Upload folder using huggingface_hub
Browse files- .gitattributes +23 -0
- README.md +752 -0
- added_tokens.json +3 -0
- chat_template.jinja +47 -0
- config.json +96 -0
- generation_config.json +10 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +891 -0
- preprocessor_config.json +29 -0
- processor_config.json +4 -0
- special_tokens_map.json +33 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,26 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
model-00001-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
model-00002-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
tokenizer.model filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/bin/python filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/bin/python3 filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/bin/python3.12 filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/__pycache__/typing_extensions.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/charset_normalizer/md__mypyc.cpython-312-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/huggingface_hub/__pycache__/hf_api.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/huggingface_hub/inference/__pycache__/_client.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/huggingface_hub/inference/_generated/__pycache__/_async_client.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/idna/__pycache__/uts46data.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/__pycache__/typing_extensions.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/chardet/__pycache__/langrussianmodel.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/idna/__pycache__/uts46data.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/pkg_resources/__pycache__/__init__.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/pyparsing/__pycache__/core.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/rich/__pycache__/_emoji_codes.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/rich/__pycache__/console.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/__pycache__/vi.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/prompt_toolkit/layout/__pycache__/containers.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
|
| 58 |
+
gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/yaml/_yaml.cpython-312-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,752 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: health-ai-developer-foundations
|
| 4 |
+
license_link: https://developers.google.com/health-ai-developer-foundations/terms
|
| 5 |
+
library_name: transformers
|
| 6 |
+
pipeline_tag: image-text-to-text
|
| 7 |
+
extra_gated_heading: Access MedGemma on Hugging Face
|
| 8 |
+
extra_gated_prompt: >-
|
| 9 |
+
To access MedGemma on Hugging Face, you're required to review and
|
| 10 |
+
agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms).
|
| 11 |
+
To do this, please ensure you're logged in to Hugging Face and click below.
|
| 12 |
+
Requests are processed immediately.
|
| 13 |
+
extra_gated_button_content: Acknowledge license
|
| 14 |
+
base_model: google/medgemma-4b-pt
|
| 15 |
+
tags:
|
| 16 |
+
- medical
|
| 17 |
+
- radiology
|
| 18 |
+
- clinical-reasoning
|
| 19 |
+
- dermatology
|
| 20 |
+
- pathology
|
| 21 |
+
- ophthalmology
|
| 22 |
+
- chest-x-ray
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
# MedGemma model card
|
| 26 |
+
|
| 27 |
+
**Model documentation:** [MedGemma](https://developers.google.com/health-ai-developer-foundations/medgemma)
|
| 28 |
+
|
| 29 |
+
**Resources:**
|
| 30 |
+
|
| 31 |
+
* Model on Google Cloud Model Garden: [MedGemma](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/medgemma)
|
| 32 |
+
* Model on Hugging Face: [MedGemma](https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4)
|
| 33 |
+
* GitHub repository (supporting code, Colab notebooks, discussions, and
|
| 34 |
+
issues): [MedGemma](https://github.com/google-health/medgemma)
|
| 35 |
+
* Quick start notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb)
|
| 36 |
+
* Fine-tuning notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb)
|
| 37 |
+
* Concept applications built using MedGemma: [Collection](https://huggingface.co/collections/google/medgemma-concept-apps-686ea036adb6d51416b0928a)
|
| 38 |
+
* Support: See [Contact](https://developers.google.com/health-ai-developer-foundations/medgemma/get-started.md#contact)
|
| 39 |
+
* License: The use of MedGemma is governed by the [Health AI Developer
|
| 40 |
+
Foundations terms of
|
| 41 |
+
use](https://developers.google.com/health-ai-developer-foundations/terms).
|
| 42 |
+
|
| 43 |
+
**Author:** Google
|
| 44 |
+
|
| 45 |
+
## Model information
|
| 46 |
+
|
| 47 |
+
This section describes the MedGemma model and how to use it.
|
| 48 |
+
|
| 49 |
+
### Description
|
| 50 |
+
|
| 51 |
+
MedGemma is a collection of [Gemma 3](https://ai.google.dev/gemma/docs/core)
|
| 52 |
+
variants that are trained for performance on medical text and image
|
| 53 |
+
comprehension. Developers can use MedGemma to accelerate building
|
| 54 |
+
healthcare-based AI applications. MedGemma currently comes in three variants: a
|
| 55 |
+
4B multimodal version and 27B text-only and multimodal versions.
|
| 56 |
+
|
| 57 |
+
Both MedGemma multimodal versions utilize a
|
| 58 |
+
[SigLIP](https://arxiv.org/abs/2303.15343) image encoder that has been
|
| 59 |
+
specifically pre-trained on a variety of de-identified medical data, including
|
| 60 |
+
chest X-rays, dermatology images, ophthalmology images, and histopathology
|
| 61 |
+
slides. Their LLM components are trained on a diverse set of medical data,
|
| 62 |
+
including medical text, medical question-answer pairs, FHIR-based electronic
|
| 63 |
+
health record data (27B multimodal only), radiology images, histopathology
|
| 64 |
+
patches, ophthalmology images, and dermatology images.
|
| 65 |
+
|
| 66 |
+
MedGemma 4B is available in both pre-trained (suffix: `-pt`) and
|
| 67 |
+
instruction-tuned (suffix `-it`) versions. The instruction-tuned version is a
|
| 68 |
+
better starting point for most applications. The pre-trained version is
|
| 69 |
+
available for those who want to experiment more deeply with the models.
|
| 70 |
+
|
| 71 |
+
MedGemma 27B multimodal has pre-training on medical image, medical record and
|
| 72 |
+
medical record comprehension tasks. MedGemma 27B text-only has been trained
|
| 73 |
+
exclusively on medical text. Both models have been optimized for inference-time
|
| 74 |
+
computation on medical reasoning. This means it has slightly higher performance
|
| 75 |
+
on some text benchmarks than MedGemma 27B multimodal. Users who want to work
|
| 76 |
+
with a single model for both medical text, medical record and medical image
|
| 77 |
+
tasks are better suited for MedGemma 27B multimodal. Those that only need text
|
| 78 |
+
use-cases may be better served with the text-only variant. Both MedGemma 27B
|
| 79 |
+
variants are only available in instruction-tuned versions.
|
| 80 |
+
|
| 81 |
+
MedGemma variants have been evaluated on a range of clinically relevant
|
| 82 |
+
benchmarks to illustrate their baseline performance. These evaluations are based
|
| 83 |
+
on both open benchmark datasets and curated datasets. Developers can fine-tune
|
| 84 |
+
MedGemma variants for improved performance. Consult the [Intended
|
| 85 |
+
Use](https://developers.google.com/health-ai-developer-foundations/medgemma/model-card#intended_use)
|
| 86 |
+
section below for more details.
|
| 87 |
+
|
| 88 |
+
MedGemma is optimized for medical applications that involve a text generation
|
| 89 |
+
component. For medical image-based applications that do not involve text
|
| 90 |
+
generation, such as data-efficient classification, zero-shot classification, or
|
| 91 |
+
content-based or semantic image retrieval, the [MedSigLIP image
|
| 92 |
+
encoder](https://developers.google.com/health-ai-developer-foundations/medsiglip/model-card)
|
| 93 |
+
is recommended. MedSigLIP is based on the same image encoder that powers
|
| 94 |
+
MedGemma.
|
| 95 |
+
|
| 96 |
+
Please consult the [MedGemma Technical Report](https://arxiv.org/abs/2507.05201)
|
| 97 |
+
for more details.
|
| 98 |
+
|
| 99 |
+
### How to use
|
| 100 |
+
|
| 101 |
+
Below are some example code snippets to help you quickly get started running the
|
| 102 |
+
model locally on GPU. If you want to use the model at scale, we recommend that
|
| 103 |
+
you create a production version using [Model
|
| 104 |
+
Garden](https://cloud.google.com/model-garden).
|
| 105 |
+
|
| 106 |
+
First, install the Transformers library. Gemma 3 is supported starting from
|
| 107 |
+
transformers 4.50.0.
|
| 108 |
+
|
| 109 |
+
```sh
|
| 110 |
+
$ pip install -U transformers
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
**Run model with the `pipeline` API**
|
| 114 |
+
|
| 115 |
+
```python
|
| 116 |
+
from transformers import pipeline
|
| 117 |
+
from PIL import Image
|
| 118 |
+
import requests
|
| 119 |
+
import torch
|
| 120 |
+
|
| 121 |
+
pipe = pipeline(
|
| 122 |
+
"image-text-to-text",
|
| 123 |
+
model="google/medgemma-4b-it",
|
| 124 |
+
torch_dtype=torch.bfloat16,
|
| 125 |
+
device="cuda",
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
|
| 129 |
+
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
|
| 130 |
+
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
|
| 131 |
+
|
| 132 |
+
messages = [
|
| 133 |
+
{
|
| 134 |
+
"role": "system",
|
| 135 |
+
"content": [{"type": "text", "text": "You are an expert radiologist."}]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"role": "user",
|
| 139 |
+
"content": [
|
| 140 |
+
{"type": "text", "text": "Describe this X-ray"},
|
| 141 |
+
{"type": "image", "image": image}
|
| 142 |
+
]
|
| 143 |
+
}
|
| 144 |
+
]
|
| 145 |
+
|
| 146 |
+
output = pipe(text=messages, max_new_tokens=200)
|
| 147 |
+
print(output[0]["generated_text"][-1]["content"])
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
**Run the model directly**
|
| 151 |
+
|
| 152 |
+
```python
|
| 153 |
+
# pip install accelerate
|
| 154 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
| 155 |
+
from PIL import Image
|
| 156 |
+
import requests
|
| 157 |
+
import torch
|
| 158 |
+
|
| 159 |
+
model_id = "google/medgemma-4b-it"
|
| 160 |
+
|
| 161 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 162 |
+
model_id,
|
| 163 |
+
torch_dtype=torch.bfloat16,
|
| 164 |
+
device_map="auto",
|
| 165 |
+
)
|
| 166 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 167 |
+
|
| 168 |
+
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
|
| 169 |
+
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
|
| 170 |
+
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
|
| 171 |
+
|
| 172 |
+
messages = [
|
| 173 |
+
{
|
| 174 |
+
"role": "system",
|
| 175 |
+
"content": [{"type": "text", "text": "You are an expert radiologist."}]
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"role": "user",
|
| 179 |
+
"content": [
|
| 180 |
+
{"type": "text", "text": "Describe this X-ray"},
|
| 181 |
+
{"type": "image", "image": image}
|
| 182 |
+
]
|
| 183 |
+
}
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
inputs = processor.apply_chat_template(
|
| 187 |
+
messages, add_generation_prompt=True, tokenize=True,
|
| 188 |
+
return_dict=True, return_tensors="pt"
|
| 189 |
+
).to(model.device, dtype=torch.bfloat16)
|
| 190 |
+
|
| 191 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 192 |
+
|
| 193 |
+
with torch.inference_mode():
|
| 194 |
+
generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
| 195 |
+
generation = generation[0][input_len:]
|
| 196 |
+
|
| 197 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 198 |
+
print(decoded)
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
### Examples
|
| 202 |
+
|
| 203 |
+
See the following Colab notebooks for examples of how to use MedGemma:
|
| 204 |
+
|
| 205 |
+
* To give the model a quick try, running it locally with weights from Hugging
|
| 206 |
+
Face, see [Quick start notebook in
|
| 207 |
+
Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb).
|
| 208 |
+
Note that you will need to use Colab Enterprise to obtain adequate GPU
|
| 209 |
+
resources to run either 27B model without quantization.
|
| 210 |
+
|
| 211 |
+
* For an example of fine-tuning the 4B model, see the [Fine-tuning notebook in
|
| 212 |
+
Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb).
|
| 213 |
+
The 27B models can be fine tuned in a similar manner but will require more
|
| 214 |
+
time and compute resources than the 4B model.
|
| 215 |
+
|
| 216 |
+
### Model architecture overview
|
| 217 |
+
|
| 218 |
+
The MedGemma model is built based on [Gemma 3](https://ai.google.dev/gemma/) and
|
| 219 |
+
uses the same decoder-only transformer architecture as Gemma 3\. To read more
|
| 220 |
+
about the architecture, consult the Gemma 3 [model
|
| 221 |
+
card](https://ai.google.dev/gemma/docs/core/model_card_3).
|
| 222 |
+
|
| 223 |
+
### Technical specifications
|
| 224 |
+
|
| 225 |
+
* **Model type**: Decoder-only Transformer architecture, see the [Gemma 3
|
| 226 |
+
Technical
|
| 227 |
+
Report](https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf)
|
| 228 |
+
* **Input Modalities**: Text, vision
|
| 229 |
+
* **Output Modality:** Text only
|
| 230 |
+
* **Attention mechanism**: Grouped-query attention (GQA)
|
| 231 |
+
* **Context length**: Supports long context, at least 128K tokens
|
| 232 |
+
* **Key publication**: https://arxiv.org/abs/2507.05201
|
| 233 |
+
* **Model created**: July 9, 2025
|
| 234 |
+
|
| 235 |
+
* **Model version**: 1.0.1
|
| 236 |
+
|
| 237 |
+
### Citation
|
| 238 |
+
|
| 239 |
+
When using this model, please cite: Sellergren et al. "MedGemma Technical
|
| 240 |
+
Report." *arXiv preprint arXiv:2507.05201* (2025).
|
| 241 |
+
|
| 242 |
+
```none
|
| 243 |
+
@article{sellergren2025medgemma,
|
| 244 |
+
title={MedGemma Technical Report},
|
| 245 |
+
author={Sellergren, Andrew and Kazemzadeh, Sahar and Jaroensri, Tiam and Kiraly, Atilla and Traverse, Madeleine and Kohlberger, Timo and Xu, Shawn and Jamil, Fayaz and Hughes, Cían and Lau, Charles and others},
|
| 246 |
+
journal={arXiv preprint arXiv:2507.05201},
|
| 247 |
+
year={2025}
|
| 248 |
+
}
|
| 249 |
+
```
|
| 250 |
+
|
| 251 |
+
### Inputs and outputs
|
| 252 |
+
|
| 253 |
+
**Input**:
|
| 254 |
+
|
| 255 |
+
* Text string, such as a question or prompt
|
| 256 |
+
* Images, normalized to 896 x 896 resolution and encoded to 256 tokens each
|
| 257 |
+
* Total input length of 128K tokens
|
| 258 |
+
|
| 259 |
+
**Output**:
|
| 260 |
+
|
| 261 |
+
* Generated text in response to the input, such as an answer to a question,
|
| 262 |
+
analysis of image content, or a summary of a document
|
| 263 |
+
* Total output length of 8192 tokens
|
| 264 |
+
|
| 265 |
+
### Performance and validation
|
| 266 |
+
|
| 267 |
+
MedGemma was evaluated across a range of different multimodal classification,
|
| 268 |
+
report generation, visual question answering, and text-based tasks.
|
| 269 |
+
|
| 270 |
+
### Key performance metrics
|
| 271 |
+
|
| 272 |
+
#### Imaging evaluations
|
| 273 |
+
|
| 274 |
+
The multimodal performance of MedGemma 4B and 27B multimodal was evaluated
|
| 275 |
+
across a range of benchmarks, focusing on radiology, dermatology,
|
| 276 |
+
histopathology, ophthalmology, and multimodal clinical reasoning.
|
| 277 |
+
|
| 278 |
+
MedGemma 4B outperforms the base Gemma 3 4B model across all tested multimodal
|
| 279 |
+
health benchmarks.
|
| 280 |
+
|
| 281 |
+
| Task and metric | Gemma 3 4B | MedGemma 4B |
|
| 282 |
+
| :---- | :---- | :---- |
|
| 283 |
+
| **Medical image classification** | | |
|
| 284 |
+
| MIMIC CXR\*\* \- macro F1 for top 5 conditions | 81.2 | 88.9 |
|
| 285 |
+
| CheXpert CXR \- macro F1 for top 5 conditions | 32.6 | 48.1 |
|
| 286 |
+
| CXR14 \- macro F1 for 3 conditions | 32.0 | 50.1 |
|
| 287 |
+
| PathMCQA\* (histopathology, internal\*\*) \- Accuracy | 37.1 | 69.8 |
|
| 288 |
+
| US-DermMCQA\* \- Accuracy | 52.5 | 71.8 |
|
| 289 |
+
| EyePACS\* (fundus, internal) \- Accuracy | 14.4 | 64.9 |
|
| 290 |
+
| **Visual question answering** | | |
|
| 291 |
+
| SLAKE (radiology) \- Tokenized F1 | 40.2 | 72.3 |
|
| 292 |
+
| VQA-RAD\*\*\* (radiology) \- Tokenized F1 | 33.6 | 49.9 |
|
| 293 |
+
| **Knowledge and reasoning** | | | | |
|
| 294 |
+
| MedXpertQA (text \+ multimodal questions) \- Accuracy | 16.4 | 18.8 |
|
| 295 |
+
|
| 296 |
+
*Internal datasets. US-DermMCQA is described in [Liu (2020, Nature
|
| 297 |
+
medicine)](https://www.nature.com/articles/s41591-020-0842-3), presented as a
|
| 298 |
+
4-way MCQ per example for skin condition classification. PathMCQA is based on
|
| 299 |
+
multiple datasets, presented as 3-9 way MCQ per example for identification,
|
| 300 |
+
grading, and subtype for breast, cervical, and prostate cancer. EyePACS is a
|
| 301 |
+
dataset of fundus images with classification labels based on 5-level diabetic
|
| 302 |
+
retinopathy severity (None, Mild, Moderate, Severe, Proliferative). More details
|
| 303 |
+
in the [MedGemma Technical Report](https://arxiv.org/abs/2507.05201).
|
| 304 |
+
|
| 305 |
+
**Based on radiologist adjudicated labels, described in [Yang (2024,
|
| 306 |
+
arXiv)](https://arxiv.org/pdf/2405.03162) Section A.1.1.
|
| 307 |
+
|
| 308 |
+
***Based on "balanced split," described in [Yang (2024,
|
| 309 |
+
arXiv)](https://arxiv.org/pdf/2405.03162).
|
| 310 |
+
|
| 311 |
+
#### Chest X-ray report generation
|
| 312 |
+
|
| 313 |
+
MedGemma chest X-ray (CXR) report generation performance was evaluated on
|
| 314 |
+
[MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.1.0/) using the [RadGraph
|
| 315 |
+
F1 metric](https://arxiv.org/abs/2106.14463). We compare the MedGemma
|
| 316 |
+
pre-trained checkpoint with our previous best model for CXR report generation,
|
| 317 |
+
[PaliGemma 2](https://arxiv.org/abs/2412.03555).
|
| 318 |
+
|
| 319 |
+
| Metric | MedGemma 4B (pre-trained) | MedGemma 4B (tuned for CXR)| PaliGemma 2 3B (tuned for CXR) | PaliGemma 2 10B (tuned for CXR) |
|
| 320 |
+
| :---- | :---- | :---- | :---- | :---- |
|
| 321 |
+
| MIMIC CXR \- RadGraph F1 | 29.5 | 30.3 |28.8 | 29.5 |
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
The instruction-tuned versions of MedGemma 4B and MedGemma 27B achieve lower
|
| 326 |
+
scores (21.9 and 21.3, respectively) due to the differences in reporting style
|
| 327 |
+
compared to the MIMIC ground truth reports. Further fine-tuning on MIMIC reports
|
| 328 |
+
enables users to achieve improved performance, as shown by the improved
|
| 329 |
+
performance of the MedGemma 4B model that was tuned for CXR.
|
| 330 |
+
|
| 331 |
+
#### Text evaluations
|
| 332 |
+
|
| 333 |
+
MedGemma 4B and text-only MedGemma 27B were evaluated across a range of
|
| 334 |
+
text-only benchmarks for medical knowledge and reasoning.
|
| 335 |
+
|
| 336 |
+
The MedGemma models outperform their respective base Gemma models across all
|
| 337 |
+
tested text-only health benchmarks.
|
| 338 |
+
|
| 339 |
+
| Metric | Gemma 3 4B | MedGemma 4B |
|
| 340 |
+
| :---- | :---- | :---- |
|
| 341 |
+
| MedQA (4-op) | 50.7 | 64.4 |
|
| 342 |
+
| MedMCQA | 45.4 | 55.7 |
|
| 343 |
+
| PubMedQA | 68.4 | 73.4 |
|
| 344 |
+
| MMLU Med | 67.2 | 70.0 |
|
| 345 |
+
| MedXpertQA (text only) | 11.6 | 14.2 |
|
| 346 |
+
| AfriMed-QA (25 question test set) | 48.0 | 52.0 |
|
| 347 |
+
|
| 348 |
+
For all MedGemma 27B results, [test-time
|
| 349 |
+
scaling](https://arxiv.org/abs/2501.19393) is used to improve performance.
|
| 350 |
+
|
| 351 |
+
#### Medical record evaluations
|
| 352 |
+
|
| 353 |
+
All models were evaluated on a question answer dataset from synthetic FHIR data
|
| 354 |
+
to answer questions about patient records. MedGemma 27B multimodal's
|
| 355 |
+
FHIR-specific training gives it significant improvement over other MedGemma and
|
| 356 |
+
Gemma models.
|
| 357 |
+
|
| 358 |
+
| Metric | Gemma 3 4B | MedGemma 4B |
|
| 359 |
+
| :---- | :---- | :---- |
|
| 360 |
+
| EHRQA | 70.9 | 67.6 |
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
### Ethics and safety evaluation
|
| 364 |
+
|
| 365 |
+
#### Evaluation approach
|
| 366 |
+
|
| 367 |
+
Our evaluation methods include structured evaluations and internal red-teaming
|
| 368 |
+
testing of relevant content policies. Red-teaming was conducted by a number of
|
| 369 |
+
different teams, each with different goals and human evaluation metrics. These
|
| 370 |
+
models were evaluated against a number of different categories relevant to
|
| 371 |
+
ethics and safety, including:
|
| 372 |
+
|
| 373 |
+
* **Child safety**: Evaluation of text-to-text and image-to-text prompts
|
| 374 |
+
covering child safety policies, including child sexual abuse and
|
| 375 |
+
exploitation.
|
| 376 |
+
* **Content safety:** Evaluation of text-to-text and image-to-text prompts
|
| 377 |
+
covering safety policies, including harassment, violence and gore, and hate
|
| 378 |
+
speech.
|
| 379 |
+
* **Representational harms**: Evaluation of text-to-text and image-to-text
|
| 380 |
+
prompts covering safety policies, including bias, stereotyping, and harmful
|
| 381 |
+
associations or inaccuracies.
|
| 382 |
+
* **General medical harms:** Evaluation of text-to-text and image-to-text
|
| 383 |
+
prompts covering safety policies, including information quality and harmful
|
| 384 |
+
associations or inaccuracies.
|
| 385 |
+
|
| 386 |
+
In addition to development level evaluations, we conduct "assurance evaluations"
|
| 387 |
+
which are our "arms-length" internal evaluations for responsibility governance
|
| 388 |
+
decision making. They are conducted separately from the model development team,
|
| 389 |
+
to inform decision making about release. High-level findings are fed back to the
|
| 390 |
+
model team, but prompt sets are held out to prevent overfitting and preserve the
|
| 391 |
+
results' ability to inform decision making. Notable assurance evaluation results
|
| 392 |
+
are reported to our Responsibility & Safety Council as part of release review.
|
| 393 |
+
|
| 394 |
+
#### Evaluation results
|
| 395 |
+
|
| 396 |
+
For all areas of safety testing, we saw safe levels of performance across the
|
| 397 |
+
categories of child safety, content safety, and representational harms. All
|
| 398 |
+
testing was conducted without safety filters to evaluate the model capabilities
|
| 399 |
+
and behaviors. For text-to-text, image-to-text, and audio-to-text, and across
|
| 400 |
+
both MedGemma model sizes, the model produced minimal policy violations. A
|
| 401 |
+
limitation of our evaluations was that they included primarily English language
|
| 402 |
+
prompts.
|
| 403 |
+
|
| 404 |
+
## Data card
|
| 405 |
+
|
| 406 |
+
### Dataset overview
|
| 407 |
+
|
| 408 |
+
#### Training
|
| 409 |
+
|
| 410 |
+
The base Gemma models are pre-trained on a large corpus of text and code data.
|
| 411 |
+
MedGemma 4B utilizes a [SigLIP](https://arxiv.org/abs/2303.15343) image encoder
|
| 412 |
+
that has been specifically pre-trained on a variety of de-identified medical
|
| 413 |
+
data, including radiology images, histopathology images, ophthalmology images,
|
| 414 |
+
and dermatology images. Its LLM component is trained on a diverse set of medical
|
| 415 |
+
data, including medical text relevant to radiology images, chest-x rays,
|
| 416 |
+
histopathology patches, ophthalmology images and dermatology images.
|
| 417 |
+
|
| 418 |
+
#### Evaluation
|
| 419 |
+
|
| 420 |
+
MedGemma models have been evaluated on a comprehensive set of clinically
|
| 421 |
+
relevant benchmarks, including over 22 datasets across 5 different tasks and 6
|
| 422 |
+
medical image modalities. These include both open benchmark datasets and curated
|
| 423 |
+
datasets, with a focus on expert human evaluations for tasks like CXR report
|
| 424 |
+
generation and radiology VQA.
|
| 425 |
+
|
| 426 |
+
### Ethics and safety evaluation
|
| 427 |
+
|
| 428 |
+
#### Evaluation approach
|
| 429 |
+
|
| 430 |
+
Our evaluation methods include structured evaluations and internal red-teaming
|
| 431 |
+
testing of relevant content policies. Red-teaming was conducted by a number of
|
| 432 |
+
different teams, each with different goals and human evaluation metrics. These
|
| 433 |
+
models were evaluated against a number of different categories relevant to
|
| 434 |
+
ethics and safety, including:
|
| 435 |
+
|
| 436 |
+
* **Child safety**: Evaluation of text-to-text and image-to-text prompts
|
| 437 |
+
covering child safety policies, including child sexual abuse and
|
| 438 |
+
exploitation.
|
| 439 |
+
* **Content safety:** Evaluation of text-to-text and image-to-text prompts
|
| 440 |
+
covering safety policies, including harassment, violence and gore, and hate
|
| 441 |
+
speech.
|
| 442 |
+
* **Representational harms**: Evaluation of text-to-text and image-to-text
|
| 443 |
+
prompts covering safety policies, including bias, stereotyping, and harmful
|
| 444 |
+
associations or inaccuracies.
|
| 445 |
+
* **General medical harms:** Evaluation of text-to-text and image-to-text
|
| 446 |
+
prompts covering safety policies, including information quality and harmful
|
| 447 |
+
associations or inaccuracies.
|
| 448 |
+
|
| 449 |
+
In addition to development level evaluations, we conduct "assurance evaluations"
|
| 450 |
+
which are our "arms-length" internal evaluations for responsibility governance
|
| 451 |
+
decision making. They are conducted separately from the model development team,
|
| 452 |
+
to inform decision making about release. High-level findings are fed back to the
|
| 453 |
+
model team, but prompt sets are held out to prevent overfitting and preserve the
|
| 454 |
+
results' ability to inform decision making. Notable assurance evaluation results
|
| 455 |
+
are reported to our Responsibility & Safety Council as part of release review.
|
| 456 |
+
|
| 457 |
+
#### Evaluation results
|
| 458 |
+
|
| 459 |
+
For all areas of safety testing, we saw safe levels of performance across the
|
| 460 |
+
categories of child safety, content safety, and representational harms. All
|
| 461 |
+
testing was conducted without safety filters to evaluate the model capabilities
|
| 462 |
+
and behaviors. For text-to-text, image-to-text, and audio-to-text, and across
|
| 463 |
+
both MedGemma model sizes, the model produced minimal policy violations. A
|
| 464 |
+
limitation of our evaluations was that they included primarily English language
|
| 465 |
+
prompts.
|
| 466 |
+
|
| 467 |
+
## Data card
|
| 468 |
+
|
| 469 |
+
### Dataset overview
|
| 470 |
+
|
| 471 |
+
#### Training
|
| 472 |
+
|
| 473 |
+
The base Gemma models are pre-trained on a large corpus of text and code data.
|
| 474 |
+
MedGemma multimodal variants utilize a
|
| 475 |
+
[SigLIP](https://arxiv.org/abs/2303.15343) image encoder that has been
|
| 476 |
+
specifically pre-trained on a variety of de-identified medical data, including
|
| 477 |
+
radiology images, histopathology images, ophthalmology images, and dermatology
|
| 478 |
+
images. Their LLM component is trained on a diverse set of medical data,
|
| 479 |
+
including medical text, medical question-answer pairs, FHIR-based electronic
|
| 480 |
+
health record data (27B multimodal only), radiology images, histopathology
|
| 481 |
+
patches, ophthalmology images, and dermatology images.
|
| 482 |
+
|
| 483 |
+
#### Evaluation
|
| 484 |
+
|
| 485 |
+
MedGemma models have been evaluated on a comprehensive set of clinically
|
| 486 |
+
relevant benchmarks, including over 22 datasets across 6 different tasks and 4
|
| 487 |
+
medical image modalities. These benchmarks include both open and internal
|
| 488 |
+
datasets.
|
| 489 |
+
|
| 490 |
+
#### Source
|
| 491 |
+
|
| 492 |
+
MedGemma utilizes a combination of public and private datasets.
|
| 493 |
+
|
| 494 |
+
This model was trained on diverse public datasets including MIMIC-CXR (chest
|
| 495 |
+
X-rays and reports), ChestImaGenome: Set of bounding boxes linking image
|
| 496 |
+
findings with anatomical regions for MIMIC-CXR (MedGemma 27B multimodal only),
|
| 497 |
+
SLAKE (multimodal medical images and questions), PAD-UFES-20 (skin lesion images
|
| 498 |
+
and data), SCIN (dermatology images), TCGA (cancer genomics data), CAMELYON
|
| 499 |
+
(lymph node histopathology images), PMC-OA (biomedical literature with images),
|
| 500 |
+
and Mendeley Digital Knee X-Ray (knee X-rays).
|
| 501 |
+
|
| 502 |
+
Additionally, multiple diverse proprietary datasets were licensed and
|
| 503 |
+
incorporated (described next).
|
| 504 |
+
|
| 505 |
+
### Data Ownership and Documentation
|
| 506 |
+
|
| 507 |
+
* [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.1.0/): MIT Laboratory
|
| 508 |
+
for Computational Physiology and Beth Israel Deaconess Medical Center
|
| 509 |
+
(BIDMC).
|
| 510 |
+
* [Slake-VQA](https://www.med-vqa.com/slake/): The Hong Kong Polytechnic
|
| 511 |
+
University (PolyU), with collaborators including West China Hospital of
|
| 512 |
+
Sichuan University and Sichuan Academy of Medical Sciences / Sichuan
|
| 513 |
+
Provincial People's Hospital.
|
| 514 |
+
* [PAD-UFES-20](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/): Federal
|
| 515 |
+
University of Espírito Santo (UFES), Brazil, through its Dermatological and
|
| 516 |
+
Surgical Assistance Program (PAD).
|
| 517 |
+
* [SCIN](https://github.com/google-research-datasets/scin): A collaboration
|
| 518 |
+
between Google Health and Stanford Medicine.
|
| 519 |
+
* [TCGA](https://portal.gdc.cancer.gov/) (The Cancer Genome Atlas): A joint
|
| 520 |
+
effort of National Cancer Institute and National Human Genome Research
|
| 521 |
+
Institute. Data from TCGA are available via the Genomic Data Commons (GDC)
|
| 522 |
+
* [CAMELYON](https://camelyon17.grand-challenge.org/Data/): The data was
|
| 523 |
+
collected from Radboud University Medical Center and University Medical
|
| 524 |
+
Center Utrecht in the Netherlands.
|
| 525 |
+
* [PMC-OA (PubMed Central Open Access
|
| 526 |
+
Subset)](https://catalog.data.gov/dataset/pubmed-central-open-access-subset-pmc-oa):
|
| 527 |
+
Maintained by the National Library of Medicine (NLM) and National Center for
|
| 528 |
+
Biotechnology Information (NCBI), which are part of the NIH.
|
| 529 |
+
* [MedQA](https://arxiv.org/pdf/2009.13081): This dataset was created by a
|
| 530 |
+
team of researchers led by Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung
|
| 531 |
+
Weng, Hanyi Fang, and Peter Szolovits
|
| 532 |
+
* [Mendeley Digital Knee
|
| 533 |
+
X-Ray](https://data.mendeley.com/datasets/t9ndx37v5h/1): This dataset is
|
| 534 |
+
from Rani Channamma University, and is hosted on Mendeley Data.
|
| 535 |
+
* [AfriMed-QA](https://afrimedqa.com/): This data was developed and led by
|
| 536 |
+
multiple collaborating organizations and researchers include key
|
| 537 |
+
contributors: Intron Health, SisonkeBiotik, BioRAMP, Georgia Institute of
|
| 538 |
+
Technology, and MasakhaneNLP.
|
| 539 |
+
* [VQA-RAD](https://www.nature.com/articles/sdata2018251): This dataset was
|
| 540 |
+
created by a research team led by Jason J. Lau, Soumya Gayen, Asma Ben
|
| 541 |
+
Abacha, and Dina Demner-Fushman and their affiliated institutions (the US
|
| 542 |
+
National Library of Medicine and National Institutes of Health)
|
| 543 |
+
* [Chest ImaGenome](https://physionet.org/content/chest-imagenome/1.0.0/): IBM
|
| 544 |
+
Research.
|
| 545 |
+
* [MedExpQA](https://www.sciencedirect.com/science/article/pii/S0933365724001805):
|
| 546 |
+
This dataset was created by researchers at the HiTZ Center (Basque Center
|
| 547 |
+
for Language Technology and Artificial Intelligence).
|
| 548 |
+
* [MedXpertQA](https://huggingface.co/datasets/TsinghuaC3I/MedXpertQA): This
|
| 549 |
+
dataset was developed by researchers at Tsinghua University (Beijing, China)
|
| 550 |
+
and Shanghai Artificial Intelligence Laboratory (Shanghai, China).
|
| 551 |
+
* [HealthSearchQA](https://huggingface.co/datasets/katielink/healthsearchqa):
|
| 552 |
+
This dataset consists of consisting of 3,173 commonly searched consumer
|
| 553 |
+
questions
|
| 554 |
+
|
| 555 |
+
In addition to the public datasets listed above, MedGemma was also trained on
|
| 556 |
+
de-identified, licensed datasets or datasets collected internally at Google from
|
| 557 |
+
consented participants.
|
| 558 |
+
|
| 559 |
+
* **Radiology dataset 1:** De-identified dataset of different CT studies
|
| 560 |
+
across body parts from a US-based radiology outpatient diagnostic center
|
| 561 |
+
network.
|
| 562 |
+
* **Ophthalmology dataset 1 (EyePACS):** De-identified dataset of fundus
|
| 563 |
+
images from diabetic retinopathy screening.
|
| 564 |
+
* **Dermatology dataset 1:** De-identified dataset of teledermatology skin
|
| 565 |
+
condition images (both clinical and dermatoscopic) from Colombia.
|
| 566 |
+
* **Dermatology dataset 2:** De-identified dataset of skin cancer images (both
|
| 567 |
+
clinical and dermatoscopic) from Australia.
|
| 568 |
+
* **Dermatology dataset 3:** De-identified dataset of non-diseased skin images
|
| 569 |
+
from an internal data collection effort.
|
| 570 |
+
* **Pathology dataset 1:** De-identified dataset of histopathology H\&E whole
|
| 571 |
+
slide images created in collaboration with an academic research hospital and
|
| 572 |
+
biobank in Europe. Comprises de-identified colon, prostate, and lymph nodes.
|
| 573 |
+
* **Pathology dataset 2:** De-identified dataset of lung histopathology H\&E
|
| 574 |
+
and IHC whole slide images created by a commercial biobank in the United
|
| 575 |
+
States.
|
| 576 |
+
* **Pathology dataset 3:** De-identified dataset of prostate and lymph node
|
| 577 |
+
H\&E and IHC histopathology whole slide images created by a contract
|
| 578 |
+
research organization in the United States.
|
| 579 |
+
* **Pathology dataset 4:** De-identified dataset of histopathology whole slide
|
| 580 |
+
images created in collaboration with a large, tertiary teaching hospital in
|
| 581 |
+
the United States. Comprises a diverse set of tissue and stain types,
|
| 582 |
+
predominantly H\&E.
|
| 583 |
+
* **EHR dataset 1:** Question/answer dataset drawn from synthetic FHIR records
|
| 584 |
+
created by [Synthea.](https://synthetichealth.github.io/synthea/) The test
|
| 585 |
+
set includes 19 unique patients with 200 questions per patient divided into
|
| 586 |
+
10 different categories.
|
| 587 |
+
|
| 588 |
+
### Data citation
|
| 589 |
+
|
| 590 |
+
* **MIMIC-CXR:** Johnson, A., Pollard, T., Mark, R., Berkowitz, S., & Horng,
|
| 591 |
+
S. (2024). MIMIC-CXR Database (version 2.1.0). PhysioNet.
|
| 592 |
+
[https://physionet.org/content/mimic-cxr/2.1.0/](https://physionet.org/content/mimic-cxr/2.1.0/)
|
| 593 |
+
*and* Johnson, Alistair E. W., Tom J. Pollard, Seth J. Berkowitz, Nathaniel
|
| 594 |
+
R. Greenbaum, Matthew P. Lungren, Chih-Ying Deng, Roger G. Mark, and Steven
|
| 595 |
+
Horng. 2019\. "MIMIC-CXR, a de-Identified Publicly Available Database of
|
| 596 |
+
Chest Radiographs with Free-Text Reports." *Scientific Data 6* (1): 1–8.
|
| 597 |
+
|
| 598 |
+
* **SLAKE:** Liu, Bo, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu.
|
| 599 |
+
2021.SLAKE: A Semantically-Labeled Knowledge-Enhanced Dataset for Medical
|
| 600 |
+
Visual Question Answering."
|
| 601 |
+
[http://arxiv.org/abs/2102.09542](http://arxiv.org/abs/2102.09542).
|
| 602 |
+
|
| 603 |
+
* **PAD-UEFS-20:** Pacheco, Andre GC, et al. "PAD-UFES-20: A skin lesion
|
| 604 |
+
dataset composed of patient data and clinical images collected from
|
| 605 |
+
smartphones." *Data in brief* 32 (2020): 106221\.
|
| 606 |
+
|
| 607 |
+
* **SCIN:** Ward, Abbi, Jimmy Li, Julie Wang, Sriram Lakshminarasimhan, Ashley
|
| 608 |
+
Carrick, Bilson Campana, Jay Hartford, et al. 2024\. "Creating an Empirical
|
| 609 |
+
Dermatology Dataset Through Crowdsourcing With Web Search Advertisements."
|
| 610 |
+
*JAMA Network Open 7* (11): e2446615–e2446615.
|
| 611 |
+
|
| 612 |
+
* **TCGA:** The results shown here are in whole or part based upon data
|
| 613 |
+
generated by the TCGA Research Network:
|
| 614 |
+
[https://www.cancer.gov/tcga](https://www.cancer.gov/tcga).
|
| 615 |
+
|
| 616 |
+
* **CAMELYON16:** Ehteshami Bejnordi, Babak, Mitko Veta, Paul Johannes van
|
| 617 |
+
Diest, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen A. W. M.
|
| 618 |
+
van der Laak, et al. 2017\. "Diagnostic Assessment of Deep Learning
|
| 619 |
+
Algorithms for Detection of Lymph Node Metastases in Women With Breast
|
| 620 |
+
Cancer." *JAMA 318* (22): 2199–2210.
|
| 621 |
+
|
| 622 |
+
* **Mendeley Digital Knee X-Ray:** Gornale, Shivanand; Patravali, Pooja
|
| 623 |
+
(2020), "Digital Knee X-ray Images", Mendeley Data, V1, doi:
|
| 624 |
+
10.17632/t9ndx37v5h.1
|
| 625 |
+
|
| 626 |
+
* **VQA-RAD:** Lau, Jason J., Soumya Gayen, Asma Ben Abacha, and Dina
|
| 627 |
+
Demner-Fushman. 2018\. "A Dataset of Clinically Generated Visual Questions
|
| 628 |
+
and Answers about Radiology Images." *Scientific Data 5* (1): 1–10.
|
| 629 |
+
|
| 630 |
+
* **Chest ImaGenome:** Wu, J., Agu, N., Lourentzou, I., Sharma, A., Paguio,
|
| 631 |
+
J., Yao, J. S., Dee, E. C., Mitchell, W., Kashyap, S., Giovannini, A., Celi,
|
| 632 |
+
L. A., Syeda-Mahmood, T., & Moradi, M. (2021). Chest ImaGenome Dataset
|
| 633 |
+
(version 1.0.0). PhysioNet. RRID:SCR\_007345.
|
| 634 |
+
[https://doi.org/10.13026/wv01-y230](https://doi.org/10.13026/wv01-y230)
|
| 635 |
+
|
| 636 |
+
* **MedQA:** Jin, Di, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang,
|
| 637 |
+
and Peter Szolovits. 2020\. "What Disease Does This Patient Have? A
|
| 638 |
+
Large-Scale Open Domain Question Answering Dataset from Medical Exams."
|
| 639 |
+
[http://arxiv.org/abs/2009.13081](http://arxiv.org/abs/2009.13081).
|
| 640 |
+
|
| 641 |
+
* **AfrimedQA:** Olatunji, Tobi, Charles Nimo, Abraham Owodunni, Tassallah
|
| 642 |
+
Abdullahi, Emmanuel Ayodele, Mardhiyah Sanni, Chinemelu Aka, et al. 2024\.
|
| 643 |
+
"AfriMed-QA: A Pan-African, Multi-Specialty, Medical Question-Answering
|
| 644 |
+
Benchmark Dataset."
|
| 645 |
+
[http://arxiv.org/abs/2411.15640](http://arxiv.org/abs/2411.15640).
|
| 646 |
+
|
| 647 |
+
* **MedExpQA:** Alonso, I., Oronoz, M., & Agerri, R. (2024). MedExpQA:
|
| 648 |
+
Multilingual Benchmarking of Large Language Models for Medical Question
|
| 649 |
+
Answering. *arXiv preprint arXiv:2404.05590*. Retrieved from
|
| 650 |
+
[https://arxiv.org/abs/2404.05590](https://arxiv.org/abs/2404.05590)
|
| 651 |
+
|
| 652 |
+
* **MedXpertQA:** Zuo, Yuxin, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu,
|
| 653 |
+
Ermo Hua, Kaiyan Zhang, Ning Ding, and Bowen Zhou. 2025\. "MedXpertQA:
|
| 654 |
+
Benchmarking Expert-Level Medical Reasoning and Understanding."
|
| 655 |
+
[http://arxiv.org/abs/2501.18362](http://arxiv.org/abs/2501.18362).
|
| 656 |
+
|
| 657 |
+
### De-identification/anonymization:
|
| 658 |
+
|
| 659 |
+
Google and its partners utilize datasets that have been rigorously anonymized or
|
| 660 |
+
de-identified to ensure the protection of individual research participants and
|
| 661 |
+
patient privacy.
|
| 662 |
+
|
| 663 |
+
## Implementation information
|
| 664 |
+
|
| 665 |
+
Details about the model internals.
|
| 666 |
+
|
| 667 |
+
### Software
|
| 668 |
+
|
| 669 |
+
Training was done using [JAX](https://github.com/jax-ml/jax).
|
| 670 |
+
|
| 671 |
+
JAX allows researchers to take advantage of the latest generation of hardware,
|
| 672 |
+
including TPUs, for faster and more efficient training of large models.
|
| 673 |
+
|
| 674 |
+
## Use and limitations
|
| 675 |
+
|
| 676 |
+
### Intended use
|
| 677 |
+
|
| 678 |
+
MedGemma is an open multimodal generative AI model intended to be used as a
|
| 679 |
+
starting point that enables more efficient development of downstream healthcare
|
| 680 |
+
applications involving medical text and images. MedGemma is intended for
|
| 681 |
+
developers in the life sciences and healthcare space. Developers are responsible
|
| 682 |
+
for training, adapting and making meaningful changes to MedGemma to accomplish
|
| 683 |
+
their specific intended use. MedGemma models can be fine-tuned by developers
|
| 684 |
+
using their own proprietary data for their specific tasks or solutions.
|
| 685 |
+
|
| 686 |
+
MedGemma is based on Gemma 3 and has been further trained on medical images and
|
| 687 |
+
text. MedGemma enables further development in any medical context (image and
|
| 688 |
+
textual), however the model was pre-trained using chest X-ray, pathology,
|
| 689 |
+
dermatology, and fundus images. Examples of tasks within MedGemma's training
|
| 690 |
+
include visual question answering pertaining to medical images, such as
|
| 691 |
+
radiographs, or providing answers to textual medical questions. Full details of
|
| 692 |
+
all the tasks MedGemma has been evaluated can be found in the [MedGemma
|
| 693 |
+
Technical Report](https://arxiv.org/abs/2507.05201).
|
| 694 |
+
|
| 695 |
+
### Benefits
|
| 696 |
+
|
| 697 |
+
* Provides strong baseline medical image and text comprehension for models of
|
| 698 |
+
its size.
|
| 699 |
+
* This strong performance makes it efficient to adapt for downstream
|
| 700 |
+
healthcare-based use cases, compared to models of similar size without
|
| 701 |
+
medical data pre-training.
|
| 702 |
+
* This adaptation may involve prompt engineering, grounding, agentic
|
| 703 |
+
orchestration or fine-tuning depending on the use case, baseline validation
|
| 704 |
+
requirements, and desired performance characteristics.
|
| 705 |
+
|
| 706 |
+
### Limitations
|
| 707 |
+
|
| 708 |
+
MedGemma is not intended to be used without appropriate validation, adaptation
|
| 709 |
+
and/or making meaningful modification by developers for their specific use case.
|
| 710 |
+
The outputs generated by MedGemma are not intended to directly inform clinical
|
| 711 |
+
diagnosis, patient management decisions, treatment recommendations, or any other
|
| 712 |
+
direct clinical practice applications. Performance benchmarks highlight baseline
|
| 713 |
+
capabilities on relevant benchmarks, but even for image and text domains that
|
| 714 |
+
constitute a substantial portion of training data, inaccurate model output is
|
| 715 |
+
possible. All outputs from MedGemma should be considered preliminary and require
|
| 716 |
+
independent verification, clinical correlation, and further investigation
|
| 717 |
+
through established research and development methodologies.
|
| 718 |
+
|
| 719 |
+
MedGemma's multimodal capabilities have been primarily evaluated on single-image
|
| 720 |
+
tasks. MedGemma has not been evaluated in use cases that involve comprehension
|
| 721 |
+
of multiple images.
|
| 722 |
+
|
| 723 |
+
MedGemma has not been evaluated or optimized for multi-turn applications.
|
| 724 |
+
|
| 725 |
+
MedGemma's training may make it more sensitive to the specific prompt used than
|
| 726 |
+
Gemma 3\.
|
| 727 |
+
|
| 728 |
+
When adapting MedGemma developer should consider the following:
|
| 729 |
+
|
| 730 |
+
* **Bias in validation data:** As with any research, developers should ensure
|
| 731 |
+
that any downstream application is validated to understand performance using
|
| 732 |
+
data that is appropriately representative of the intended use setting for
|
| 733 |
+
the specific application (e.g., age, sex, gender, condition, imaging device,
|
| 734 |
+
etc).
|
| 735 |
+
* **Data contamination concerns**: When evaluating the generalization
|
| 736 |
+
capabilities of a large model like MedGemma in a medical context, there is a
|
| 737 |
+
risk of data contamination, where the model might have inadvertently seen
|
| 738 |
+
related medical information during its pre-training, potentially
|
| 739 |
+
overestimating its true ability to generalize to novel medical concepts.
|
| 740 |
+
Developers should validate MedGemma on datasets not publicly available or
|
| 741 |
+
otherwise made available to non-institutional researchers to mitigate this
|
| 742 |
+
risk.
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
### Release notes
|
| 746 |
+
|
| 747 |
+
* May 20, 2025: Initial Release
|
| 748 |
+
* July 9, 2025 Bug Fix: Fixed the subtle degradation in the multimodal
|
| 749 |
+
performance. The issue was due to a missing end-of-image token in the model
|
| 750 |
+
vocabulary, impacting combined text-and-image tasks. This fix reinstates and
|
| 751 |
+
correctly maps that token, ensuring text-only tasks remain unaffected while
|
| 752 |
+
restoring multimodal performance.
|
added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<image_soft_token>": 262144
|
| 3 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{{ bos_token }}
|
| 2 |
+
{%- if messages[0]['role'] == 'system' -%}
|
| 3 |
+
{%- if messages[0]['content'] is string -%}
|
| 4 |
+
{%- set first_user_prefix = messages[0]['content'] + '
|
| 5 |
+
|
| 6 |
+
' -%}
|
| 7 |
+
{%- else -%}
|
| 8 |
+
{%- set first_user_prefix = messages[0]['content'][0]['text'] + '
|
| 9 |
+
|
| 10 |
+
' -%}
|
| 11 |
+
{%- endif -%}
|
| 12 |
+
{%- set loop_messages = messages[1:] -%}
|
| 13 |
+
{%- else -%}
|
| 14 |
+
{%- set first_user_prefix = "" -%}
|
| 15 |
+
{%- set loop_messages = messages -%}
|
| 16 |
+
{%- endif -%}
|
| 17 |
+
{%- for message in loop_messages -%}
|
| 18 |
+
{%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
|
| 19 |
+
{{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
|
| 20 |
+
{%- endif -%}
|
| 21 |
+
{%- if (message['role'] == 'assistant') -%}
|
| 22 |
+
{%- set role = "model" -%}
|
| 23 |
+
{%- else -%}
|
| 24 |
+
{%- set role = message['role'] -%}
|
| 25 |
+
{%- endif -%}
|
| 26 |
+
{{ '<start_of_turn>' + role + '
|
| 27 |
+
' + (first_user_prefix if loop.first else "") }}
|
| 28 |
+
{%- if message['content'] is string -%}
|
| 29 |
+
{{ message['content'] | trim }}
|
| 30 |
+
{%- elif message['content'] is iterable -%}
|
| 31 |
+
{%- for item in message['content'] -%}
|
| 32 |
+
{%- if item['type'] == 'image' -%}
|
| 33 |
+
{{ '<start_of_image>' }}
|
| 34 |
+
{%- elif item['type'] == 'text' -%}
|
| 35 |
+
{{ item['text'] | trim }}
|
| 36 |
+
{%- endif -%}
|
| 37 |
+
{%- endfor -%}
|
| 38 |
+
{%- else -%}
|
| 39 |
+
{{ raise_exception("Invalid content type") }}
|
| 40 |
+
{%- endif -%}
|
| 41 |
+
{{ '<end_of_turn>
|
| 42 |
+
' }}
|
| 43 |
+
{%- endfor -%}
|
| 44 |
+
{%- if add_generation_prompt -%}
|
| 45 |
+
{{'<start_of_turn>model
|
| 46 |
+
'}}
|
| 47 |
+
{%- endif -%}
|
config.json
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Gemma3ForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"boi_token_index": 255999,
|
| 6 |
+
"eoi_token_index": 256000,
|
| 7 |
+
"eos_token_id": [
|
| 8 |
+
1,
|
| 9 |
+
106
|
| 10 |
+
],
|
| 11 |
+
"image_token_index": 262144,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"mm_tokens_per_image": 256,
|
| 14 |
+
"model_type": "gemma3",
|
| 15 |
+
"text_config": {
|
| 16 |
+
"attention_bias": false,
|
| 17 |
+
"attention_dropout": 0.0,
|
| 18 |
+
"attn_logit_softcapping": null,
|
| 19 |
+
"final_logit_softcapping": null,
|
| 20 |
+
"head_dim": 256,
|
| 21 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
| 22 |
+
"hidden_size": 2560,
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 10240,
|
| 25 |
+
"layer_types": [
|
| 26 |
+
"sliding_attention",
|
| 27 |
+
"sliding_attention",
|
| 28 |
+
"sliding_attention",
|
| 29 |
+
"sliding_attention",
|
| 30 |
+
"sliding_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"sliding_attention",
|
| 33 |
+
"sliding_attention",
|
| 34 |
+
"sliding_attention",
|
| 35 |
+
"sliding_attention",
|
| 36 |
+
"sliding_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"sliding_attention",
|
| 39 |
+
"sliding_attention",
|
| 40 |
+
"sliding_attention",
|
| 41 |
+
"sliding_attention",
|
| 42 |
+
"sliding_attention",
|
| 43 |
+
"full_attention",
|
| 44 |
+
"sliding_attention",
|
| 45 |
+
"sliding_attention",
|
| 46 |
+
"sliding_attention",
|
| 47 |
+
"sliding_attention",
|
| 48 |
+
"sliding_attention",
|
| 49 |
+
"full_attention",
|
| 50 |
+
"sliding_attention",
|
| 51 |
+
"sliding_attention",
|
| 52 |
+
"sliding_attention",
|
| 53 |
+
"sliding_attention",
|
| 54 |
+
"sliding_attention",
|
| 55 |
+
"full_attention",
|
| 56 |
+
"sliding_attention",
|
| 57 |
+
"sliding_attention",
|
| 58 |
+
"sliding_attention",
|
| 59 |
+
"sliding_attention"
|
| 60 |
+
],
|
| 61 |
+
"max_position_embeddings": 131072,
|
| 62 |
+
"model_type": "gemma3_text",
|
| 63 |
+
"num_attention_heads": 8,
|
| 64 |
+
"num_hidden_layers": 34,
|
| 65 |
+
"num_key_value_heads": 4,
|
| 66 |
+
"query_pre_attn_scalar": 256,
|
| 67 |
+
"rms_norm_eps": 1e-06,
|
| 68 |
+
"rope_local_base_freq": 10000,
|
| 69 |
+
"rope_scaling": {
|
| 70 |
+
"factor": 8.0,
|
| 71 |
+
"rope_type": "linear"
|
| 72 |
+
},
|
| 73 |
+
"rope_theta": 1000000,
|
| 74 |
+
"sliding_window": 1024,
|
| 75 |
+
"torch_dtype": "bfloat16",
|
| 76 |
+
"use_cache": true,
|
| 77 |
+
"vocab_size": 262208
|
| 78 |
+
},
|
| 79 |
+
"torch_dtype": "bfloat16",
|
| 80 |
+
"transformers_version": "4.54.0.dev0",
|
| 81 |
+
"vision_config": {
|
| 82 |
+
"attention_dropout": 0.0,
|
| 83 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 84 |
+
"hidden_size": 1152,
|
| 85 |
+
"image_size": 896,
|
| 86 |
+
"intermediate_size": 4304,
|
| 87 |
+
"layer_norm_eps": 1e-06,
|
| 88 |
+
"model_type": "siglip_vision_model",
|
| 89 |
+
"num_attention_heads": 16,
|
| 90 |
+
"num_channels": 3,
|
| 91 |
+
"num_hidden_layers": 27,
|
| 92 |
+
"patch_size": 14,
|
| 93 |
+
"torch_dtype": "bfloat16",
|
| 94 |
+
"vision_use_head": false
|
| 95 |
+
}
|
| 96 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 2,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
1,
|
| 6 |
+
106
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 0,
|
| 9 |
+
"transformers_version": "4.54.0.dev0"
|
| 10 |
+
}
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:acd1c5fbeda43edbd93f164edc23844da1cb6136d0af5120c7ece561be8fbd01
|
| 3 |
+
size 4961251752
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1bed82e64597da81b1e663c59c4dae77df93edf8af95221054b541225d4f0313
|
| 3 |
+
size 3639026128
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,891 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 4971331952,
|
| 4 |
+
"total_size": 8600158944
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"language_model.model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"language_model.model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"language_model.model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"language_model.model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"language_model.model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"language_model.model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"language_model.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"language_model.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"language_model.model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"language_model.model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"language_model.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"language_model.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"language_model.model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"language_model.model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"language_model.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"language_model.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"language_model.model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"language_model.model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"language_model.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"language_model.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 87 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 88 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 91 |
+
"language_model.model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 92 |
+
"language_model.model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 93 |
+
"language_model.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"language_model.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 100 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 101 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 102 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 103 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 104 |
+
"language_model.model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 105 |
+
"language_model.model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 106 |
+
"language_model.model.layers.15.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 107 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 108 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 109 |
+
"language_model.model.layers.15.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 110 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 111 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 112 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 113 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 114 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 115 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 116 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 117 |
+
"language_model.model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 118 |
+
"language_model.model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 119 |
+
"language_model.model.layers.16.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 120 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 121 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 122 |
+
"language_model.model.layers.16.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 123 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 124 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 125 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 126 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 127 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 128 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 129 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 130 |
+
"language_model.model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 131 |
+
"language_model.model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 132 |
+
"language_model.model.layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 133 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 134 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 135 |
+
"language_model.model.layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 136 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 137 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 138 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 139 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 140 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 141 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 142 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 143 |
+
"language_model.model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 144 |
+
"language_model.model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 145 |
+
"language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 146 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 147 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 148 |
+
"language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 149 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 150 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 151 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 152 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 153 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 154 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 155 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 156 |
+
"language_model.model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 157 |
+
"language_model.model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 158 |
+
"language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 159 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 160 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 161 |
+
"language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 162 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 163 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 164 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"language_model.model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"language_model.model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 178 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 179 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 181 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 182 |
+
"language_model.model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 183 |
+
"language_model.model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 184 |
+
"language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 185 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 186 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 187 |
+
"language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 189 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 193 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"language_model.model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 196 |
+
"language_model.model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 197 |
+
"language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 205 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"language_model.model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"language_model.model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 210 |
+
"language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"language_model.model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 222 |
+
"language_model.model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"language_model.model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"language_model.model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 229 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 232 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 234 |
+
"language_model.model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"language_model.model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"language_model.model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"language_model.model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 244 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"language_model.model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"language_model.model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"language_model.model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"language_model.model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 253 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 256 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 258 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"language_model.model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"language_model.model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"language_model.model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 265 |
+
"language_model.model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 266 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 267 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 268 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 269 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 270 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 271 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 272 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"language_model.model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"language_model.model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"language_model.model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 278 |
+
"language_model.model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 281 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 285 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 286 |
+
"language_model.model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 287 |
+
"language_model.model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 288 |
+
"language_model.model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 289 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 291 |
+
"language_model.model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 292 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 293 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 295 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"language_model.model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"language_model.model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"language_model.model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"language_model.model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 306 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"language_model.model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 313 |
+
"language_model.model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 325 |
+
"language_model.model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 326 |
+
"language_model.model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"language_model.model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 328 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"language_model.model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"language_model.model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"language_model.model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 340 |
+
"language_model.model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 341 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 342 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 343 |
+
"language_model.model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 346 |
+
"language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 347 |
+
"language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 348 |
+
"language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 349 |
+
"language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 350 |
+
"language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 351 |
+
"language_model.model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 352 |
+
"language_model.model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 353 |
+
"language_model.model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 354 |
+
"language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 355 |
+
"language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 356 |
+
"language_model.model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 357 |
+
"language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 358 |
+
"language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 359 |
+
"language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 360 |
+
"language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 361 |
+
"language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 362 |
+
"language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 363 |
+
"language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 364 |
+
"language_model.model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 365 |
+
"language_model.model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 366 |
+
"language_model.model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 367 |
+
"language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 368 |
+
"language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 369 |
+
"language_model.model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 370 |
+
"language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 371 |
+
"language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 372 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"language_model.model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"language_model.model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"language_model.model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"language_model.model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"language_model.model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"language_model.model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 409 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"language_model.model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"language_model.model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 421 |
+
"language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 425 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 427 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"language_model.model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"language_model.model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 433 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 434 |
+
"language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 436 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 437 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 439 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 441 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 442 |
+
"language_model.model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 443 |
+
"language_model.model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 444 |
+
"language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 445 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 446 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 447 |
+
"language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 448 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 449 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 450 |
+
"language_model.model.norm.weight": "model-00002-of-00002.safetensors",
|
| 451 |
+
"multi_modal_projector.mm_input_projection_weight": "model-00001-of-00002.safetensors",
|
| 452 |
+
"multi_modal_projector.mm_soft_emb_norm.weight": "model-00001-of-00002.safetensors",
|
| 453 |
+
"vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
|
| 454 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
|
| 455 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
|
| 456 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 457 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 458 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 459 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 460 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 461 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 462 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 463 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 464 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 465 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 466 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 467 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 468 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 469 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 470 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 471 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 472 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 473 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 474 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 475 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 476 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 477 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 478 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 479 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 480 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 481 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 482 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 483 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 484 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 485 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 486 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 487 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 488 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 489 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 490 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 491 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 492 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 493 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 494 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 495 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 496 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 497 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 498 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 499 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 500 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 501 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 502 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 503 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 504 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 505 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 506 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 507 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 508 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 509 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 510 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 511 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 512 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 513 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 514 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 515 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 516 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 517 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 518 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 519 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 520 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 521 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 522 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 523 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 524 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 525 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 526 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 527 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 528 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 529 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 530 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 531 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 532 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 533 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 534 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 535 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 536 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 537 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 538 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 539 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 540 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 541 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 542 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 543 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 544 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 545 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 546 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 547 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 548 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 549 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 550 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 551 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 552 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 553 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 554 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 555 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 556 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 557 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 558 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 559 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 560 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 561 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 562 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 563 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 564 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 565 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 566 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 567 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 568 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 569 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 570 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 571 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 572 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 573 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 574 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 575 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 576 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 577 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 578 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 579 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 580 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 581 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 582 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 583 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 584 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 585 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 586 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 587 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 588 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 589 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 590 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 591 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 592 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 593 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 594 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 595 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 596 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 597 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 598 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 599 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 600 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 601 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 602 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 603 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 604 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 605 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 606 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 607 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 608 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 609 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 610 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 611 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 612 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 613 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 614 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 615 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 616 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 617 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 618 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 619 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 620 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 621 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 622 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 623 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 624 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 625 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 626 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 627 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 628 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 629 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 630 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 631 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 632 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 633 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 634 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 635 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 636 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 637 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 638 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 639 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 640 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 641 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 642 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 643 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 644 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 645 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 646 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 647 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 648 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 649 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 650 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 651 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 652 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 653 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 654 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 655 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 656 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 657 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 658 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 659 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 660 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 661 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 662 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 663 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 664 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 665 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 666 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 667 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 668 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 669 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 670 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 671 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 672 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 673 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 674 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 675 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 676 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 677 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 678 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 679 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 680 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 681 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 682 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 683 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 684 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 685 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 686 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 687 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 688 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 689 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 690 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 691 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 692 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 693 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 694 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 695 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 696 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 697 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 698 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 699 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 700 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 701 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 702 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 703 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 704 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 705 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 706 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 707 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 708 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 709 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 710 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 711 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 712 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 713 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 714 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 715 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 716 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 717 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 718 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 719 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 720 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 721 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 722 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 723 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 724 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 725 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 726 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 727 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 728 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 729 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 730 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 731 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 732 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 733 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 734 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 735 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 736 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 737 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 738 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 739 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 740 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 741 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 742 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 743 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 744 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 745 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 746 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 747 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 748 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 749 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 750 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 751 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 752 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 753 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 754 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 755 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 756 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 757 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 758 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 759 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 760 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 761 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 762 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 763 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 764 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 765 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 766 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 767 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 768 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 769 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 770 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 771 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 772 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 773 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 774 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 775 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 776 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 777 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 778 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 779 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 780 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 781 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 782 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 783 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 784 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 785 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 786 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 787 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 788 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 789 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 790 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 791 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 792 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 793 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 794 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 795 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 796 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 797 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 798 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 799 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 800 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 801 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 802 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 803 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 804 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 805 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 806 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 807 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 808 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 809 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 810 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 811 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 812 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 813 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 814 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 815 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 816 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 817 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 818 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 819 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 820 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 821 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 822 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 823 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 824 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 825 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 826 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 827 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 828 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 829 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 830 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 831 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 832 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 833 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 834 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 835 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 836 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 837 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 838 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 839 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 840 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 841 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 842 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 843 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 844 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 845 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 846 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 847 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 848 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 849 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 850 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 851 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 852 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 853 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 854 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 855 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 856 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 857 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 858 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 859 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 860 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 861 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 862 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 863 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 864 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 865 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 866 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 867 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 868 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 869 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 870 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 871 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 872 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 873 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 874 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 875 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 876 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 877 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 878 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 879 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 880 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 881 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 882 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 883 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 884 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 885 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 886 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 887 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 888 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 889 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors"
|
| 890 |
+
}
|
| 891 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_convert_rgb": null,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_pan_and_scan": null,
|
| 5 |
+
"do_rescale": true,
|
| 6 |
+
"do_resize": true,
|
| 7 |
+
"image_mean": [
|
| 8 |
+
0.5,
|
| 9 |
+
0.5,
|
| 10 |
+
0.5
|
| 11 |
+
],
|
| 12 |
+
"image_processor_type": "Gemma3ImageProcessor",
|
| 13 |
+
"image_seq_length": 256,
|
| 14 |
+
"image_std": [
|
| 15 |
+
0.5,
|
| 16 |
+
0.5,
|
| 17 |
+
0.5
|
| 18 |
+
],
|
| 19 |
+
"pan_and_scan_max_num_crops": null,
|
| 20 |
+
"pan_and_scan_min_crop_size": null,
|
| 21 |
+
"pan_and_scan_min_ratio_to_activate": null,
|
| 22 |
+
"processor_class": "Gemma3Processor",
|
| 23 |
+
"resample": 2,
|
| 24 |
+
"rescale_factor": 0.00392156862745098,
|
| 25 |
+
"size": {
|
| 26 |
+
"height": 896,
|
| 27 |
+
"width": 896
|
| 28 |
+
}
|
| 29 |
+
}
|
processor_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"image_seq_length": 256,
|
| 3 |
+
"processor_class": "Gemma3Processor"
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"boi_token": "<start_of_image>",
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"content": "<bos>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
},
|
| 10 |
+
"eoi_token": "<end_of_image>",
|
| 11 |
+
"eos_token": {
|
| 12 |
+
"content": "<eos>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false
|
| 17 |
+
},
|
| 18 |
+
"image_token": "<image_soft_token>",
|
| 19 |
+
"pad_token": {
|
| 20 |
+
"content": "<pad>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false
|
| 25 |
+
},
|
| 26 |
+
"unk_token": {
|
| 27 |
+
"content": "<unk>",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": false,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
}
|
| 33 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d4046bf0505a327dd5a0abbb427ecd4fc82f99c2ceaa170bc61ecde12809b0c
|
| 3 |
+
size 33384570
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
|
| 3 |
+
size 4689074
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|