Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,54 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- Norod78/hebrew_lyrics_prompting
|
| 5 |
+
- Norod78/hebrew_lyrics_prompting_finetune
|
| 6 |
+
language:
|
| 7 |
+
- he
|
| 8 |
+
base_model:
|
| 9 |
+
- google/gemma-2-2b-it
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# 诪讞讜诇诇 砖讬专讬诐 诪讟讜驻砖讬诐 :)
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 16 |
+
from transformers import TextStreamer
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
model_id = "./hebrew_lyrics-gemma2_2b"
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
model_id,
|
| 24 |
+
device_map="auto",
|
| 25 |
+
torch_dtype=torch.bfloat16,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
print(f"model.device = {model.device}")
|
| 29 |
+
input_text = "讻转讜讘 诇讬 砖讬专 注诇 转驻讜讞 讗讚诪讛 注诐 讞专讚讛 讞讘专转讬转"
|
| 30 |
+
|
| 31 |
+
input_template = tokenizer.apply_chat_template([{"role": "user", "content": input_text}], tokenize=False, add_generation_prompt=True)
|
| 32 |
+
input_ids = tokenizer(input_template, return_tensors="pt").to(model.device)
|
| 33 |
+
outputs = model.generate(**input_ids, max_new_tokens=256, repetition_penalty=1.05, temperature=0.5, no_repeat_ngram_size = 4, do_sample = True)
|
| 34 |
+
decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 35 |
+
result = decoded_output.replace("user\n", "诪砖转诪砖:\n").replace("model\n", "\n诪讜讚诇:\n")
|
| 36 |
+
print("result = ", result)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
chat = [
|
| 40 |
+
{"role": "user", "content": input_text},
|
| 41 |
+
{"role": "asistant"}
|
| 42 |
+
]
|
| 43 |
+
chat_with_template = tokenizer.apply_chat_template(chat, tokenize=False)
|
| 44 |
+
inputs = tokenizer(
|
| 45 |
+
[
|
| 46 |
+
chat_with_template
|
| 47 |
+
], return_tensors = "pt").to(model.device)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
text_streamer = TextStreamer(tokenizer)
|
| 51 |
+
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens=256 , repetition_penalty=1.1, temperature=0.6, top_p=0.4, top_k=40, do_sample = True)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
```
|