 3861 |
+
split: test
|
| 3862 |
metrics:
|
| 3863 |
- type: cos_sim_pearson
|
| 3864 |
value: 44.925652392562135
|
|
|
|
| 3877 |
dataset:
|
| 3878 |
type: mteb/sts22-crosslingual-sts
|
| 3879 |
name: MTEB STS22 (it)
|
| 3880 |
+
config: it
|
| 3881 |
+
split: test
|
| 3882 |
metrics:
|
| 3883 |
- type: cos_sim_pearson
|
| 3884 |
value: 45.241690321111875
|
|
|
|
| 3897 |
dataset:
|
| 3898 |
type: mteb/sts22-crosslingual-sts
|
| 3899 |
name: MTEB STS22 (pl-en)
|
| 3900 |
+
config: pl-en
|
| 3901 |
+
split: test
|
| 3902 |
metrics:
|
| 3903 |
- type: cos_sim_pearson
|
| 3904 |
value: 36.42138324083909
|
|
|
|
| 3917 |
dataset:
|
| 3918 |
type: mteb/sts22-crosslingual-sts
|
| 3919 |
name: MTEB STS22 (zh-en)
|
| 3920 |
+
config: zh-en
|
| 3921 |
+
split: test
|
| 3922 |
metrics:
|
| 3923 |
- type: cos_sim_pearson
|
| 3924 |
value: 26.55350664089358
|
|
|
|
| 3937 |
dataset:
|
| 3938 |
type: mteb/sts22-crosslingual-sts
|
| 3939 |
name: MTEB STS22 (es-it)
|
| 3940 |
+
config: es-it
|
| 3941 |
+
split: test
|
| 3942 |
metrics:
|
| 3943 |
- type: cos_sim_pearson
|
| 3944 |
value: 38.54682179114309
|
|
|
|
| 3957 |
dataset:
|
| 3958 |
type: mteb/sts22-crosslingual-sts
|
| 3959 |
name: MTEB STS22 (de-fr)
|
| 3960 |
+
config: de-fr
|
| 3961 |
+
split: test
|
| 3962 |
metrics:
|
| 3963 |
- type: cos_sim_pearson
|
| 3964 |
value: 35.12956772546032
|
|
|
|
| 3977 |
dataset:
|
| 3978 |
type: mteb/sts22-crosslingual-sts
|
| 3979 |
name: MTEB STS22 (de-pl)
|
| 3980 |
+
config: de-pl
|
| 3981 |
+
split: test
|
| 3982 |
metrics:
|
| 3983 |
- type: cos_sim_pearson
|
| 3984 |
value: 30.507667380509634
|
|
|
|
| 3997 |
dataset:
|
| 3998 |
type: mteb/sts22-crosslingual-sts
|
| 3999 |
name: MTEB STS22 (fr-pl)
|
| 4000 |
+
config: fr-pl
|
| 4001 |
+
split: test
|
| 4002 |
metrics:
|
| 4003 |
- type: cos_sim_pearson
|
| 4004 |
value: 71.10820459712156
|
|
|
|
| 4017 |
dataset:
|
| 4018 |
type: mteb/stsbenchmark-sts
|
| 4019 |
name: MTEB STSBenchmark
|
| 4020 |
+
config: default
|
| 4021 |
+
split: test
|
| 4022 |
metrics:
|
| 4023 |
- type: cos_sim_pearson
|
| 4024 |
value: 76.53032504460737
|
|
|
|
| 4037 |
dataset:
|
| 4038 |
type: mteb/scidocs-reranking
|
| 4039 |
name: MTEB SciDocsRR
|
| 4040 |
+
config: default
|
| 4041 |
+
split: test
|
| 4042 |
metrics:
|
| 4043 |
- type: map
|
| 4044 |
value: 71.33941904192648
|
|
|
|
| 4049 |
dataset:
|
| 4050 |
type: scifact
|
| 4051 |
name: MTEB SciFact
|
| 4052 |
+
config: default
|
| 4053 |
+
split: test
|
| 4054 |
metrics:
|
| 4055 |
- type: map_at_1
|
| 4056 |
value: 43.333
|
|
|
|
| 4117 |
dataset:
|
| 4118 |
type: mteb/sprintduplicatequestions-pairclassification
|
| 4119 |
name: MTEB SprintDuplicateQuestions
|
| 4120 |
+
config: default
|
| 4121 |
+
split: test
|
| 4122 |
metrics:
|
| 4123 |
- type: cos_sim_accuracy
|
| 4124 |
value: 99.7
|
|
|
|
| 4171 |
dataset:
|
| 4172 |
type: mteb/stackexchange-clustering
|
| 4173 |
name: MTEB StackExchangeClustering
|
| 4174 |
+
config: default
|
| 4175 |
+
split: test
|
| 4176 |
metrics:
|
| 4177 |
- type: v_measure
|
| 4178 |
value: 52.74481093815175
|
|
|
|
| 4181 |
dataset:
|
| 4182 |
type: mteb/stackexchange-clustering-p2p
|
| 4183 |
name: MTEB StackExchangeClusteringP2P
|
| 4184 |
+
config: default
|
| 4185 |
+
split: test
|
| 4186 |
metrics:
|
| 4187 |
- type: v_measure
|
| 4188 |
value: 32.65999453562101
|
|
|
|
| 4191 |
dataset:
|
| 4192 |
type: mteb/stackoverflowdupquestions-reranking
|
| 4193 |
name: MTEB StackOverflowDupQuestions
|
| 4194 |
+
config: default
|
| 4195 |
+
split: test
|
| 4196 |
metrics:
|
| 4197 |
- type: map
|
| 4198 |
value: 44.74498464555465
|
|
|
|
| 4203 |
dataset:
|
| 4204 |
type: mteb/summeval
|
| 4205 |
name: MTEB SummEval
|
| 4206 |
+
config: default
|
| 4207 |
+
split: test
|
| 4208 |
metrics:
|
| 4209 |
- type: cos_sim_pearson
|
| 4210 |
value: 29.5961822471627
|
|
|
|
| 4219 |
dataset:
|
| 4220 |
type: trec-covid
|
| 4221 |
name: MTEB TRECCOVID
|
| 4222 |
+
config: default
|
| 4223 |
+
split: test
|
| 4224 |
metrics:
|
| 4225 |
- type: map_at_1
|
| 4226 |
value: 0.241
|
|
|
|
| 4287 |
dataset:
|
| 4288 |
type: webis-touche2020
|
| 4289 |
name: MTEB Touche2020
|
| 4290 |
+
config: default
|
| 4291 |
+
split: test
|
| 4292 |
metrics:
|
| 4293 |
- type: map_at_1
|
| 4294 |
value: 2.782
|
|
|
|
| 4355 |
dataset:
|
| 4356 |
type: mteb/toxic_conversations_50k
|
| 4357 |
name: MTEB ToxicConversationsClassification
|
| 4358 |
+
config: default
|
| 4359 |
+
split: test
|
| 4360 |
metrics:
|
| 4361 |
- type: accuracy
|
| 4362 |
value: 62.657999999999994
|
|
|
|
| 4369 |
dataset:
|
| 4370 |
type: mteb/tweet_sentiment_extraction
|
| 4371 |
name: MTEB TweetSentimentExtractionClassification
|
| 4372 |
+
config: default
|
| 4373 |
+
split: test
|
| 4374 |
metrics:
|
| 4375 |
- type: accuracy
|
| 4376 |
value: 52.40803621958121
|
|
|
|
| 4381 |
dataset:
|
| 4382 |
type: mteb/twentynewsgroups-clustering
|
| 4383 |
name: MTEB TwentyNewsgroupsClustering
|
| 4384 |
+
config: default
|
| 4385 |
+
split: test
|
| 4386 |
metrics:
|
| 4387 |
- type: v_measure
|
| 4388 |
value: 32.12697126747911
|
|
|
|
| 4391 |
dataset:
|
| 4392 |
type: mteb/twittersemeval2015-pairclassification
|
| 4393 |
name: MTEB TwitterSemEval2015
|
| 4394 |
+
config: default
|
| 4395 |
+
split: test
|
| 4396 |
metrics:
|
| 4397 |
- type: cos_sim_accuracy
|
| 4398 |
value: 80.69976753889253
|
|
|
|
| 4445 |
dataset:
|
| 4446 |
type: mteb/twitterurlcorpus-pairclassification
|
| 4447 |
name: MTEB TwitterURLCorpus
|
| 4448 |
+
config: default
|
| 4449 |
+
split: test
|
| 4450 |
metrics:
|
| 4451 |
- type: cos_sim_accuracy
|
| 4452 |
value: 86.90573213800597
|