nielsr HF Staff commited on
Commit
9fba3de
·
verified ·
1 Parent(s): a1e3719

Add Hugging Face Space link to model card

Browse files

Hi there,

This PR updates the model card for `OpenGVLab/InternVL3_5-14B` to include a direct link to its Hugging Face Space: [https://huggingface.co/spaces/OpenGVLab/InternVL](https://huggingface.co/spaces/OpenGVLab/InternVL). This enhances discoverability and makes it easier for users to access the interactive demo.

No other changes were made as the existing model card already provides comprehensive information, including the paper link, GitHub repository, sample usage, and relevant metadata.

Thanks!

Files changed (1) hide show
  1. README.md +254 -33
README.md CHANGED
@@ -1,25 +1,25 @@
1
  ---
2
- license: apache-2.0
3
- pipeline_tag: image-text-to-text
4
- library_name: transformers
5
  base_model:
6
- - OpenGVLab/InternVL3_5-14B-MPO
7
- base_model_relation: finetune
8
  datasets:
9
- - OpenGVLab/MMPR-v1.2
10
- - OpenGVLab/MMPR-Tiny
11
  language:
12
- - multilingual
 
 
 
13
  tags:
14
- - internvl
15
- - custom_code
 
16
  ---
17
 
18
  # InternVL3_5-14B
19
 
20
  [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479) [\[📜 InternVL3.5\]](https://huggingface.co/papers/2508.18265)
21
 
22
- [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://chat.intern-ai.org.cn/) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
23
 
24
  <div align="center">
25
  <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
@@ -27,7 +27,7 @@ tags:
27
 
28
  ## Introduction
29
 
30
- We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
31
 
32
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
33
 
@@ -141,7 +141,7 @@ Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolu
141
  Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
142
  In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
143
  For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
144
- Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50\% while maintaining nearly 100\% of the performance of InternVL3.5.
145
 
146
 
147
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
@@ -529,40 +529,50 @@ generation_config = dict(max_new_tokens=1024, do_sample=True)
529
  # pure-text conversation (纯文本对话)
530
  question = 'Hello, who are you?'
531
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
532
- print(f'User: {question}\nAssistant: {response}')
 
533
 
534
  question = 'Can you tell me a story?'
535
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
536
- print(f'User: {question}\nAssistant: {response}')
 
537
 
538
  # single-image single-round conversation (单图单轮对话)
539
- question = '<image>\nPlease describe the image shortly.'
 
540
  response = model.chat(tokenizer, pixel_values, question, generation_config)
541
- print(f'User: {question}\nAssistant: {response}')
 
542
 
543
  # single-image multi-round conversation (单图多轮对话)
544
- question = '<image>\nPlease describe the image in detail.'
 
545
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
546
- print(f'User: {question}\nAssistant: {response}')
 
547
 
548
  question = 'Please write a poem according to the image.'
549
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
550
- print(f'User: {question}\nAssistant: {response}')
 
551
 
552
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
553
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
554
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
555
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
556
 
557
- question = '<image>\nDescribe the two images in detail.'
 
558
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
559
  history=None, return_history=True)
560
- print(f'User: {question}\nAssistant: {response}')
 
561
 
562
  question = 'What are the similarities and differences between these two images.'
563
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
564
  history=history, return_history=True)
565
- print(f'User: {question}\nAssistant: {response}')
 
566
 
567
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
568
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -570,17 +580,21 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
570
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
571
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
572
 
573
- question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
 
 
574
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
575
  num_patches_list=num_patches_list,
576
  history=None, return_history=True)
577
- print(f'User: {question}\nAssistant: {response}')
 
578
 
579
  question = 'What are the similarities and differences between these two images.'
580
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
581
  num_patches_list=num_patches_list,
582
  history=history, return_history=True)
583
- print(f'User: {question}\nAssistant: {response}')
 
584
 
585
  # batch inference, single image per sample (单图批处理)
586
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
@@ -588,13 +602,15 @@ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat1
588
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
589
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
590
 
591
- questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
 
592
  responses = model.batch_chat(tokenizer, pixel_values,
593
  num_patches_list=num_patches_list,
594
  questions=questions,
595
  generation_config=generation_config)
596
  for question, response in zip(questions, responses):
597
- print(f'User: {question}\nAssistant: {response}')
 
598
 
599
  # video multi-round conversation (视频多轮对话)
600
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
@@ -632,17 +648,24 @@ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=3
632
  video_path = './examples/red-panda.mp4'
633
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
634
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
635
- video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
 
636
  question = video_prefix + 'What is the red panda doing?'
637
- # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
 
 
 
 
638
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
639
  num_patches_list=num_patches_list, history=None, return_history=True)
640
- print(f'User: {question}\nAssistant: {response}')
 
641
 
642
  question = 'Describe this video in detail.'
643
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
644
  num_patches_list=num_patches_list, history=history, return_history=True)
645
- print(f'User: {question}\nAssistant: {response}')
 
646
  ```
647
 
648
  #### Streaming Output
@@ -726,7 +749,150 @@ image_urls=[
726
 
727
  images = [load_image(img_url) for img_url in image_urls]
728
  # Numbering images improves multi-image conversations
729
- response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730
  print(response.text)
731
  ```
732
 
@@ -828,4 +994,59 @@ If you find this project useful in your research, please consider citing:
828
  journal={arXiv preprint arXiv:2508.18265},
829
  year={2025}
830
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831
  ```
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
+ - OpenGVLab/InternVL3_5-14B-MPO
 
4
  datasets:
5
+ - OpenGVLab/MMPR-v1.2
6
+ - OpenGVLab/MMPR-Tiny
7
  language:
8
+ - multilingual
9
+ library_name: transformers
10
+ license: apache-2.0
11
+ pipeline_tag: image-text-to-text
12
  tags:
13
+ - internvl
14
+ - custom_code
15
+ base_model_relation: finetune
16
  ---
17
 
18
  # InternVL3_5-14B
19
 
20
  [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479) [\[📜 InternVL3.5\]](https://huggingface.co/papers/2508.18265)
21
 
22
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://chat.intern-ai.org.cn/) [\[🤗 HF Space\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
23
 
24
  <div align="center">
25
  <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
 
27
 
28
  ## Introduction
29
 
30
+ We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
31
 
32
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg)
33
 
 
141
  Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM).
142
  In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens.
143
  For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly.
144
+ Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50% while maintaining nearly 100% of the performance of InternVL3.5.
145
 
146
 
147
  ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg)
 
529
  # pure-text conversation (纯文本对话)
530
  question = 'Hello, who are you?'
531
  response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
532
+ print(f'User: {question}
533
+ Assistant: {response}')
534
 
535
  question = 'Can you tell me a story?'
536
  response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
537
+ print(f'User: {question}
538
+ Assistant: {response}')
539
 
540
  # single-image single-round conversation (单图单轮对话)
541
+ question = '<image>
542
+ Please describe the image shortly.'
543
  response = model.chat(tokenizer, pixel_values, question, generation_config)
544
+ print(f'User: {question}
545
+ Assistant: {response}')
546
 
547
  # single-image multi-round conversation (单图多轮对话)
548
+ question = '<image>
549
+ Please describe the image in detail.'
550
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
551
+ print(f'User: {question}
552
+ Assistant: {response}')
553
 
554
  question = 'Please write a poem according to the image.'
555
  response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
556
+ print(f'User: {question}
557
+ Assistant: {response}')
558
 
559
  # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
560
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
561
  pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
562
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
563
 
564
+ question = '<image>
565
+ Describe the two images in detail.'
566
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
567
  history=None, return_history=True)
568
+ print(f'User: {question}
569
+ Assistant: {response}')
570
 
571
  question = 'What are the similarities and differences between these two images.'
572
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
573
  history=history, return_history=True)
574
+ print(f'User: {question}
575
+ Assistant: {response}')
576
 
577
  # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
578
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
580
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
581
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
582
 
583
+ question = 'Image-1: <image>
584
+ Image-2: <image>
585
+ Describe the two images in detail.'
586
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
587
  num_patches_list=num_patches_list,
588
  history=None, return_history=True)
589
+ print(f'User: {question}
590
+ Assistant: {response}')
591
 
592
  question = 'What are the similarities and differences between these two images.'
593
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
594
  num_patches_list=num_patches_list,
595
  history=history, return_history=True)
596
+ print(f'User: {question}
597
+ Assistant: {response}')
598
 
599
  # batch inference, single image per sample (单图批处理)
600
  pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
 
602
  num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
603
  pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
604
 
605
+ questions = ['<image>
606
+ Describe the image in detail.'] * len(num_patches_list)
607
  responses = model.batch_chat(tokenizer, pixel_values,
608
  num_patches_list=num_patches_list,
609
  questions=questions,
610
  generation_config=generation_config)
611
  for question, response in zip(questions, responses):
612
+ print(f'User: {question}
613
+ Assistant: {response}')
614
 
615
  # video multi-round conversation (视频多轮对话)
616
  def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
 
648
  video_path = './examples/red-panda.mp4'
649
  pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
650
  pixel_values = pixel_values.to(torch.bfloat16).cuda()
651
+ video_prefix = ''.join([f'Frame{i+1}: <image>
652
+ ' for i in range(len(num_patches_list))])
653
  question = video_prefix + 'What is the red panda doing?'
654
+ # Frame1: <image>
655
+ Frame2: <image>
656
+ ...
657
+ Frame8: <image>
658
+ {question}
659
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
660
  num_patches_list=num_patches_list, history=None, return_history=True)
661
+ print(f'User: {question}
662
+ Assistant: {response}')
663
 
664
  question = 'Describe this video in detail.'
665
  response, history = model.chat(tokenizer, pixel_values, question, generation_config,
666
  num_patches_list=num_patches_list, history=history, return_history=True)
667
+ print(f'User: {question}
668
+ Assistant: {response}')
669
  ```
670
 
671
  #### Streaming Output
 
749
 
750
  images = [load_image(img_url) for img_url in image_urls]
751
  # Numbering images improves multi-image conversations
752
+ response = pipe((f'Image-1: {IMAGE_TOKEN}
753
+ Image-2: {IMAGE_TOKEN}
754
+ describe these two images', images))
755
+ print(response.text)
756
+ ```
757
+
758
+ #### Batch Prompts Inference
759
+
760
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
761
+
762
+ ```python
763
+ from lmdeploy import pipeline, PytorchEngineConfig
764
+ from lmdeploy.vl import load_image
765
+
766
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
767
+ model = 'OpenGVLab/InternVL3_5-8B'
768
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
769
+
770
+ image_urls=[
771
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
772
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
773
+ ]
774
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
775
+ response = pipe(prompts)
776
+ print(response)
777
+ ```
778
+
779
+ #### Multi-turn Conversation
780
+
781
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
782
+
783
+ ```python
784
+ from lmdeploy import pipeline, PytorchEngineConfig, GenerationConfig
785
+ from lmdeploy.vl import load_image
786
+
787
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
788
+ model = 'OpenGVLab/InternVL3_5-8B'
789
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
790
+
791
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
792
+ gen_config = GenerationConfig(top_k=50, top_p=0.95, temperature=0.6, max_new_tokens=8192)
793
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
794
+ print(sess.response.text)
795
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
796
+ print(sess.response.text)
797
+ ```
798
+
799
+ #### Service
800
+
801
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
802
+
803
+ ```shell
804
+ lmdeploy serve api_server OpenGVLab/InternVL3_5-8B --server-port 23333 --tp 1 --backend pytorch
805
+ ```
806
+
807
+ To use the OpenAI-style interface, you need to install OpenAI:
808
+
809
+ ```shell
810
+ pip install openai
811
+ ```
812
+
813
+ Then, use the code below to make the API call:
814
+
815
+ ```python
816
+ from openai import OpenAI
817
+
818
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
819
+ model_name = client.models.list().data[0].id
820
+ response = client.chat.completions.create(
821
+ model=model_name,
822
+ messages=[{
823
+ 'role':
824
+ 'user',
825
+ 'content': [{
826
+ 'type': 'text',
827
+ 'text': 'describe this image',
828
+ }, {
829
+ 'type': 'image_url',
830
+ 'image_url': {
831
+ 'url':
832
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
833
+ },
834
+ }],
835
+ }],
836
+ temperature=0.8,
837
+ top_p=0.8)
838
+ print(response)
839
+ ```
840
+
841
+ ## Finetune
842
+
843
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTuner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
844
+
845
+ ## Deployment
846
+
847
+ ### LMDeploy
848
+
849
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
850
+
851
+ ```sh
852
+ pip install lmdeploy>=0.9.1
853
+ ```
854
+
855
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
856
+
857
+ #### A 'Hello, world' Example
858
+
859
+ ```python
860
+ from lmdeploy import pipeline, PytorchEngineConfig
861
+ from lmdeploy.vl import load_image
862
+
863
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
864
+
865
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
866
+ model = 'OpenGVLab/InternVL3_5-8B'
867
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
868
+
869
+ response = pipe(('describe this image', image))
870
+ print(response.text)
871
+ ```
872
+
873
+ #### Multi-images Inference
874
+
875
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
876
+
877
+ ```python
878
+ from lmdeploy import pipeline, PytorchEngineConfig
879
+ from lmdeploy.vl import load_image
880
+ from lmdeploy.vl.constants import IMAGE_TOKEN
881
+
882
+ # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version.
883
+ model = 'OpenGVLab/InternVL3_5-8B'
884
+ pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1))
885
+
886
+ image_urls=[
887
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
888
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
889
+ ]
890
+
891
+ images = [load_image(img_url) for img_url in image_urls]
892
+ # Numbering images improves multi-image conversations
893
+ response = pipe((f'Image-1: {IMAGE_TOKEN}
894
+ Image-2: {IMAGE_TOKEN}
895
+ describe these two images', images))
896
  print(response.text)
897
  ```
898
 
 
994
  journal={arXiv preprint arXiv:2508.18265},
995
  year={2025}
996
  }
997
+ @article{zhu2025internvl3,
998
+ title={Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models},
999
+ author={Zhu, Jinguo and Wang, Weiyun and Chen, Zhe and Liu, Zhaoyang and Ye, Shenglong and Gu, Lixin and Tian, Hao and Duan, Yuchen and Su, Weijie and Shao, Jie and others},
1000
+ journal={arXiv preprint arXiv:2504.10479},
1001
+ year={2025}
1002
+ }
1003
+ @article{chen2024expanding,
1004
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
1005
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
1006
+ journal={arXiv preprint arXiv:2412.05271},
1007
+ year={2024}
1008
+ }
1009
+ @article{wang2024mpo,
1010
+ title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
1011
+ author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
1012
+ journal={arXiv preprint arXiv:2411.10442},
1013
+ year={2024}
1014
+ }
1015
+ @article{gao2024mini,
1016
+ title={Mini-InternVL: a flexible-transfer pocket multi-modal model with 5% parameters and 90% performance},
1017
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
1018
+ journal={Visual Intelligence},
1019
+ volume={2},
1020
+ number={1},
1021
+ pages={1--17},
1022
+ year={2024},
1023
+ publisher={Springer}
1024
+ }
1025
+ @article{chen2024far,
1026
+ title={How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites},
1027
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
1028
+ journal={Science China Information Sciences},
1029
+ volume={67},
1030
+ number={12},
1031
+ pages={220101},
1032
+ year={2024},
1033
+ publisher={Springer}
1034
+ }
1035
+ @inproceedings{chen2024internvl,
1036
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
1037
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
1038
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
1039
+ pages={24185--24198},
1040
+ year={2024}
1041
+ }
1042
  ```
1043
+
1044
+ ## Acknowledgement
1045
+
1046
+ InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
1047
+
1048
+ ______________________________________________________________________
1049
+
1050
+ Scan the following QR Code, join our WeChat group.
1051
+
1052
+ <p align="center"><img width="300" alt="image" src="https://github.com/user-attachments/assets/f776df09-ebba-4fd5-80c2-fec4ff1518be"></p>