update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-sa-4.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- te_dx_jp
|
| 7 |
+
model-index:
|
| 8 |
+
- name: t5-base-TEDxJP-6front-1body-6rear
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# t5-base-TEDxJP-6front-1body-6rear
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 0.4380
|
| 20 |
+
- Wer: 0.1700
|
| 21 |
+
- Mer: 0.1642
|
| 22 |
+
- Wil: 0.2501
|
| 23 |
+
- Wip: 0.7499
|
| 24 |
+
- Hits: 55894
|
| 25 |
+
- Substitutions: 6327
|
| 26 |
+
- Deletions: 2366
|
| 27 |
+
- Insertions: 2286
|
| 28 |
+
- Cer: 0.1345
|
| 29 |
+
|
| 30 |
+
## Model description
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Intended uses & limitations
|
| 35 |
+
|
| 36 |
+
More information needed
|
| 37 |
+
|
| 38 |
+
## Training and evaluation data
|
| 39 |
+
|
| 40 |
+
More information needed
|
| 41 |
+
|
| 42 |
+
## Training procedure
|
| 43 |
+
|
| 44 |
+
### Training hyperparameters
|
| 45 |
+
|
| 46 |
+
The following hyperparameters were used during training:
|
| 47 |
+
- learning_rate: 0.0001
|
| 48 |
+
- train_batch_size: 32
|
| 49 |
+
- eval_batch_size: 32
|
| 50 |
+
- seed: 42
|
| 51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 52 |
+
- lr_scheduler_type: linear
|
| 53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 54 |
+
- num_epochs: 10
|
| 55 |
+
|
| 56 |
+
### Training results
|
| 57 |
+
|
| 58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|
| 59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
|
| 60 |
+
| 0.5938 | 1.0 | 1457 | 0.4764 | 0.2123 | 0.1997 | 0.2886 | 0.7114 | 54961 | 6701 | 2925 | 4085 | 0.1721 |
|
| 61 |
+
| 0.4817 | 2.0 | 2914 | 0.4166 | 0.1827 | 0.1754 | 0.2615 | 0.7385 | 55462 | 6356 | 2769 | 2676 | 0.1470 |
|
| 62 |
+
| 0.4467 | 3.0 | 4371 | 0.4119 | 0.1715 | 0.1660 | 0.2530 | 0.7470 | 55677 | 6410 | 2500 | 2169 | 0.1339 |
|
| 63 |
+
| 0.3818 | 4.0 | 5828 | 0.4134 | 0.1714 | 0.1654 | 0.2522 | 0.7478 | 55837 | 6396 | 2354 | 2319 | 0.1340 |
|
| 64 |
+
| 0.3577 | 5.0 | 7285 | 0.4171 | 0.1716 | 0.1653 | 0.2509 | 0.7491 | 55938 | 6303 | 2346 | 2432 | 0.1339 |
|
| 65 |
+
| 0.3222 | 6.0 | 8742 | 0.4195 | 0.1681 | 0.1628 | 0.2484 | 0.7516 | 55829 | 6282 | 2476 | 2099 | 0.1314 |
|
| 66 |
+
| 0.2938 | 7.0 | 10199 | 0.4242 | 0.1685 | 0.1634 | 0.2489 | 0.7511 | 55753 | 6267 | 2567 | 2052 | 0.1327 |
|
| 67 |
+
| 0.3174 | 8.0 | 11656 | 0.4269 | 0.1676 | 0.1624 | 0.2482 | 0.7518 | 55846 | 6299 | 2442 | 2083 | 0.1326 |
|
| 68 |
+
| 0.277 | 9.0 | 13113 | 0.4332 | 0.1700 | 0.1644 | 0.2505 | 0.7495 | 55831 | 6331 | 2425 | 2227 | 0.1346 |
|
| 69 |
+
| 0.2625 | 10.0 | 14570 | 0.4380 | 0.1700 | 0.1642 | 0.2501 | 0.7499 | 55894 | 6327 | 2366 | 2286 | 0.1345 |
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
### Framework versions
|
| 73 |
+
|
| 74 |
+
- Transformers 4.21.2
|
| 75 |
+
- Pytorch 1.12.1+cu116
|
| 76 |
+
- Datasets 2.4.0
|
| 77 |
+
- Tokenizers 0.12.1
|