lll2343 commited on
Commit
4f5edce
·
verified ·
1 Parent(s): ff6894e

Upload configuration_sdlm.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. configuration_sdlm.py +147 -0
configuration_sdlm.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Qwen2 model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
25
+ }
26
+
27
+ class SDLMQwen2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
30
+ Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with the defaults will yield a similar configuration to that of
32
+ Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 151936):
40
+ Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`Qwen2Model`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 22016):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ num_key_value_heads (`int`, *optional*, defaults to 32):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
60
+ The maximum sequence length that this model might ever be used with.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
69
+ Whether the model's input and output word embeddings should be tied.
70
+ rope_theta (`float`, *optional*, defaults to 10000.0):
71
+ The base period of the RoPE embeddings.
72
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
73
+ Whether to use sliding window attention.
74
+ sliding_window (`int`, *optional*, defaults to 4096):
75
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
76
+ max_window_layers (`int`, *optional*, defaults to 28):
77
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
78
+ attention_dropout (`float`, *optional*, defaults to 0.0):
79
+ The dropout ratio for the attention probabilities.
80
+
81
+ ```python
82
+ >>> from transformers import Qwen2Model, Qwen2Config
83
+
84
+ >>> # Initializing a Qwen2 style configuration
85
+ >>> configuration = Qwen2Config()
86
+
87
+ >>> # Initializing a model from the Qwen2-7B style configuration
88
+ >>> model = Qwen2Model(configuration)
89
+
90
+ >>> # Accessing the model configuration
91
+ >>> configuration = model.config
92
+ ```"""
93
+
94
+ model_type = "qwen2"
95
+ keys_to_ignore_at_inference = ["past_key_values"]
96
+
97
+ def __init__(
98
+ self,
99
+ vocab_size=151936,
100
+ hidden_size=4096,
101
+ intermediate_size=22016,
102
+ num_hidden_layers=32,
103
+ num_attention_heads=32,
104
+ num_key_value_heads=32,
105
+ hidden_act="silu",
106
+ max_position_embeddings=32768,
107
+ initializer_range=0.02,
108
+ rms_norm_eps=1e-6,
109
+ use_cache=True,
110
+ tie_word_embeddings=False,
111
+ rope_theta=10000.0,
112
+ use_sliding_window=False,
113
+ sliding_window=4096,
114
+ max_window_layers=28,
115
+ attention_dropout=0.0,
116
+ **kwargs,
117
+ ):
118
+ self.vocab_size = vocab_size
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.hidden_size = hidden_size
121
+ self.intermediate_size = intermediate_size
122
+ self.num_hidden_layers = num_hidden_layers
123
+ self.num_attention_heads = num_attention_heads
124
+ self.use_sliding_window = use_sliding_window
125
+ self.sliding_window = sliding_window
126
+ self.max_window_layers = max_window_layers
127
+
128
+ # for backward compatibility
129
+ if num_key_value_heads is None:
130
+ num_key_value_heads = num_attention_heads
131
+
132
+ self.num_key_value_heads = num_key_value_heads
133
+ self.hidden_act = hidden_act
134
+ self.initializer_range = initializer_range
135
+ self.rms_norm_eps = rms_norm_eps
136
+ self.use_cache = use_cache
137
+ self.rope_theta = rope_theta
138
+ self.attention_dropout = attention_dropout
139
+ if kwargs.get('attn_implementation', None) is None:
140
+ self.attn_implementation = kwargs['attn_implementation'] = 'flash_attention_2'
141
+ else:
142
+ self.attn_implementation = kwargs['attn_implementation']
143
+
144
+ super().__init__(
145
+ tie_word_embeddings=tie_word_embeddings,
146
+ **kwargs,
147
+ )