Muhammadidrees commited on
Commit
49b95c1
·
verified ·
1 Parent(s): 5e3b153

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,26 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ model-00001-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
38
+ model-00002-of-00002.safetensors filter=lfs diff=lfs merge=lfs -text
39
+ tokenizer.model filter=lfs diff=lfs merge=lfs -text
40
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/bin/python filter=lfs diff=lfs merge=lfs -text
41
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/bin/python3 filter=lfs diff=lfs merge=lfs -text
42
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/bin/python3.12 filter=lfs diff=lfs merge=lfs -text
43
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/__pycache__/typing_extensions.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
44
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/charset_normalizer/md__mypyc.cpython-312-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
45
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/huggingface_hub/__pycache__/hf_api.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
46
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/huggingface_hub/inference/__pycache__/_client.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
47
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/huggingface_hub/inference/_generated/__pycache__/_async_client.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
48
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/idna/__pycache__/uts46data.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
49
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/__pycache__/typing_extensions.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
50
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/chardet/__pycache__/langrussianmodel.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
51
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/idna/__pycache__/uts46data.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
52
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/pkg_resources/__pycache__/__init__.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
53
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/pyparsing/__pycache__/core.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
54
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/rich/__pycache__/_emoji_codes.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
55
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/pip/_vendor/rich/__pycache__/console.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
56
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/__pycache__/vi.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
57
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/prompt_toolkit/layout/__pycache__/containers.cpython-312.pyc filter=lfs diff=lfs merge=lfs -text
58
+ gg-hai-def-hacks/medgemma-4b-it/venv_hf/lib/python3.12/site-packages/yaml/_yaml.cpython-312-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,752 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: health-ai-developer-foundations
4
+ license_link: https://developers.google.com/health-ai-developer-foundations/terms
5
+ library_name: transformers
6
+ pipeline_tag: image-text-to-text
7
+ extra_gated_heading: Access MedGemma on Hugging Face
8
+ extra_gated_prompt: >-
9
+ To access MedGemma on Hugging Face, you're required to review and
10
+ agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms).
11
+ To do this, please ensure you're logged in to Hugging Face and click below.
12
+ Requests are processed immediately.
13
+ extra_gated_button_content: Acknowledge license
14
+ base_model: google/medgemma-4b-pt
15
+ tags:
16
+ - medical
17
+ - radiology
18
+ - clinical-reasoning
19
+ - dermatology
20
+ - pathology
21
+ - ophthalmology
22
+ - chest-x-ray
23
+ ---
24
+
25
+ # MedGemma model card
26
+
27
+ **Model documentation:** [MedGemma](https://developers.google.com/health-ai-developer-foundations/medgemma)
28
+
29
+ **Resources:**
30
+
31
+ * Model on Google Cloud Model Garden: [MedGemma](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/medgemma)
32
+ * Model on Hugging Face: [MedGemma](https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4)
33
+ * GitHub repository (supporting code, Colab notebooks, discussions, and
34
+ issues): [MedGemma](https://github.com/google-health/medgemma)
35
+ * Quick start notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb)
36
+ * Fine-tuning notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb)
37
+ * Concept applications built using MedGemma: [Collection](https://huggingface.co/collections/google/medgemma-concept-apps-686ea036adb6d51416b0928a)
38
+ * Support: See [Contact](https://developers.google.com/health-ai-developer-foundations/medgemma/get-started.md#contact)
39
+ * License: The use of MedGemma is governed by the [Health AI Developer
40
+ Foundations terms of
41
+ use](https://developers.google.com/health-ai-developer-foundations/terms).
42
+
43
+ **Author:** Google
44
+
45
+ ## Model information
46
+
47
+ This section describes the MedGemma model and how to use it.
48
+
49
+ ### Description
50
+
51
+ MedGemma is a collection of [Gemma 3](https://ai.google.dev/gemma/docs/core)
52
+ variants that are trained for performance on medical text and image
53
+ comprehension. Developers can use MedGemma to accelerate building
54
+ healthcare-based AI applications. MedGemma currently comes in three variants: a
55
+ 4B multimodal version and 27B text-only and multimodal versions.
56
+
57
+ Both MedGemma multimodal versions utilize a
58
+ [SigLIP](https://arxiv.org/abs/2303.15343) image encoder that has been
59
+ specifically pre-trained on a variety of de-identified medical data, including
60
+ chest X-rays, dermatology images, ophthalmology images, and histopathology
61
+ slides. Their LLM components are trained on a diverse set of medical data,
62
+ including medical text, medical question-answer pairs, FHIR-based electronic
63
+ health record data (27B multimodal only), radiology images, histopathology
64
+ patches, ophthalmology images, and dermatology images.
65
+
66
+ MedGemma 4B is available in both pre-trained (suffix: `-pt`) and
67
+ instruction-tuned (suffix `-it`) versions. The instruction-tuned version is a
68
+ better starting point for most applications. The pre-trained version is
69
+ available for those who want to experiment more deeply with the models.
70
+
71
+ MedGemma 27B multimodal has pre-training on medical image, medical record and
72
+ medical record comprehension tasks. MedGemma 27B text-only has been trained
73
+ exclusively on medical text. Both models have been optimized for inference-time
74
+ computation on medical reasoning. This means it has slightly higher performance
75
+ on some text benchmarks than MedGemma 27B multimodal. Users who want to work
76
+ with a single model for both medical text, medical record and medical image
77
+ tasks are better suited for MedGemma 27B multimodal. Those that only need text
78
+ use-cases may be better served with the text-only variant. Both MedGemma 27B
79
+ variants are only available in instruction-tuned versions.
80
+
81
+ MedGemma variants have been evaluated on a range of clinically relevant
82
+ benchmarks to illustrate their baseline performance. These evaluations are based
83
+ on both open benchmark datasets and curated datasets. Developers can fine-tune
84
+ MedGemma variants for improved performance. Consult the [Intended
85
+ Use](https://developers.google.com/health-ai-developer-foundations/medgemma/model-card#intended_use)
86
+ section below for more details.
87
+
88
+ MedGemma is optimized for medical applications that involve a text generation
89
+ component. For medical image-based applications that do not involve text
90
+ generation, such as data-efficient classification, zero-shot classification, or
91
+ content-based or semantic image retrieval, the [MedSigLIP image
92
+ encoder](https://developers.google.com/health-ai-developer-foundations/medsiglip/model-card)
93
+ is recommended. MedSigLIP is based on the same image encoder that powers
94
+ MedGemma.
95
+
96
+ Please consult the [MedGemma Technical Report](https://arxiv.org/abs/2507.05201)
97
+ for more details.
98
+
99
+ ### How to use
100
+
101
+ Below are some example code snippets to help you quickly get started running the
102
+ model locally on GPU. If you want to use the model at scale, we recommend that
103
+ you create a production version using [Model
104
+ Garden](https://cloud.google.com/model-garden).
105
+
106
+ First, install the Transformers library. Gemma 3 is supported starting from
107
+ transformers 4.50.0.
108
+
109
+ ```sh
110
+ $ pip install -U transformers
111
+ ```
112
+
113
+ **Run model with the `pipeline` API**
114
+
115
+ ```python
116
+ from transformers import pipeline
117
+ from PIL import Image
118
+ import requests
119
+ import torch
120
+
121
+ pipe = pipeline(
122
+ "image-text-to-text",
123
+ model="google/medgemma-4b-it",
124
+ torch_dtype=torch.bfloat16,
125
+ device="cuda",
126
+ )
127
+
128
+ # Image attribution: Stillwaterising, CC0, via Wikimedia Commons
129
+ image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
130
+ image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
131
+
132
+ messages = [
133
+ {
134
+ "role": "system",
135
+ "content": [{"type": "text", "text": "You are an expert radiologist."}]
136
+ },
137
+ {
138
+ "role": "user",
139
+ "content": [
140
+ {"type": "text", "text": "Describe this X-ray"},
141
+ {"type": "image", "image": image}
142
+ ]
143
+ }
144
+ ]
145
+
146
+ output = pipe(text=messages, max_new_tokens=200)
147
+ print(output[0]["generated_text"][-1]["content"])
148
+ ```
149
+
150
+ **Run the model directly**
151
+
152
+ ```python
153
+ # pip install accelerate
154
+ from transformers import AutoProcessor, AutoModelForImageTextToText
155
+ from PIL import Image
156
+ import requests
157
+ import torch
158
+
159
+ model_id = "google/medgemma-4b-it"
160
+
161
+ model = AutoModelForImageTextToText.from_pretrained(
162
+ model_id,
163
+ torch_dtype=torch.bfloat16,
164
+ device_map="auto",
165
+ )
166
+ processor = AutoProcessor.from_pretrained(model_id)
167
+
168
+ # Image attribution: Stillwaterising, CC0, via Wikimedia Commons
169
+ image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
170
+ image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
171
+
172
+ messages = [
173
+ {
174
+ "role": "system",
175
+ "content": [{"type": "text", "text": "You are an expert radiologist."}]
176
+ },
177
+ {
178
+ "role": "user",
179
+ "content": [
180
+ {"type": "text", "text": "Describe this X-ray"},
181
+ {"type": "image", "image": image}
182
+ ]
183
+ }
184
+ ]
185
+
186
+ inputs = processor.apply_chat_template(
187
+ messages, add_generation_prompt=True, tokenize=True,
188
+ return_dict=True, return_tensors="pt"
189
+ ).to(model.device, dtype=torch.bfloat16)
190
+
191
+ input_len = inputs["input_ids"].shape[-1]
192
+
193
+ with torch.inference_mode():
194
+ generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
195
+ generation = generation[0][input_len:]
196
+
197
+ decoded = processor.decode(generation, skip_special_tokens=True)
198
+ print(decoded)
199
+ ```
200
+
201
+ ### Examples
202
+
203
+ See the following Colab notebooks for examples of how to use MedGemma:
204
+
205
+ * To give the model a quick try, running it locally with weights from Hugging
206
+ Face, see [Quick start notebook in
207
+ Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb).
208
+ Note that you will need to use Colab Enterprise to obtain adequate GPU
209
+ resources to run either 27B model without quantization.
210
+
211
+ * For an example of fine-tuning the 4B model, see the [Fine-tuning notebook in
212
+ Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb).
213
+ The 27B models can be fine tuned in a similar manner but will require more
214
+ time and compute resources than the 4B model.
215
+
216
+ ### Model architecture overview
217
+
218
+ The MedGemma model is built based on [Gemma 3](https://ai.google.dev/gemma/) and
219
+ uses the same decoder-only transformer architecture as Gemma 3\. To read more
220
+ about the architecture, consult the Gemma 3 [model
221
+ card](https://ai.google.dev/gemma/docs/core/model_card_3).
222
+
223
+ ### Technical specifications
224
+
225
+ * **Model type**: Decoder-only Transformer architecture, see the [Gemma 3
226
+ Technical
227
+ Report](https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf)
228
+ * **Input Modalities**: Text, vision
229
+ * **Output Modality:** Text only
230
+ * **Attention mechanism**: Grouped-query attention (GQA)
231
+ * **Context length**: Supports long context, at least 128K tokens
232
+ * **Key publication**: https://arxiv.org/abs/2507.05201
233
+ * **Model created**: July 9, 2025
234
+
235
+ * **Model version**: 1.0.1
236
+
237
+ ### Citation
238
+
239
+ When using this model, please cite: Sellergren et al. "MedGemma Technical
240
+ Report." *arXiv preprint arXiv:2507.05201* (2025).
241
+
242
+ ```none
243
+ @article{sellergren2025medgemma,
244
+ title={MedGemma Technical Report},
245
+ author={Sellergren, Andrew and Kazemzadeh, Sahar and Jaroensri, Tiam and Kiraly, Atilla and Traverse, Madeleine and Kohlberger, Timo and Xu, Shawn and Jamil, Fayaz and Hughes, Cían and Lau, Charles and others},
246
+ journal={arXiv preprint arXiv:2507.05201},
247
+ year={2025}
248
+ }
249
+ ```
250
+
251
+ ### Inputs and outputs
252
+
253
+ **Input**:
254
+
255
+ * Text string, such as a question or prompt
256
+ * Images, normalized to 896 x 896 resolution and encoded to 256 tokens each
257
+ * Total input length of 128K tokens
258
+
259
+ **Output**:
260
+
261
+ * Generated text in response to the input, such as an answer to a question,
262
+ analysis of image content, or a summary of a document
263
+ * Total output length of 8192 tokens
264
+
265
+ ### Performance and validation
266
+
267
+ MedGemma was evaluated across a range of different multimodal classification,
268
+ report generation, visual question answering, and text-based tasks.
269
+
270
+ ### Key performance metrics
271
+
272
+ #### Imaging evaluations
273
+
274
+ The multimodal performance of MedGemma 4B and 27B multimodal was evaluated
275
+ across a range of benchmarks, focusing on radiology, dermatology,
276
+ histopathology, ophthalmology, and multimodal clinical reasoning.
277
+
278
+ MedGemma 4B outperforms the base Gemma 3 4B model across all tested multimodal
279
+ health benchmarks.
280
+
281
+ | Task and metric | Gemma 3 4B | MedGemma 4B |
282
+ | :---- | :---- | :---- |
283
+ | **Medical image classification** | | |
284
+ | MIMIC CXR\*\* \- macro F1 for top 5 conditions | 81.2 | 88.9 |
285
+ | CheXpert CXR \- macro F1 for top 5 conditions | 32.6 | 48.1 |
286
+ | CXR14 \- macro F1 for 3 conditions | 32.0 | 50.1 |
287
+ | PathMCQA\* (histopathology, internal\*\*) \- Accuracy | 37.1 | 69.8 |
288
+ | US-DermMCQA\* \- Accuracy | 52.5 | 71.8 |
289
+ | EyePACS\* (fundus, internal) \- Accuracy | 14.4 | 64.9 |
290
+ | **Visual question answering** | | |
291
+ | SLAKE (radiology) \- Tokenized F1 | 40.2 | 72.3 |
292
+ | VQA-RAD\*\*\* (radiology) \- Tokenized F1 | 33.6 | 49.9 |
293
+ | **Knowledge and reasoning** | | | | |
294
+ | MedXpertQA (text \+ multimodal questions) \- Accuracy | 16.4 | 18.8 |
295
+
296
+ *Internal datasets. US-DermMCQA is described in [Liu (2020, Nature
297
+ medicine)](https://www.nature.com/articles/s41591-020-0842-3), presented as a
298
+ 4-way MCQ per example for skin condition classification. PathMCQA is based on
299
+ multiple datasets, presented as 3-9 way MCQ per example for identification,
300
+ grading, and subtype for breast, cervical, and prostate cancer. EyePACS is a
301
+ dataset of fundus images with classification labels based on 5-level diabetic
302
+ retinopathy severity (None, Mild, Moderate, Severe, Proliferative). More details
303
+ in the [MedGemma Technical Report](https://arxiv.org/abs/2507.05201).
304
+
305
+ **Based on radiologist adjudicated labels, described in [Yang (2024,
306
+ arXiv)](https://arxiv.org/pdf/2405.03162) Section A.1.1.
307
+
308
+ ***Based on "balanced split," described in [Yang (2024,
309
+ arXiv)](https://arxiv.org/pdf/2405.03162).
310
+
311
+ #### Chest X-ray report generation
312
+
313
+ MedGemma chest X-ray (CXR) report generation performance was evaluated on
314
+ [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.1.0/) using the [RadGraph
315
+ F1 metric](https://arxiv.org/abs/2106.14463). We compare the MedGemma
316
+ pre-trained checkpoint with our previous best model for CXR report generation,
317
+ [PaliGemma 2](https://arxiv.org/abs/2412.03555).
318
+
319
+ | Metric | MedGemma 4B (pre-trained) | MedGemma 4B (tuned for CXR)| PaliGemma 2 3B (tuned for CXR) | PaliGemma 2 10B (tuned for CXR) |
320
+ | :---- | :---- | :---- | :---- | :---- |
321
+ | MIMIC CXR \- RadGraph F1 | 29.5 | 30.3 |28.8 | 29.5 |
322
+
323
+
324
+
325
+ The instruction-tuned versions of MedGemma 4B and MedGemma 27B achieve lower
326
+ scores (21.9 and 21.3, respectively) due to the differences in reporting style
327
+ compared to the MIMIC ground truth reports. Further fine-tuning on MIMIC reports
328
+ enables users to achieve improved performance, as shown by the improved
329
+ performance of the MedGemma 4B model that was tuned for CXR.
330
+
331
+ #### Text evaluations
332
+
333
+ MedGemma 4B and text-only MedGemma 27B were evaluated across a range of
334
+ text-only benchmarks for medical knowledge and reasoning.
335
+
336
+ The MedGemma models outperform their respective base Gemma models across all
337
+ tested text-only health benchmarks.
338
+
339
+ | Metric | Gemma 3 4B | MedGemma 4B |
340
+ | :---- | :---- | :---- |
341
+ | MedQA (4-op) | 50.7 | 64.4 |
342
+ | MedMCQA | 45.4 | 55.7 |
343
+ | PubMedQA | 68.4 | 73.4 |
344
+ | MMLU Med | 67.2 | 70.0 |
345
+ | MedXpertQA (text only) | 11.6 | 14.2 |
346
+ | AfriMed-QA (25 question test set) | 48.0 | 52.0 |
347
+
348
+ For all MedGemma 27B results, [test-time
349
+ scaling](https://arxiv.org/abs/2501.19393) is used to improve performance.
350
+
351
+ #### Medical record evaluations
352
+
353
+ All models were evaluated on a question answer dataset from synthetic FHIR data
354
+ to answer questions about patient records. MedGemma 27B multimodal's
355
+ FHIR-specific training gives it significant improvement over other MedGemma and
356
+ Gemma models.
357
+
358
+ | Metric | Gemma 3 4B | MedGemma 4B |
359
+ | :---- | :---- | :---- |
360
+ | EHRQA | 70.9 | 67.6 |
361
+
362
+
363
+ ### Ethics and safety evaluation
364
+
365
+ #### Evaluation approach
366
+
367
+ Our evaluation methods include structured evaluations and internal red-teaming
368
+ testing of relevant content policies. Red-teaming was conducted by a number of
369
+ different teams, each with different goals and human evaluation metrics. These
370
+ models were evaluated against a number of different categories relevant to
371
+ ethics and safety, including:
372
+
373
+ * **Child safety**: Evaluation of text-to-text and image-to-text prompts
374
+ covering child safety policies, including child sexual abuse and
375
+ exploitation.
376
+ * **Content safety:** Evaluation of text-to-text and image-to-text prompts
377
+ covering safety policies, including harassment, violence and gore, and hate
378
+ speech.
379
+ * **Representational harms**: Evaluation of text-to-text and image-to-text
380
+ prompts covering safety policies, including bias, stereotyping, and harmful
381
+ associations or inaccuracies.
382
+ * **General medical harms:** Evaluation of text-to-text and image-to-text
383
+ prompts covering safety policies, including information quality and harmful
384
+ associations or inaccuracies.
385
+
386
+ In addition to development level evaluations, we conduct "assurance evaluations"
387
+ which are our "arms-length" internal evaluations for responsibility governance
388
+ decision making. They are conducted separately from the model development team,
389
+ to inform decision making about release. High-level findings are fed back to the
390
+ model team, but prompt sets are held out to prevent overfitting and preserve the
391
+ results' ability to inform decision making. Notable assurance evaluation results
392
+ are reported to our Responsibility & Safety Council as part of release review.
393
+
394
+ #### Evaluation results
395
+
396
+ For all areas of safety testing, we saw safe levels of performance across the
397
+ categories of child safety, content safety, and representational harms. All
398
+ testing was conducted without safety filters to evaluate the model capabilities
399
+ and behaviors. For text-to-text, image-to-text, and audio-to-text, and across
400
+ both MedGemma model sizes, the model produced minimal policy violations. A
401
+ limitation of our evaluations was that they included primarily English language
402
+ prompts.
403
+
404
+ ## Data card
405
+
406
+ ### Dataset overview
407
+
408
+ #### Training
409
+
410
+ The base Gemma models are pre-trained on a large corpus of text and code data.
411
+ MedGemma 4B utilizes a [SigLIP](https://arxiv.org/abs/2303.15343) image encoder
412
+ that has been specifically pre-trained on a variety of de-identified medical
413
+ data, including radiology images, histopathology images, ophthalmology images,
414
+ and dermatology images. Its LLM component is trained on a diverse set of medical
415
+ data, including medical text relevant to radiology images, chest-x rays,
416
+ histopathology patches, ophthalmology images and dermatology images.
417
+
418
+ #### Evaluation
419
+
420
+ MedGemma models have been evaluated on a comprehensive set of clinically
421
+ relevant benchmarks, including over 22 datasets across 5 different tasks and 6
422
+ medical image modalities. These include both open benchmark datasets and curated
423
+ datasets, with a focus on expert human evaluations for tasks like CXR report
424
+ generation and radiology VQA.
425
+
426
+ ### Ethics and safety evaluation
427
+
428
+ #### Evaluation approach
429
+
430
+ Our evaluation methods include structured evaluations and internal red-teaming
431
+ testing of relevant content policies. Red-teaming was conducted by a number of
432
+ different teams, each with different goals and human evaluation metrics. These
433
+ models were evaluated against a number of different categories relevant to
434
+ ethics and safety, including:
435
+
436
+ * **Child safety**: Evaluation of text-to-text and image-to-text prompts
437
+ covering child safety policies, including child sexual abuse and
438
+ exploitation.
439
+ * **Content safety:** Evaluation of text-to-text and image-to-text prompts
440
+ covering safety policies, including harassment, violence and gore, and hate
441
+ speech.
442
+ * **Representational harms**: Evaluation of text-to-text and image-to-text
443
+ prompts covering safety policies, including bias, stereotyping, and harmful
444
+ associations or inaccuracies.
445
+ * **General medical harms:** Evaluation of text-to-text and image-to-text
446
+ prompts covering safety policies, including information quality and harmful
447
+ associations or inaccuracies.
448
+
449
+ In addition to development level evaluations, we conduct "assurance evaluations"
450
+ which are our "arms-length" internal evaluations for responsibility governance
451
+ decision making. They are conducted separately from the model development team,
452
+ to inform decision making about release. High-level findings are fed back to the
453
+ model team, but prompt sets are held out to prevent overfitting and preserve the
454
+ results' ability to inform decision making. Notable assurance evaluation results
455
+ are reported to our Responsibility & Safety Council as part of release review.
456
+
457
+ #### Evaluation results
458
+
459
+ For all areas of safety testing, we saw safe levels of performance across the
460
+ categories of child safety, content safety, and representational harms. All
461
+ testing was conducted without safety filters to evaluate the model capabilities
462
+ and behaviors. For text-to-text, image-to-text, and audio-to-text, and across
463
+ both MedGemma model sizes, the model produced minimal policy violations. A
464
+ limitation of our evaluations was that they included primarily English language
465
+ prompts.
466
+
467
+ ## Data card
468
+
469
+ ### Dataset overview
470
+
471
+ #### Training
472
+
473
+ The base Gemma models are pre-trained on a large corpus of text and code data.
474
+ MedGemma multimodal variants utilize a
475
+ [SigLIP](https://arxiv.org/abs/2303.15343) image encoder that has been
476
+ specifically pre-trained on a variety of de-identified medical data, including
477
+ radiology images, histopathology images, ophthalmology images, and dermatology
478
+ images. Their LLM component is trained on a diverse set of medical data,
479
+ including medical text, medical question-answer pairs, FHIR-based electronic
480
+ health record data (27B multimodal only), radiology images, histopathology
481
+ patches, ophthalmology images, and dermatology images.
482
+
483
+ #### Evaluation
484
+
485
+ MedGemma models have been evaluated on a comprehensive set of clinically
486
+ relevant benchmarks, including over 22 datasets across 6 different tasks and 4
487
+ medical image modalities. These benchmarks include both open and internal
488
+ datasets.
489
+
490
+ #### Source
491
+
492
+ MedGemma utilizes a combination of public and private datasets.
493
+
494
+ This model was trained on diverse public datasets including MIMIC-CXR (chest
495
+ X-rays and reports), ChestImaGenome: Set of bounding boxes linking image
496
+ findings with anatomical regions for MIMIC-CXR (MedGemma 27B multimodal only),
497
+ SLAKE (multimodal medical images and questions), PAD-UFES-20 (skin lesion images
498
+ and data), SCIN (dermatology images), TCGA (cancer genomics data), CAMELYON
499
+ (lymph node histopathology images), PMC-OA (biomedical literature with images),
500
+ and Mendeley Digital Knee X-Ray (knee X-rays).
501
+
502
+ Additionally, multiple diverse proprietary datasets were licensed and
503
+ incorporated (described next).
504
+
505
+ ### Data Ownership and Documentation
506
+
507
+ * [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.1.0/): MIT Laboratory
508
+ for Computational Physiology and Beth Israel Deaconess Medical Center
509
+ (BIDMC).
510
+ * [Slake-VQA](https://www.med-vqa.com/slake/): The Hong Kong Polytechnic
511
+ University (PolyU), with collaborators including West China Hospital of
512
+ Sichuan University and Sichuan Academy of Medical Sciences / Sichuan
513
+ Provincial People's Hospital.
514
+ * [PAD-UFES-20](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/): Federal
515
+ University of Espírito Santo (UFES), Brazil, through its Dermatological and
516
+ Surgical Assistance Program (PAD).
517
+ * [SCIN](https://github.com/google-research-datasets/scin): A collaboration
518
+ between Google Health and Stanford Medicine.
519
+ * [TCGA](https://portal.gdc.cancer.gov/) (The Cancer Genome Atlas): A joint
520
+ effort of National Cancer Institute and National Human Genome Research
521
+ Institute. Data from TCGA are available via the Genomic Data Commons (GDC)
522
+ * [CAMELYON](https://camelyon17.grand-challenge.org/Data/): The data was
523
+ collected from Radboud University Medical Center and University Medical
524
+ Center Utrecht in the Netherlands.
525
+ * [PMC-OA (PubMed Central Open Access
526
+ Subset)](https://catalog.data.gov/dataset/pubmed-central-open-access-subset-pmc-oa):
527
+ Maintained by the National Library of Medicine (NLM) and National Center for
528
+ Biotechnology Information (NCBI), which are part of the NIH.
529
+ * [MedQA](https://arxiv.org/pdf/2009.13081): This dataset was created by a
530
+ team of researchers led by Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung
531
+ Weng, Hanyi Fang, and Peter Szolovits
532
+ * [Mendeley Digital Knee
533
+ X-Ray](https://data.mendeley.com/datasets/t9ndx37v5h/1): This dataset is
534
+ from Rani Channamma University, and is hosted on Mendeley Data.
535
+ * [AfriMed-QA](https://afrimedqa.com/): This data was developed and led by
536
+ multiple collaborating organizations and researchers include key
537
+ contributors: Intron Health, SisonkeBiotik, BioRAMP, Georgia Institute of
538
+ Technology, and MasakhaneNLP.
539
+ * [VQA-RAD](https://www.nature.com/articles/sdata2018251): This dataset was
540
+ created by a research team led by Jason J. Lau, Soumya Gayen, Asma Ben
541
+ Abacha, and Dina Demner-Fushman and their affiliated institutions (the US
542
+ National Library of Medicine and National Institutes of Health)
543
+ * [Chest ImaGenome](https://physionet.org/content/chest-imagenome/1.0.0/): IBM
544
+ Research.
545
+ * [MedExpQA](https://www.sciencedirect.com/science/article/pii/S0933365724001805):
546
+ This dataset was created by researchers at the HiTZ Center (Basque Center
547
+ for Language Technology and Artificial Intelligence).
548
+ * [MedXpertQA](https://huggingface.co/datasets/TsinghuaC3I/MedXpertQA): This
549
+ dataset was developed by researchers at Tsinghua University (Beijing, China)
550
+ and Shanghai Artificial Intelligence Laboratory (Shanghai, China).
551
+ * [HealthSearchQA](https://huggingface.co/datasets/katielink/healthsearchqa):
552
+ This dataset consists of consisting of 3,173 commonly searched consumer
553
+ questions
554
+
555
+ In addition to the public datasets listed above, MedGemma was also trained on
556
+ de-identified, licensed datasets or datasets collected internally at Google from
557
+ consented participants.
558
+
559
+ * **Radiology dataset 1:** De-identified dataset of different CT studies
560
+ across body parts from a US-based radiology outpatient diagnostic center
561
+ network.
562
+ * **Ophthalmology dataset 1 (EyePACS):** De-identified dataset of fundus
563
+ images from diabetic retinopathy screening.
564
+ * **Dermatology dataset 1:** De-identified dataset of teledermatology skin
565
+ condition images (both clinical and dermatoscopic) from Colombia.
566
+ * **Dermatology dataset 2:** De-identified dataset of skin cancer images (both
567
+ clinical and dermatoscopic) from Australia.
568
+ * **Dermatology dataset 3:** De-identified dataset of non-diseased skin images
569
+ from an internal data collection effort.
570
+ * **Pathology dataset 1:** De-identified dataset of histopathology H\&E whole
571
+ slide images created in collaboration with an academic research hospital and
572
+ biobank in Europe. Comprises de-identified colon, prostate, and lymph nodes.
573
+ * **Pathology dataset 2:** De-identified dataset of lung histopathology H\&E
574
+ and IHC whole slide images created by a commercial biobank in the United
575
+ States.
576
+ * **Pathology dataset 3:** De-identified dataset of prostate and lymph node
577
+ H\&E and IHC histopathology whole slide images created by a contract
578
+ research organization in the United States.
579
+ * **Pathology dataset 4:** De-identified dataset of histopathology whole slide
580
+ images created in collaboration with a large, tertiary teaching hospital in
581
+ the United States. Comprises a diverse set of tissue and stain types,
582
+ predominantly H\&E.
583
+ * **EHR dataset 1:** Question/answer dataset drawn from synthetic FHIR records
584
+ created by [Synthea.](https://synthetichealth.github.io/synthea/) The test
585
+ set includes 19 unique patients with 200 questions per patient divided into
586
+ 10 different categories.
587
+
588
+ ### Data citation
589
+
590
+ * **MIMIC-CXR:** Johnson, A., Pollard, T., Mark, R., Berkowitz, S., & Horng,
591
+ S. (2024). MIMIC-CXR Database (version 2.1.0). PhysioNet.
592
+ [https://physionet.org/content/mimic-cxr/2.1.0/](https://physionet.org/content/mimic-cxr/2.1.0/)
593
+ *and* Johnson, Alistair E. W., Tom J. Pollard, Seth J. Berkowitz, Nathaniel
594
+ R. Greenbaum, Matthew P. Lungren, Chih-Ying Deng, Roger G. Mark, and Steven
595
+ Horng. 2019\. "MIMIC-CXR, a de-Identified Publicly Available Database of
596
+ Chest Radiographs with Free-Text Reports." *Scientific Data 6* (1): 1–8.
597
+
598
+ * **SLAKE:** Liu, Bo, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu.
599
+ 2021.SLAKE: A Semantically-Labeled Knowledge-Enhanced Dataset for Medical
600
+ Visual Question Answering."
601
+ [http://arxiv.org/abs/2102.09542](http://arxiv.org/abs/2102.09542).
602
+
603
+ * **PAD-UEFS-20:** Pacheco, Andre GC, et al. "PAD-UFES-20: A skin lesion
604
+ dataset composed of patient data and clinical images collected from
605
+ smartphones." *Data in brief* 32 (2020): 106221\.
606
+
607
+ * **SCIN:** Ward, Abbi, Jimmy Li, Julie Wang, Sriram Lakshminarasimhan, Ashley
608
+ Carrick, Bilson Campana, Jay Hartford, et al. 2024\. "Creating an Empirical
609
+ Dermatology Dataset Through Crowdsourcing With Web Search Advertisements."
610
+ *JAMA Network Open 7* (11): e2446615–e2446615.
611
+
612
+ * **TCGA:** The results shown here are in whole or part based upon data
613
+ generated by the TCGA Research Network:
614
+ [https://www.cancer.gov/tcga](https://www.cancer.gov/tcga).
615
+
616
+ * **CAMELYON16:** Ehteshami Bejnordi, Babak, Mitko Veta, Paul Johannes van
617
+ Diest, Bram van Ginneken, Nico Karssemeijer, Geert Litjens, Jeroen A. W. M.
618
+ van der Laak, et al. 2017\. "Diagnostic Assessment of Deep Learning
619
+ Algorithms for Detection of Lymph Node Metastases in Women With Breast
620
+ Cancer." *JAMA 318* (22): 2199–2210.
621
+
622
+ * **Mendeley Digital Knee X-Ray:** Gornale, Shivanand; Patravali, Pooja
623
+ (2020), "Digital Knee X-ray Images", Mendeley Data, V1, doi:
624
+ 10.17632/t9ndx37v5h.1
625
+
626
+ * **VQA-RAD:** Lau, Jason J., Soumya Gayen, Asma Ben Abacha, and Dina
627
+ Demner-Fushman. 2018\. "A Dataset of Clinically Generated Visual Questions
628
+ and Answers about Radiology Images." *Scientific Data 5* (1): 1–10.
629
+
630
+ * **Chest ImaGenome:** Wu, J., Agu, N., Lourentzou, I., Sharma, A., Paguio,
631
+ J., Yao, J. S., Dee, E. C., Mitchell, W., Kashyap, S., Giovannini, A., Celi,
632
+ L. A., Syeda-Mahmood, T., & Moradi, M. (2021). Chest ImaGenome Dataset
633
+ (version 1.0.0). PhysioNet. RRID:SCR\_007345.
634
+ [https://doi.org/10.13026/wv01-y230](https://doi.org/10.13026/wv01-y230)
635
+
636
+ * **MedQA:** Jin, Di, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang,
637
+ and Peter Szolovits. 2020\. "What Disease Does This Patient Have? A
638
+ Large-Scale Open Domain Question Answering Dataset from Medical Exams."
639
+ [http://arxiv.org/abs/2009.13081](http://arxiv.org/abs/2009.13081).
640
+
641
+ * **AfrimedQA:** Olatunji, Tobi, Charles Nimo, Abraham Owodunni, Tassallah
642
+ Abdullahi, Emmanuel Ayodele, Mardhiyah Sanni, Chinemelu Aka, et al. 2024\.
643
+ "AfriMed-QA: A Pan-African, Multi-Specialty, Medical Question-Answering
644
+ Benchmark Dataset."
645
+ [http://arxiv.org/abs/2411.15640](http://arxiv.org/abs/2411.15640).
646
+
647
+ * **MedExpQA:** Alonso, I., Oronoz, M., & Agerri, R. (2024). MedExpQA:
648
+ Multilingual Benchmarking of Large Language Models for Medical Question
649
+ Answering. *arXiv preprint arXiv:2404.05590*. Retrieved from
650
+ [https://arxiv.org/abs/2404.05590](https://arxiv.org/abs/2404.05590)
651
+
652
+ * **MedXpertQA:** Zuo, Yuxin, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu,
653
+ Ermo Hua, Kaiyan Zhang, Ning Ding, and Bowen Zhou. 2025\. "MedXpertQA:
654
+ Benchmarking Expert-Level Medical Reasoning and Understanding."
655
+ [http://arxiv.org/abs/2501.18362](http://arxiv.org/abs/2501.18362).
656
+
657
+ ### De-identification/anonymization:
658
+
659
+ Google and its partners utilize datasets that have been rigorously anonymized or
660
+ de-identified to ensure the protection of individual research participants and
661
+ patient privacy.
662
+
663
+ ## Implementation information
664
+
665
+ Details about the model internals.
666
+
667
+ ### Software
668
+
669
+ Training was done using [JAX](https://github.com/jax-ml/jax).
670
+
671
+ JAX allows researchers to take advantage of the latest generation of hardware,
672
+ including TPUs, for faster and more efficient training of large models.
673
+
674
+ ## Use and limitations
675
+
676
+ ### Intended use
677
+
678
+ MedGemma is an open multimodal generative AI model intended to be used as a
679
+ starting point that enables more efficient development of downstream healthcare
680
+ applications involving medical text and images. MedGemma is intended for
681
+ developers in the life sciences and healthcare space. Developers are responsible
682
+ for training, adapting and making meaningful changes to MedGemma to accomplish
683
+ their specific intended use. MedGemma models can be fine-tuned by developers
684
+ using their own proprietary data for their specific tasks or solutions.
685
+
686
+ MedGemma is based on Gemma 3 and has been further trained on medical images and
687
+ text. MedGemma enables further development in any medical context (image and
688
+ textual), however the model was pre-trained using chest X-ray, pathology,
689
+ dermatology, and fundus images. Examples of tasks within MedGemma's training
690
+ include visual question answering pertaining to medical images, such as
691
+ radiographs, or providing answers to textual medical questions. Full details of
692
+ all the tasks MedGemma has been evaluated can be found in the [MedGemma
693
+ Technical Report](https://arxiv.org/abs/2507.05201).
694
+
695
+ ### Benefits
696
+
697
+ * Provides strong baseline medical image and text comprehension for models of
698
+ its size.
699
+ * This strong performance makes it efficient to adapt for downstream
700
+ healthcare-based use cases, compared to models of similar size without
701
+ medical data pre-training.
702
+ * This adaptation may involve prompt engineering, grounding, agentic
703
+ orchestration or fine-tuning depending on the use case, baseline validation
704
+ requirements, and desired performance characteristics.
705
+
706
+ ### Limitations
707
+
708
+ MedGemma is not intended to be used without appropriate validation, adaptation
709
+ and/or making meaningful modification by developers for their specific use case.
710
+ The outputs generated by MedGemma are not intended to directly inform clinical
711
+ diagnosis, patient management decisions, treatment recommendations, or any other
712
+ direct clinical practice applications. Performance benchmarks highlight baseline
713
+ capabilities on relevant benchmarks, but even for image and text domains that
714
+ constitute a substantial portion of training data, inaccurate model output is
715
+ possible. All outputs from MedGemma should be considered preliminary and require
716
+ independent verification, clinical correlation, and further investigation
717
+ through established research and development methodologies.
718
+
719
+ MedGemma's multimodal capabilities have been primarily evaluated on single-image
720
+ tasks. MedGemma has not been evaluated in use cases that involve comprehension
721
+ of multiple images.
722
+
723
+ MedGemma has not been evaluated or optimized for multi-turn applications.
724
+
725
+ MedGemma's training may make it more sensitive to the specific prompt used than
726
+ Gemma 3\.
727
+
728
+ When adapting MedGemma developer should consider the following:
729
+
730
+ * **Bias in validation data:** As with any research, developers should ensure
731
+ that any downstream application is validated to understand performance using
732
+ data that is appropriately representative of the intended use setting for
733
+ the specific application (e.g., age, sex, gender, condition, imaging device,
734
+ etc).
735
+ * **Data contamination concerns**: When evaluating the generalization
736
+ capabilities of a large model like MedGemma in a medical context, there is a
737
+ risk of data contamination, where the model might have inadvertently seen
738
+ related medical information during its pre-training, potentially
739
+ overestimating its true ability to generalize to novel medical concepts.
740
+ Developers should validate MedGemma on datasets not publicly available or
741
+ otherwise made available to non-institutional researchers to mitigate this
742
+ risk.
743
+
744
+
745
+ ### Release notes
746
+
747
+ * May 20, 2025: Initial Release
748
+ * July 9, 2025 Bug Fix: Fixed the subtle degradation in the multimodal
749
+ performance. The issue was due to a missing end-of-image token in the model
750
+ vocabulary, impacting combined text-and-image tasks. This fix reinstates and
751
+ correctly maps that token, ensuring text-only tasks remain unaffected while
752
+ restoring multimodal performance.
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{'<start_of_turn>model
46
+ '}}
47
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3ForConditionalGeneration"
4
+ ],
5
+ "boi_token_index": 255999,
6
+ "eoi_token_index": 256000,
7
+ "eos_token_id": [
8
+ 1,
9
+ 106
10
+ ],
11
+ "image_token_index": 262144,
12
+ "initializer_range": 0.02,
13
+ "mm_tokens_per_image": 256,
14
+ "model_type": "gemma3",
15
+ "text_config": {
16
+ "attention_bias": false,
17
+ "attention_dropout": 0.0,
18
+ "attn_logit_softcapping": null,
19
+ "final_logit_softcapping": null,
20
+ "head_dim": 256,
21
+ "hidden_activation": "gelu_pytorch_tanh",
22
+ "hidden_size": 2560,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 10240,
25
+ "layer_types": [
26
+ "sliding_attention",
27
+ "sliding_attention",
28
+ "sliding_attention",
29
+ "sliding_attention",
30
+ "sliding_attention",
31
+ "full_attention",
32
+ "sliding_attention",
33
+ "sliding_attention",
34
+ "sliding_attention",
35
+ "sliding_attention",
36
+ "sliding_attention",
37
+ "full_attention",
38
+ "sliding_attention",
39
+ "sliding_attention",
40
+ "sliding_attention",
41
+ "sliding_attention",
42
+ "sliding_attention",
43
+ "full_attention",
44
+ "sliding_attention",
45
+ "sliding_attention",
46
+ "sliding_attention",
47
+ "sliding_attention",
48
+ "sliding_attention",
49
+ "full_attention",
50
+ "sliding_attention",
51
+ "sliding_attention",
52
+ "sliding_attention",
53
+ "sliding_attention",
54
+ "sliding_attention",
55
+ "full_attention",
56
+ "sliding_attention",
57
+ "sliding_attention",
58
+ "sliding_attention",
59
+ "sliding_attention"
60
+ ],
61
+ "max_position_embeddings": 131072,
62
+ "model_type": "gemma3_text",
63
+ "num_attention_heads": 8,
64
+ "num_hidden_layers": 34,
65
+ "num_key_value_heads": 4,
66
+ "query_pre_attn_scalar": 256,
67
+ "rms_norm_eps": 1e-06,
68
+ "rope_local_base_freq": 10000,
69
+ "rope_scaling": {
70
+ "factor": 8.0,
71
+ "rope_type": "linear"
72
+ },
73
+ "rope_theta": 1000000,
74
+ "sliding_window": 1024,
75
+ "torch_dtype": "bfloat16",
76
+ "use_cache": true,
77
+ "vocab_size": 262208
78
+ },
79
+ "torch_dtype": "bfloat16",
80
+ "transformers_version": "4.54.0.dev0",
81
+ "vision_config": {
82
+ "attention_dropout": 0.0,
83
+ "hidden_act": "gelu_pytorch_tanh",
84
+ "hidden_size": 1152,
85
+ "image_size": 896,
86
+ "intermediate_size": 4304,
87
+ "layer_norm_eps": 1e-06,
88
+ "model_type": "siglip_vision_model",
89
+ "num_attention_heads": 16,
90
+ "num_channels": 3,
91
+ "num_hidden_layers": 27,
92
+ "patch_size": 14,
93
+ "torch_dtype": "bfloat16",
94
+ "vision_use_head": false
95
+ }
96
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "eos_token_id": [
5
+ 1,
6
+ 106
7
+ ],
8
+ "pad_token_id": 0,
9
+ "transformers_version": "4.54.0.dev0"
10
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acd1c5fbeda43edbd93f164edc23844da1cb6136d0af5120c7ece561be8fbd01
3
+ size 4961251752
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bed82e64597da81b1e663c59c4dae77df93edf8af95221054b541225d4f0313
3
+ size 3639026128
model.safetensors.index.json ADDED
@@ -0,0 +1,891 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 4971331952,
4
+ "total_size": 8600158944
5
+ },
6
+ "weight_map": {
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
69
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
70
+ "language_model.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
71
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "language_model.model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "language_model.model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "language_model.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
87
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
88
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
89
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
90
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
91
+ "language_model.model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
92
+ "language_model.model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "language_model.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
94
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "language_model.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
97
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
98
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
99
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
100
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
101
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
102
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
103
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
104
+ "language_model.model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "language_model.model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
106
+ "language_model.model.layers.15.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
107
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
108
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
109
+ "language_model.model.layers.15.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
110
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
111
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
112
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
113
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
114
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
115
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
116
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "language_model.model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
118
+ "language_model.model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
119
+ "language_model.model.layers.16.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
120
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
121
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
122
+ "language_model.model.layers.16.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
123
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
124
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
125
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "language_model.model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
131
+ "language_model.model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
132
+ "language_model.model.layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
133
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
134
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
135
+ "language_model.model.layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
136
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
137
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
138
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
140
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
141
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
142
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
143
+ "language_model.model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "language_model.model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
145
+ "language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
146
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
147
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
148
+ "language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
149
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
150
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
151
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
152
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
164
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "language_model.model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
170
+ "language_model.model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
172
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
173
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
174
+ "language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
175
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
176
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
177
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
178
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
179
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
180
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
181
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
182
+ "language_model.model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
183
+ "language_model.model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
185
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
186
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
187
+ "language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
188
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
189
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
190
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
191
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
192
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
193
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
194
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "language_model.model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
196
+ "language_model.model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
197
+ "language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
198
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
199
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
200
+ "language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
201
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
202
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
203
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
205
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
206
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
207
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
208
+ "language_model.model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
209
+ "language_model.model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
210
+ "language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
211
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
+ "language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
214
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
215
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
216
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
218
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
219
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
220
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
221
+ "language_model.model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
222
+ "language_model.model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
223
+ "language_model.model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
224
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
225
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
226
+ "language_model.model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
227
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
228
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
229
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
230
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
231
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
232
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
233
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "language_model.model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
235
+ "language_model.model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "language_model.model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
237
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
238
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
239
+ "language_model.model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
240
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
243
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
244
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
245
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
246
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
247
+ "language_model.model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "language_model.model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "language_model.model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
250
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
251
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
252
+ "language_model.model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
253
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
254
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
255
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
256
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
257
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
258
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
259
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "language_model.model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "language_model.model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
262
+ "language_model.model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
263
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
264
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
265
+ "language_model.model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
266
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
267
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
268
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
269
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
270
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
271
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
272
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "language_model.model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
274
+ "language_model.model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
275
+ "language_model.model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
276
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
277
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
278
+ "language_model.model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
279
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
280
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
281
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
282
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
283
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
284
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
285
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
286
+ "language_model.model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
287
+ "language_model.model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "language_model.model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
289
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
290
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
291
+ "language_model.model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
292
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
293
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
294
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
295
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
296
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
297
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
298
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
299
+ "language_model.model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "language_model.model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "language_model.model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
302
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "language_model.model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
305
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "language_model.model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
313
+ "language_model.model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
314
+ "language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
315
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
316
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
317
+ "language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
318
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
319
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
320
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "language_model.model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
326
+ "language_model.model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
327
+ "language_model.model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
328
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
329
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
330
+ "language_model.model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
331
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
332
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
333
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
334
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
335
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
336
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
337
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
338
+ "language_model.model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
339
+ "language_model.model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
340
+ "language_model.model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
341
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
342
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
343
+ "language_model.model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
344
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
345
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
346
+ "language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
347
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
348
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
349
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
350
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
351
+ "language_model.model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
352
+ "language_model.model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
353
+ "language_model.model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
354
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
355
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
356
+ "language_model.model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
357
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
358
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
359
+ "language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
361
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
362
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
363
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
364
+ "language_model.model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
365
+ "language_model.model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
366
+ "language_model.model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
367
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
368
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
369
+ "language_model.model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
370
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
371
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
372
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
374
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
375
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
376
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "language_model.model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
378
+ "language_model.model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
379
+ "language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
380
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
381
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
382
+ "language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
383
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
384
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
385
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
386
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
387
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
388
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
389
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
390
+ "language_model.model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
391
+ "language_model.model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
393
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
394
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
395
+ "language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
396
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
397
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
398
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
399
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
400
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
401
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
402
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
403
+ "language_model.model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "language_model.model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
406
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
407
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
408
+ "language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
409
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
410
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
411
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
412
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
413
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
414
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
415
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "language_model.model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "language_model.model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
418
+ "language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
419
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
420
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
421
+ "language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
422
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
423
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
424
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
425
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
426
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
427
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
428
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "language_model.model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
430
+ "language_model.model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
431
+ "language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
432
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
433
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
434
+ "language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
435
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
436
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
437
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
438
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
439
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
440
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
441
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
442
+ "language_model.model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
443
+ "language_model.model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
444
+ "language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
445
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
446
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
447
+ "language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
448
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
449
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
450
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
451
+ "multi_modal_projector.mm_input_projection_weight": "model-00001-of-00002.safetensors",
452
+ "multi_modal_projector.mm_soft_emb_norm.weight": "model-00001-of-00002.safetensors",
453
+ "vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
454
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
455
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
456
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
457
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
458
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
459
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
460
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
461
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
462
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
463
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
464
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
465
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
466
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
467
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
468
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
469
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
470
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
471
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
472
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
473
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
474
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
475
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
476
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
477
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
478
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
479
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
480
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
481
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
482
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
483
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
484
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
485
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
486
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
487
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
488
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
489
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
490
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
491
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
492
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
493
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
494
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
495
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
496
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
497
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
498
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
499
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
500
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
501
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
502
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
503
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
504
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
505
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
506
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
507
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
508
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
509
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
510
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
511
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
512
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
513
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
514
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
515
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
516
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
517
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
518
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
519
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
520
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
521
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
522
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
523
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
524
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
525
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
526
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
527
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
528
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
529
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
530
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
531
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
532
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
533
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
534
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
535
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
536
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
537
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
538
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
539
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
540
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
541
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
542
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
543
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
544
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
545
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
546
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
547
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
548
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
549
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
550
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
551
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
552
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
553
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
554
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
555
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
556
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
557
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
558
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
559
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
560
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
561
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
562
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
563
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
564
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
565
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
566
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
567
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
568
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
569
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
570
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
571
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
572
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
573
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
574
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
575
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
576
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
577
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
578
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
579
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
580
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
581
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
582
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
583
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
584
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
585
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
586
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
587
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
588
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
589
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
590
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
591
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
592
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
593
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
594
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
595
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
596
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
597
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
598
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
599
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
600
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
601
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
602
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
603
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
604
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
605
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
606
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
607
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
608
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
609
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
610
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
611
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
612
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
613
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
614
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
615
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
616
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
617
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
618
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
619
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
620
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
621
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
622
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
623
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
624
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
625
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
626
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
627
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
628
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
629
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
630
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
631
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
632
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
633
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
634
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
635
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
636
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
637
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
638
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
639
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
640
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
641
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
642
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
643
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
644
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
645
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
646
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
647
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
648
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
649
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
650
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
651
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
652
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
653
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
654
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
655
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
656
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
657
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
658
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
659
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
660
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
661
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
662
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
663
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
664
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
665
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
666
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
667
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
668
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
669
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
670
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
671
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
672
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
673
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
674
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
675
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
676
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
677
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
678
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
679
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
680
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
681
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
682
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
683
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
684
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
685
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
686
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
687
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
688
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
689
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
690
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
691
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
692
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
693
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
694
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
695
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
696
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
697
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
698
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
699
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
700
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
701
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
702
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
703
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
704
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
705
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
706
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
707
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
708
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
709
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
710
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
711
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
712
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
713
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
714
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
715
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
716
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
717
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
718
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
719
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
720
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
721
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
722
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
723
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
724
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
725
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
726
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
727
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
728
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
729
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
730
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
731
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
732
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
733
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
734
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
735
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
736
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
737
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
738
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
739
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
740
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
741
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
742
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
743
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
744
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
745
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
746
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
747
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
748
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
749
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
750
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
751
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
752
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
753
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
754
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
755
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
756
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
757
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
758
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
759
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
760
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
761
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
762
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
763
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
764
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
765
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
766
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
767
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
768
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
769
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
770
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
771
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
772
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
773
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
774
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
775
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
776
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
777
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
778
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
779
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
780
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
781
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
782
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
783
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
784
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
785
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
786
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
787
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
788
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
789
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
790
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
791
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
792
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
793
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
794
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
795
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
796
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
797
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
798
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
799
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
800
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
801
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
802
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
803
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
804
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
805
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
806
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
807
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
808
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
809
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
810
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
811
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
812
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
813
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
814
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
815
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
816
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
817
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
818
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
819
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
820
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
821
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
822
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
823
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
824
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
825
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
826
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
827
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
828
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
829
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
830
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
831
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
832
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
833
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
834
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
835
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
836
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
837
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
838
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
839
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
840
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
841
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
842
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
843
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
844
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
845
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
846
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
847
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
848
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
849
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
850
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
851
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
852
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
853
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
854
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
855
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
856
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
857
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
858
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
859
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
860
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
861
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
862
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
863
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
864
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
865
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
866
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
867
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
868
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
869
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
870
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
871
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
872
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
873
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
874
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
875
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
876
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
877
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
878
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
879
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
880
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
881
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
882
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
883
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
884
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
885
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
886
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
887
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
888
+ "vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
889
+ "vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors"
890
+ }
891
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_pan_and_scan": null,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_processor_type": "Gemma3ImageProcessor",
13
+ "image_seq_length": 256,
14
+ "image_std": [
15
+ 0.5,
16
+ 0.5,
17
+ 0.5
18
+ ],
19
+ "pan_and_scan_max_num_crops": null,
20
+ "pan_and_scan_min_crop_size": null,
21
+ "pan_and_scan_min_ratio_to_activate": null,
22
+ "processor_class": "Gemma3Processor",
23
+ "resample": 2,
24
+ "rescale_factor": 0.00392156862745098,
25
+ "size": {
26
+ "height": 896,
27
+ "width": 896
28
+ }
29
+ }
processor_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "image_seq_length": 256,
3
+ "processor_class": "Gemma3Processor"
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d4046bf0505a327dd5a0abbb427ecd4fc82f99c2ceaa170bc61ecde12809b0c
3
+ size 33384570
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff