Upload 2 files
Browse files- BEN2_Base.onnx +3 -0
- onnx_run.py +69 -0
BEN2_Base.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22cea62108ff53b7ccc20f7a008bf30494228d84b1687f29ecbe76936a998101
|
| 3 |
+
size 222932053
|
onnx_run.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import onnxruntime
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
session = onnxruntime.InferenceSession("./onnx/BEN2_Base.onnx", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 10 |
+
|
| 11 |
+
def postprocess_image(result_np: np.ndarray, im_size: list) -> np.ndarray:
|
| 12 |
+
|
| 13 |
+
result = torch.from_numpy(result_np)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
if len(result.shape) == 3:
|
| 17 |
+
result = result.unsqueeze(0)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear'), 0)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
ma = torch.max(result)
|
| 24 |
+
mi = torch.min(result)
|
| 25 |
+
result = (result - mi) / (ma - mi)
|
| 26 |
+
|
| 27 |
+
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
|
| 28 |
+
im_array = np.squeeze(im_array)
|
| 29 |
+
return im_array
|
| 30 |
+
|
| 31 |
+
def preprocess_image(image):
|
| 32 |
+
original_size = image.size
|
| 33 |
+
transform = transforms.Compose([
|
| 34 |
+
transforms.Resize((1024, 1024)),
|
| 35 |
+
transforms.ToTensor(),
|
| 36 |
+
])
|
| 37 |
+
img_tensor = transform(image)
|
| 38 |
+
|
| 39 |
+
img_tensor = img_tensor.unsqueeze(0)
|
| 40 |
+
return img_tensor.numpy(), image, original_size
|
| 41 |
+
|
| 42 |
+
def run_inference(image):
|
| 43 |
+
|
| 44 |
+
input_data, original_image, (w, h) = preprocess_image(image)
|
| 45 |
+
|
| 46 |
+
input_name = session.get_inputs()[0].name
|
| 47 |
+
|
| 48 |
+
outputs = session.run(None, {input_name: input_data})
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
alpha = postprocess_image(outputs[0], im_size=[w, h])
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
mask = Image.fromarray(alpha)
|
| 55 |
+
mask = mask.resize((w, h))
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
original_image.putalpha(mask)
|
| 59 |
+
return original_image
|
| 60 |
+
|
| 61 |
+
# Example usage
|
| 62 |
+
image_path = "image.png"
|
| 63 |
+
output_path = "output.png"
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
image = Image.open(image_path)
|
| 67 |
+
|
| 68 |
+
result_image = run_inference(image)
|
| 69 |
+
result_image.save(output_path)
|