| # NanoLM-0.3B-Instruct-v2 | |
| [English](README.md) | 简体中文 | |
| ## Introduction | |
| 为了探究小模型的潜能,我尝试构建一系列小模型,并存放于 [NanoLM Collections](https://huggingface.co/collections/Mxode/nanolm-66d6d75b4a69536bca2705b2)。 | |
| 这是 NanoLM-0.3B-Instruct-v2。该模型目前仅支持**英文**。 | |
| ## 模型详情 | |
| | Nano LMs | Non-emb Params | Arch | Layers | Dim | Heads | Seq Len | | |
| | :----------: | :------------------: | :---: | :----: | :-------: | :---: | :---: | | |
| | 25M | 15M | MistralForCausalLM | 12 | 312 | 12 |2K| | |
| | 70M | 42M | LlamaForCausalLM | 12 | 576 | 9 |2K| | |
| | **0.3B** | **180M** | **Qwen2ForCausalLM** | **12** | **896** | **14** | **4K** | | |
| | 1B | 840M | Qwen2ForCausalLM | 18 | 1536 | 12 |4K| | |
| ## 如何使用 | |
| ```python | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| model_path = 'Mxode/NanoLM-0.3B-Instruct-v2' | |
| model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16) | |
| tokenizer = AutoTokenizer.from_pretrained(model_path) | |
| def get_response(prompt: str, **kwargs): | |
| generation_args = dict( | |
| max_new_tokens = kwargs.pop("max_new_tokens", 512), | |
| do_sample = kwargs.pop("do_sample", True), | |
| temperature = kwargs.pop("temperature", 0.7), | |
| top_p = kwargs.pop("top_p", 0.8), | |
| top_k = kwargs.pop("top_k", 40), | |
| **kwargs | |
| ) | |
| messages = [ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| {"role": "user", "content": prompt} | |
| ] | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
| generated_ids = model.generate(model_inputs.input_ids, **generation_args) | |
| generated_ids = [ | |
| output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
| ] | |
| response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| return response | |
| prompt1 = "Calculate (4 - 1) * 7" | |
| print(get_response(prompt1, do_sample=False)) | |
| """ | |
| To calculate the expression (4 - 1) * 7, we need to follow the order of operations (PEMDAS): | |
| 1. Evaluate the expression inside the parentheses: 4 - 1 = 3 | |
| 2. Multiply 3 by 7: 3 * 7 = 21 | |
| So, (4 - 1) * 7 = 21. | |
| """ | |
| ``` | |