|
|
"""
|
|
|
cloud_agents.py - Cloud Agents Integration for Intelligent Task Orchestration
|
|
|
|
|
|
This module integrates OpenPeer AI's Cloud Agents for AI-driven task distribution,
|
|
|
resource optimization, and intelligent scheduling of molecular docking workloads.
|
|
|
|
|
|
Authors: OpenPeer AI, Riemann Computing Inc., Bleunomics, Andrew Magdy Kamal
|
|
|
Version: 1.0.0
|
|
|
Date: 2025
|
|
|
"""
|
|
|
|
|
|
import os
|
|
|
import json
|
|
|
import asyncio
|
|
|
from typing import Dict, List, Optional, Any
|
|
|
from dataclasses import dataclass, asdict
|
|
|
from datetime import datetime
|
|
|
import logging
|
|
|
|
|
|
try:
|
|
|
from huggingface_hub import InferenceClient
|
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
except ImportError:
|
|
|
print("Warning: HuggingFace libraries not installed. Install with: pip install transformers huggingface-hub")
|
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class Task:
|
|
|
"""Represents a molecular docking task"""
|
|
|
task_id: str
|
|
|
ligand_file: str
|
|
|
receptor_file: str
|
|
|
priority: str = "normal"
|
|
|
estimated_compute_time: float = 0.0
|
|
|
required_memory: int = 0
|
|
|
use_gpu: bool = True
|
|
|
status: str = "pending"
|
|
|
assigned_node: Optional[str] = None
|
|
|
created_at: datetime = None
|
|
|
|
|
|
def __post_init__(self):
|
|
|
if self.created_at is None:
|
|
|
self.created_at = datetime.now()
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class ComputeNode:
|
|
|
"""Represents a compute node in the distributed system"""
|
|
|
node_id: str
|
|
|
cpu_cores: int
|
|
|
gpu_available: bool
|
|
|
gpu_type: Optional[str] = None
|
|
|
memory_gb: int = 16
|
|
|
current_load: float = 0.0
|
|
|
tasks_completed: int = 0
|
|
|
average_task_time: float = 0.0
|
|
|
is_active: bool = True
|
|
|
location: Optional[str] = None
|
|
|
|
|
|
|
|
|
class CloudAgentsOrchestrator:
|
|
|
"""
|
|
|
AI-powered orchestration using Cloud Agents for intelligent
|
|
|
task distribution and resource optimization
|
|
|
"""
|
|
|
|
|
|
def __init__(self, config: Optional[Dict] = None):
|
|
|
"""
|
|
|
Initialize Cloud Agents orchestrator
|
|
|
|
|
|
Args:
|
|
|
config: Configuration dictionary
|
|
|
"""
|
|
|
self.config = config or {}
|
|
|
self.hf_token = self.config.get('hf_token', os.getenv('HF_TOKEN'))
|
|
|
self.model_name = self.config.get('model_name', 'OpenPeer AI/Cloud-Agents')
|
|
|
|
|
|
self.tasks: Dict[str, Task] = {}
|
|
|
self.nodes: Dict[str, ComputeNode] = {}
|
|
|
self.task_queue: List[str] = []
|
|
|
|
|
|
self.client: Optional[InferenceClient] = None
|
|
|
self.is_initialized = False
|
|
|
|
|
|
logger.info("CloudAgentsOrchestrator initialized")
|
|
|
|
|
|
async def initialize(self) -> bool:
|
|
|
"""
|
|
|
Initialize the Cloud Agents system
|
|
|
|
|
|
Returns:
|
|
|
True if initialization successful
|
|
|
"""
|
|
|
try:
|
|
|
logger.info("Initializing Cloud Agents...")
|
|
|
|
|
|
|
|
|
if self.hf_token:
|
|
|
self.client = InferenceClient(
|
|
|
model=self.model_name,
|
|
|
token=self.hf_token
|
|
|
)
|
|
|
logger.info(f"Connected to Cloud Agents model: {self.model_name}")
|
|
|
else:
|
|
|
logger.warning("HuggingFace token not provided. Using local mode.")
|
|
|
|
|
|
self.is_initialized = True
|
|
|
logger.info("Cloud Agents initialized successfully")
|
|
|
|
|
|
return True
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"Failed to initialize Cloud Agents: {e}")
|
|
|
return False
|
|
|
|
|
|
def register_node(self, node: ComputeNode) -> bool:
|
|
|
"""
|
|
|
Register a compute node with the orchestrator
|
|
|
|
|
|
Args:
|
|
|
node: ComputeNode instance
|
|
|
|
|
|
Returns:
|
|
|
True if registration successful
|
|
|
"""
|
|
|
try:
|
|
|
self.nodes[node.node_id] = node
|
|
|
logger.info(f"Node registered: {node.node_id} (GPU: {node.gpu_available})")
|
|
|
return True
|
|
|
except Exception as e:
|
|
|
logger.error(f"Failed to register node: {e}")
|
|
|
return False
|
|
|
|
|
|
def submit_task(self, task: Task) -> str:
|
|
|
"""
|
|
|
Submit a new docking task
|
|
|
|
|
|
Args:
|
|
|
task: Task instance
|
|
|
|
|
|
Returns:
|
|
|
Task ID
|
|
|
"""
|
|
|
self.tasks[task.task_id] = task
|
|
|
self.task_queue.append(task.task_id)
|
|
|
|
|
|
logger.info(f"Task submitted: {task.task_id} (Priority: {task.priority})")
|
|
|
|
|
|
return task.task_id
|
|
|
|
|
|
async def optimize_task_distribution(self) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Use AI to optimize task distribution across nodes
|
|
|
|
|
|
Returns:
|
|
|
Optimization recommendations
|
|
|
"""
|
|
|
try:
|
|
|
|
|
|
context = {
|
|
|
"total_tasks": len(self.tasks),
|
|
|
"pending_tasks": len(self.task_queue),
|
|
|
"active_nodes": len([n for n in self.nodes.values() if n.is_active]),
|
|
|
"gpu_nodes": len([n for n in self.nodes.values() if n.gpu_available]),
|
|
|
"avg_node_load": sum(n.current_load for n in self.nodes.values()) / max(len(self.nodes), 1)
|
|
|
}
|
|
|
|
|
|
|
|
|
prompt = self._create_optimization_prompt(context)
|
|
|
|
|
|
if self.client:
|
|
|
|
|
|
response = await self._query_cloud_agents(prompt)
|
|
|
recommendations = self._parse_ai_response(response)
|
|
|
else:
|
|
|
|
|
|
recommendations = self._rule_based_optimization()
|
|
|
|
|
|
logger.info(f"Optimization complete: {recommendations}")
|
|
|
|
|
|
return recommendations
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"Optimization failed: {e}")
|
|
|
return self._rule_based_optimization()
|
|
|
|
|
|
async def schedule_tasks(self) -> List[Dict[str, str]]:
|
|
|
"""
|
|
|
Schedule pending tasks to available nodes using AI optimization
|
|
|
|
|
|
Returns:
|
|
|
List of task assignments
|
|
|
"""
|
|
|
assignments = []
|
|
|
|
|
|
|
|
|
recommendations = await self.optimize_task_distribution()
|
|
|
|
|
|
|
|
|
for task_id in self.task_queue[:]:
|
|
|
task = self.tasks.get(task_id)
|
|
|
if not task or task.status != "pending":
|
|
|
continue
|
|
|
|
|
|
|
|
|
node = self._select_optimal_node(task, recommendations)
|
|
|
|
|
|
if node:
|
|
|
|
|
|
task.assigned_node = node.node_id
|
|
|
task.status = "assigned"
|
|
|
node.current_load += 0.1
|
|
|
|
|
|
assignments.append({
|
|
|
"task_id": task_id,
|
|
|
"node_id": node.node_id,
|
|
|
"priority": task.priority
|
|
|
})
|
|
|
|
|
|
self.task_queue.remove(task_id)
|
|
|
logger.info(f"Task {task_id} assigned to node {node.node_id}")
|
|
|
|
|
|
return assignments
|
|
|
|
|
|
def _select_optimal_node(self, task: Task, recommendations: Dict) -> Optional[ComputeNode]:
|
|
|
"""
|
|
|
Select the optimal node for a task based on AI recommendations
|
|
|
|
|
|
Args:
|
|
|
task: Task to assign
|
|
|
recommendations: AI recommendations
|
|
|
|
|
|
Returns:
|
|
|
Selected ComputeNode or None
|
|
|
"""
|
|
|
|
|
|
available_nodes = [
|
|
|
node for node in self.nodes.values()
|
|
|
if node.is_active and node.current_load < 0.9
|
|
|
]
|
|
|
|
|
|
if not available_nodes:
|
|
|
return None
|
|
|
|
|
|
|
|
|
if task.use_gpu:
|
|
|
gpu_nodes = [n for n in available_nodes if n.gpu_available]
|
|
|
if gpu_nodes:
|
|
|
available_nodes = gpu_nodes
|
|
|
|
|
|
|
|
|
available_nodes.sort(key=lambda n: (
|
|
|
n.current_load,
|
|
|
-n.tasks_completed,
|
|
|
n.average_task_time
|
|
|
))
|
|
|
|
|
|
|
|
|
if task.priority == "critical":
|
|
|
|
|
|
available_nodes.sort(key=lambda n: n.average_task_time)
|
|
|
|
|
|
return available_nodes[0] if available_nodes else None
|
|
|
|
|
|
async def _query_cloud_agents(self, prompt: str) -> str:
|
|
|
"""
|
|
|
Query Cloud Agents model for intelligent decision making
|
|
|
|
|
|
Args:
|
|
|
prompt: Input prompt
|
|
|
|
|
|
Returns:
|
|
|
AI response
|
|
|
"""
|
|
|
try:
|
|
|
|
|
|
response = self.client.text_generation(
|
|
|
prompt,
|
|
|
max_new_tokens=500,
|
|
|
temperature=0.7,
|
|
|
top_p=0.9
|
|
|
)
|
|
|
return response
|
|
|
except Exception as e:
|
|
|
logger.error(f"Cloud Agents query failed: {e}")
|
|
|
return ""
|
|
|
|
|
|
def _create_optimization_prompt(self, context: Dict) -> str:
|
|
|
"""
|
|
|
Create optimization prompt for Cloud Agents
|
|
|
|
|
|
Args:
|
|
|
context: System context
|
|
|
|
|
|
Returns:
|
|
|
Formatted prompt
|
|
|
"""
|
|
|
prompt = f"""
|
|
|
You are an AI orchestrator for a distributed molecular docking system.
|
|
|
|
|
|
Current System Status:
|
|
|
- Total Tasks: {context['total_tasks']}
|
|
|
- Pending Tasks: {context['pending_tasks']}
|
|
|
- Active Nodes: {context['active_nodes']}
|
|
|
- GPU-enabled Nodes: {context['gpu_nodes']}
|
|
|
- Average Node Load: {context['avg_node_load']:.2f}
|
|
|
|
|
|
Task: Optimize task distribution to:
|
|
|
1. Maximize throughput
|
|
|
2. Minimize waiting time for high-priority tasks
|
|
|
3. Balance load across nodes
|
|
|
4. Utilize GPU resources efficiently
|
|
|
|
|
|
Provide recommendations for:
|
|
|
- Load balancing strategy
|
|
|
- Priority handling
|
|
|
- GPU allocation
|
|
|
- Estimated completion time
|
|
|
|
|
|
Response format (JSON):
|
|
|
"""
|
|
|
return prompt
|
|
|
|
|
|
def _parse_ai_response(self, response: str) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Parse AI response into actionable recommendations
|
|
|
|
|
|
Args:
|
|
|
response: Raw AI response
|
|
|
|
|
|
Returns:
|
|
|
Parsed recommendations
|
|
|
"""
|
|
|
try:
|
|
|
|
|
|
recommendations = json.loads(response)
|
|
|
return recommendations
|
|
|
except:
|
|
|
|
|
|
return self._rule_based_optimization()
|
|
|
|
|
|
def _rule_based_optimization(self) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Fallback rule-based optimization
|
|
|
|
|
|
Returns:
|
|
|
Optimization recommendations
|
|
|
"""
|
|
|
return {
|
|
|
"strategy": "load_balanced",
|
|
|
"gpu_priority": True,
|
|
|
"max_tasks_per_node": 10,
|
|
|
"rebalance_threshold": 0.8
|
|
|
}
|
|
|
|
|
|
def get_task_status(self, task_id: str) -> Optional[Dict[str, Any]]:
|
|
|
"""
|
|
|
Get status of a specific task
|
|
|
|
|
|
Args:
|
|
|
task_id: Task ID
|
|
|
|
|
|
Returns:
|
|
|
Task status dictionary
|
|
|
"""
|
|
|
task = self.tasks.get(task_id)
|
|
|
if not task:
|
|
|
return None
|
|
|
|
|
|
return asdict(task)
|
|
|
|
|
|
def get_system_statistics(self) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Get overall system statistics
|
|
|
|
|
|
Returns:
|
|
|
Statistics dictionary
|
|
|
"""
|
|
|
total_tasks = len(self.tasks)
|
|
|
completed_tasks = len([t for t in self.tasks.values() if t.status == "completed"])
|
|
|
pending_tasks = len(self.task_queue)
|
|
|
|
|
|
active_nodes = [n for n in self.nodes.values() if n.is_active]
|
|
|
total_compute_power = sum(n.cpu_cores for n in active_nodes)
|
|
|
|
|
|
return {
|
|
|
"total_tasks": total_tasks,
|
|
|
"completed_tasks": completed_tasks,
|
|
|
"pending_tasks": pending_tasks,
|
|
|
"active_nodes": len(active_nodes),
|
|
|
"total_compute_power": total_compute_power,
|
|
|
"gpu_nodes": len([n for n in active_nodes if n.gpu_available]),
|
|
|
"average_node_load": sum(n.current_load for n in active_nodes) / max(len(active_nodes), 1),
|
|
|
"throughput": completed_tasks / max((datetime.now() - list(self.tasks.values())[0].created_at).total_seconds() / 3600, 1) if self.tasks else 0
|
|
|
}
|
|
|
|
|
|
async def auto_scale(self) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Automatically scale resources based on workload
|
|
|
|
|
|
Returns:
|
|
|
Scaling recommendations
|
|
|
"""
|
|
|
stats = self.get_system_statistics()
|
|
|
|
|
|
recommendations = {
|
|
|
"action": "none",
|
|
|
"reason": "",
|
|
|
"suggested_nodes": 0
|
|
|
}
|
|
|
|
|
|
|
|
|
if stats["pending_tasks"] > stats["active_nodes"] * 5:
|
|
|
recommendations["action"] = "scale_up"
|
|
|
recommendations["suggested_nodes"] = stats["pending_tasks"] // 5
|
|
|
recommendations["reason"] = "High pending task count"
|
|
|
|
|
|
|
|
|
elif stats["average_node_load"] < 0.3 and stats["pending_tasks"] == 0:
|
|
|
recommendations["action"] = "scale_down"
|
|
|
recommendations["suggested_nodes"] = -1
|
|
|
recommendations["reason"] = "Low resource utilization"
|
|
|
|
|
|
logger.info(f"Auto-scale recommendation: {recommendations}")
|
|
|
|
|
|
return recommendations
|
|
|
|
|
|
|
|
|
async def main():
|
|
|
"""Example usage of Cloud Agents orchestrator"""
|
|
|
|
|
|
|
|
|
orchestrator = CloudAgentsOrchestrator()
|
|
|
await orchestrator.initialize()
|
|
|
|
|
|
|
|
|
node1 = ComputeNode(
|
|
|
node_id="node_1",
|
|
|
cpu_cores=16,
|
|
|
gpu_available=True,
|
|
|
gpu_type="RTX 3090",
|
|
|
memory_gb=64
|
|
|
)
|
|
|
node2 = ComputeNode(
|
|
|
node_id="node_2",
|
|
|
cpu_cores=8,
|
|
|
gpu_available=False,
|
|
|
memory_gb=32
|
|
|
)
|
|
|
|
|
|
orchestrator.register_node(node1)
|
|
|
orchestrator.register_node(node2)
|
|
|
|
|
|
|
|
|
for i in range(5):
|
|
|
task = Task(
|
|
|
task_id=f"task_{i}",
|
|
|
ligand_file=f"ligand_{i}.pdbqt",
|
|
|
receptor_file="receptor.pdbqt",
|
|
|
priority="normal" if i < 3 else "high"
|
|
|
)
|
|
|
orchestrator.submit_task(task)
|
|
|
|
|
|
|
|
|
assignments = await orchestrator.schedule_tasks()
|
|
|
print(f"Scheduled {len(assignments)} tasks")
|
|
|
|
|
|
|
|
|
stats = orchestrator.get_system_statistics()
|
|
|
print(f"System stats: {json.dumps(stats, indent=2)}")
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
asyncio.run(main())
|
|
|
|