tatoeba-tok-ru

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ru on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4694
  • Bleu: 20.4311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu
2.0538 1.0 1167 1.7944 7.2757
1.7461 2.0 2334 1.6562 14.4046
1.5644 3.0 3501 1.5849 15.8651
1.4611 4.0 4668 1.5486 16.9808
1.3698 5.0 5835 1.5209 15.9727
1.305 6.0 7002 1.5049 18.1714
1.2458 7.0 8169 1.4947 18.7180
1.2006 8.0 9336 1.4868 19.5074
1.1555 9.0 10503 1.4800 19.5799
1.1251 10.0 11670 1.4759 20.0295
1.091 11.0 12837 1.4741 20.1306
1.0701 12.0 14004 1.4710 19.7831
1.0433 13.0 15171 1.4715 20.5833
1.0359 14.0 16338 1.4694 20.3306
1.0263 15.0 17505 1.4702 20.3269

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
12
Safetensors
Model size
76.2M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for NetherQuartz/tatoeba-tok-ru

Finetuned
(26)
this model

Dataset used to train NetherQuartz/tatoeba-tok-ru

Collection including NetherQuartz/tatoeba-tok-ru