File size: 11,994 Bytes
d5233a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from rdkit import Chem
from rdkit.Chem import AllChem, MACCSkeys
from rdkit.Chem.rdmolops import FastFindRings
from rdkit.Chem.rdMolDescriptors import CalcMolFormula
import torch
import numpy as np
import scipy
import scipy.sparse as ss
import scipy.sparse.linalg
import math
import json
import itertools as it
import re
from GNN import featurizer as ft

import rdkit.RDLogger as rkl
logger = rkl.logger()
logger.setLevel(rkl.ERROR)

import rdkit.rdBase as rkrb
rkrb.DisableLog('rdApp.error')

# 50w metabolites fpbit relative aboundance > 5%
FPBitIdx = [1, 5, 13, 41, 69, 80, 84, 94, 114, 117, 118, 119, 125, 133, 145,
            147, 191, 192, 197, 202, 222, 227, 231, 249, 283, 294, 310, 314,
            322, 333, 352, 361, 378, 387, 389, 392, 401, 406, 441, 478, 486,
            489, 519, 521, 524, 555, 561, 591, 598, 599, 610, 622, 650, 656,
            667, 675, 677, 679, 680, 694, 695, 715, 718, 722, 729, 736, 739,
            745, 750, 760, 775, 781, 787, 794, 798, 802, 807, 811, 823, 835,
            841, 849, 869, 872, 874, 875, 881, 890, 896, 926, 935, 980, 991,
            1004, 1009, 1017, 1019, 1027, 1028, 1035, 1037, 1039, 1057, 1060,
            1066, 1070, 1077, 1088, 1097, 1114, 1126, 1136, 1142, 1143, 1145,
            1152, 1154, 1160, 1162, 1171, 1181, 1195, 1199, 1202, 1218, 1234,
            1236, 1243, 1257, 1267, 1274, 1279, 1283, 1292, 1294, 1309, 1313,
            1323, 1325, 1349, 1356, 1357, 1366, 1380, 1381, 1385, 1386, 1391,
            1399, 1436, 1440, 1441, 1444, 1452, 1454, 1457, 1475, 1476, 1477,
            1480, 1487, 1516, 1536, 1544, 1558, 1564, 1573, 1599, 1602, 1604,
            1607, 1619, 1648, 1670, 1683, 1693, 1716, 1722, 1737, 1738, 1745,
            1747, 1750, 1754, 1755, 1764, 1781, 1803, 1808, 1810, 1816, 1838,
            1844, 1847, 1855, 1860, 1866, 1873, 1905, 1911, 1917, 1921, 1923,
            1928, 1933, 1950, 1951, 1970, 1977, 1980, 1984, 1991, 2002, 2033, 2034, 2038]

class ConfigDict(dict):
    '''

    Makes a  dictionary behave like an object,with attribute-style access.

    '''
    def __getattr__(self, name):
        try:
            return self[name]
        except:
            raise AttributeError(name)

    def __setattr__(self, name, value):
        self[name] = value

    def save(self, fn):
        json.dump(self, open(fn, 'w'), indent=2)

    def load_dict(self, dic):
        for k, v in dic.items():
            self[k] = v

    def load(self, fn):
        try:
            d = json.load(open(fn, 'r'))
            self.load_dict(d)
        except Exception as e:
            print(e)

def conv_out_dim(length_in, kernel, stride, padding, dilation):
    length_out = (length_in + 2 * padding - dilation * (kernel - 1) - 1)// stride + 1
    return length_out

def filter_ms(ms, thr=0.05, max_mz=2000):
    mz = []
    intn = []
    maxi = 0
    for m, i in ms:
        if m < max_mz and i > maxi:
            maxi = i

    for m, i in ms:
        if m < max_mz and i/maxi > thr:
            mz.append(m)
            intn.append(round(i/maxi*100, 2))

    return mz, intn

def calc_nls(ms, thr=0.05, max_mz=2000):
    mz, intn = filter_ms(ms, thr=0.05, max_mz=2000)

    nlmass = []
    nlintn = []
    for a, b in it.combinations(mz[::-1], 2):
        nl = a - b
        if 0 < nl < 200:
            nlmass.append(round(nl, 5))
            idxa = mz.index(a)
            idxb = mz.index(b)
            nlintn.append(round((intn[idxa]+intn[idxb])/2., 5))

    nls = sorted(list(zip(nlmass, nlintn)))
    return nls

def ms_binner(ms, nls=[], min_mz=20, max_mz=2000, bin_size=0.05, add_nl=False, binary_intn=False):
    """

    Convert the given spectrum to a binned sparse SciPy vector.



    Parameters

    ----------

    spectrum_mz : np.ndarray

        The peak m/z values of the spectrum to be converted to a vector.

    spectrum_intensity : np.ndarray

        The peak intensities of the spectrum to be converted to a vector.

    min_mz : float

        The minimum m/z to include in the vector.

    bin_size : float

        The bin size in m/z used to divide the m/z range.

    num_bins : int

        The number of elements of which the vector consists.



    Returns

    -------

    ss.csr_matrix

        The binned spectrum vector.

    """
    if add_nl and not nls:
        nls = calc_nls(ms, max_mz=max_mz)

    nltensor = None
    mz, intn = filter_ms(ms)

    if add_nl:
        nlmass = []
        nlintn = []

        if not nls:
            nls = calc_nls(ms, max_mz=max_mz)

        for m, i in nls:
            if m < 200:
                if binary_intn:
                    i = 1
                nlmass.append(m)
                nlintn.append(i)

        nlmass = np.array(nlmass)
        nlintn = np.array(nlintn)
        if len(nlintn) > 0:
            nlintn = nlintn/nlintn.max()
        num_nlbins = math.ceil((200) / bin_size)
        #print('num_nlbins', num_nlbins)
        nlbins = (nlmass / bin_size).astype(np.int32)

        if len(nlmass) > 0:
            vecnl = ss.csr_matrix(
                (nlintn,
                (np.repeat(0, len(nlintn)), nlbins)), 
                shape=(1, num_nlbins),
                dtype=np.float32)

            vecnl = (vecnl / scipy.sparse.linalg.norm(vecnl)*100)
            nltensor = torch.FloatTensor(vecnl.todense()).view(-1)
        else:
            nltensor = torch.zeros(num_nlbins)

    mz = np.array(mz)
    keepidx = (mz <= max_mz)
    mz = mz[keepidx]
    intn = np.array(intn)
    intn = intn[keepidx]

    if binary_intn:
        intn[intn > 0] = 1.0
    elif len(intn) > 0:
        intn = intn/intn.max()

    num_bins = math.ceil((max_mz - min_mz) / bin_size)
    #print('num_bins', num_bins)
    bins = ((mz - min_mz) / bin_size).astype(np.int32)

    #print(num_bins, intn, bins)

    if len(mz) > 0:
        vec = ss.csr_matrix(
            (intn,
            (np.repeat(0, len(intn)), bins)), 
            shape=(1, num_bins),
            dtype=np.float32)

        if not binary_intn:
            vec = (vec / scipy.sparse.linalg.norm(vec)*100)

        mstensor = torch.FloatTensor(vec.todense()).view(-1)
    else:
        mstensor = torch.zeros(num_bins)

    if not nltensor is None:
        return torch.cat([nltensor, mstensor], dim=0)

    return mstensor

def formula2vec(formula, elements=['C', 'H', 'O', 'N', 'P', 'S', 'P', 'F', 'Cl', 'Br']):
    formula_p = re.findall(r'([A-Z][a-z]*)(\d*)', formula)
    vec = np.zeros(len(elements))
    for i in range(len(formula_p)):
        ele = formula_p[i][0]
        num = formula_p[i][1]
        if num == '':
            num = 1
        else:
            num = int(num)
        if ele in elements:
            vec[elements.index(ele)] += num
    return np.array(vec) 

def mol_fp_encoder0(smiles, tp='rdkit', nbits=2048):
    mol = Chem.MolFromSmiles(smiles)
    if mol is None:
        mol = Chem.MolFromSmiles(smiles, sanitize=False)
        if not mol is None:
            mol.UpdatePropertyCache()
            FastFindRings(mol)
            
    if mol is None:
        return None, None

    if tp == 'morgan':
        fp_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=nbits)
        fp = np.frombuffer(fp_vec.ToBitString().encode(), 'u1') - ord('0')
        fp = fp.tolist()
    elif tp == 'morgan1':
        fp_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048)
        fp = np.frombuffer(fp_vec.ToBitString().encode(), 'u1') - ord('0')
        fp = fp[FPBitIdx].tolist()
    elif tp == 'macc':
        # MACCSkeys
        fp_vec = MACCSkeys.GenMACCSKeys(mol)
        fp = np.frombuffer(fp_vec.ToBitString().encode(), 'u1') - ord('0')
        fp = fp.tolist()
    elif tp == 'rdkit':
        fp_vec = Chem.RDKFingerprint(mol, nBitsPerHash=1)
        fp = np.frombuffer(fp_vec.ToBitString().encode(), 'u1') - ord('0')
        fp = fp.tolist()

    return torch.FloatTensor(fp), mol

def mol_fp_encoder(smiles, tp='rdkit', nbits=2048):
    fpenc, _ = mol_fp_encoder0(smiles, tp, nbits)
    return fpenc

def mol_fp_fm_encoder(smiles, tp='rdkit', nbits=2048):
    fmenc = None
    fpenc, mol = mol_fp_encoder0(smiles, tp, nbits)
    if not mol is None:
        fm = CalcMolFormula(mol)
        fmenc = torch.FloatTensor(formula2vec(fm))
    return fpenc, fmenc

def smi2fmvec(smiles):
    mol = Chem.MolFromSmiles(smiles)
    if mol is None:
        return None
    fm = CalcMolFormula(mol)
    fmenc = torch.FloatTensor(formula2vec(fm))

    return fmenc

def mol_graph_featurizer(smiles):
    # mol_graph = {V, A, mol_size}
    '''mol_graph = ft.calc_data_from_smile(smiles,

                                        addh=True,

                                        with_ring_conj=True,

                                        with_atom_feats=True,

                                        with_submol_fp=True,

                                        radius=2)

    '''
    mol_graph = ft.calc_data_from_smile(smiles,
                                        addh=False,
                                        with_ring_conj=True,
                                        with_atom_feats=True,
                                        with_submol_fp=False,
                                        radius=2)
    return mol_graph

def pad_V(V, max_n):
    N, C = V.shape
    if max_n > N:
        zeros = torch.zeros(max_n-N, C)
        V = torch.cat([V, zeros], dim=0)
    return V

def pad_A(A, max_n):
    N, L, _ = A.shape
    if max_n > N:
        zeros = torch.zeros(N, L, max_n-N)
        A = torch.cat([A, zeros], dim=-1)
        zeros = torch.zeros(max_n-N, L, max_n)
        A = torch.cat([A, zeros], dim=0)
    return A

class AvgMeter:
    def __init__(self, name="Metric"):
        self.name = name
        self.reset()

    def reset(self):
        self.avg, self.sum, self.count = [0] * 3

    def update(self, val, count=1):
        self.count += count
        self.sum += val * count
        self.avg = self.sum / self.count

    def __repr__(self):
        text = f"{self.name}: {self.avg:.4f}"
        return text

def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group["lr"]

def segment_max(x, size_list):
    size_list = [int(i) for i in size_list]
    return torch.stack([torch.max(v, 0).values for v in torch.split(x, size_list)])

def segment_sum(x, size_list):
    size_list = [int(i) for i in size_list]
    return torch.stack([torch.sum(v, 0) for v in torch.split(x, size_list)])

def segment_softmax(gate, size_list):
    segmax = segment_max(gate, size_list)
    # expand segmax shape to alpha shape
    segmax_expand = torch.cat([segmax[i].repeat(n,1) for i,n in enumerate(size_list)], dim=0)
    subtract = gate - segmax_expand
    exp = torch.exp(subtract)
    segsum = segment_sum(exp, size_list)
    # expand segmax shape to alpha shape
    segsum_expand = torch.cat([segsum[i].repeat(n,1) for i,n in enumerate(size_list)], dim=0)
    attention = exp / (segsum_expand + 1e-16)

    return attention

def pad_ms_list(ms_list, thr=0.05, min_mz=20, max_mz=2000):
    thr = thr*100
    mslst = []
    for ms in ms_list:
        ms = np.array(ms)
        ms[:,1] = ms[:,1]/ms[:,1].max()*100

        if thr > 0:
            ms = ms[(ms[:,1] >= thr)]

        ms = ms[(ms[:,0] >= min_mz)]
        ms = ms[(ms[:,0] <= max_mz)]

        mslst.append(ms)

    size_list = [ms.shape[0] for ms in mslst]
    maxlen = max(size_list)

    l = []
    for ms in mslst:
        extn = maxlen-len(ms)
        if extn > 0:
            l.append(np.concatenate([ms, [[0,0]]*extn], axis=0))
        else:
            l.append(ms)

    return torch.FloatTensor(np.stack(l)), torch.IntTensor(size_list)