Update README.md
Browse files
README.md
CHANGED
|
@@ -22,31 +22,30 @@ on the `Norod78/EmojiFFHQAlignedFaces` dataset.
|
|
| 22 |
#### How to use
|
| 23 |
|
| 24 |
```python
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
## Training data
|
| 33 |
|
| 34 |
[TODO: describe the data used to train the model]
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
The following hyperparameters were used during training:
|
| 39 |
-
- learning_rate: 0.0001
|
| 40 |
-
- train_batch_size: 16
|
| 41 |
-
- eval_batch_size: 16
|
| 42 |
-
- gradient_accumulation_steps: 1
|
| 43 |
-
- optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None
|
| 44 |
-
- lr_scheduler: None
|
| 45 |
-
- lr_warmup_steps: 500
|
| 46 |
-
- ema_inv_gamma: None
|
| 47 |
-
- ema_inv_gamma: None
|
| 48 |
-
- ema_inv_gamma: None
|
| 49 |
-
- mixed_precision: fp16
|
| 50 |
|
| 51 |
### Training results
|
| 52 |
|
|
|
|
| 22 |
#### How to use
|
| 23 |
|
| 24 |
```python
|
| 25 |
+
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def main():
|
| 29 |
+
model_id = "./ddpm-EmojiAlignedFaces-64"
|
| 30 |
|
| 31 |
+
# load model and scheduler
|
| 32 |
+
ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference
|
| 33 |
|
| 34 |
+
# run pipeline in inference (sample random noise and denoise)
|
| 35 |
+
image = ddpm()["sample"]
|
| 36 |
+
|
| 37 |
+
# save image
|
| 38 |
+
image[0].save("ddpm_generated_image.jpg")
|
| 39 |
+
image[0].show()
|
| 40 |
+
|
| 41 |
+
if __name__ == '__main__':
|
| 42 |
+
main()
|
| 43 |
+
```
|
| 44 |
|
|
|
|
| 45 |
|
| 46 |
[TODO: describe the data used to train the model]
|
| 47 |
|
| 48 |
+
[Norod78/EmojiFFHQAlignedFaces](https://huggingface.co/datasets/Norod78/EmojiFFHQAlignedFaces)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
### Training results
|
| 51 |
|