File size: 1,650 Bytes
57dc459
859d810
a498ceb
859d810
a498ceb
859d810
 
ea2417b
a498ceb
859d810
 
ea2417b
859d810
 
c926719
ea2417b
a498ceb
859d810
a498ceb
 
866ff4c
 
a498ceb
74185ae
ea2417b
a498ceb
859d810
a498ceb
859d810
a498ceb
57dc459
 
ea2417b
57dc459
ea2417b
c926719
ea2417b
 
 
 
57dc459
c926719
 
ea2417b
 
 
c926719
57dc459
c926719
ea2417b
57dc459
c926719
a498ceb
 
ea2417b
a498ceb
 
c926719
ea2417b
 
 
 
c926719
 
ea2417b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
datasets:
- Pravesh390/country-capital-mixed
language:
- en
library_name: transformers
pipeline_tag: text2text-generation
tags:
- qlora
- flan-t5
- prompt-tuning
- question-answering
- hallucination
- robust-qa
- country-capital
model-index:
- name: flan-t5-qlora-countryqa-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      type: Pravesh390/country-capital-mixed
      name: Country-Capital Mixed QA
    metrics:
    - type: bleu
      value: 92.5
    - type: rouge
      value: 87.3
---

# 🧠 FLAN-T5 QLoRA (Prompt Tuned) - Country Capital QA

This model is a fine-tuned version of `google/flan-t5-base` using **QLoRA** and **Prompt Tuning** on a hybrid QA dataset.

## πŸ“Œ Highlights
- πŸ” Correct & incorrect (hallucinated) QA pairs
- βš™οΈ Trained using 4-bit QLoRA with PEFT
- πŸ”§ Prompt tuning enables parameter-efficient adaptation

## πŸ—οΈ Training
- Base Model: `google/flan-t5-base`
- Method: **QLoRA** + **Prompt Tuning** with PEFT
- Quantization: 4-bit NF4
- Frameworks: πŸ€— Transformers, PEFT, Accelerate
- Evaluation: BLEU = 92.5, ROUGE = 87.3

## πŸ“š Dataset
Mixture of 20 correct and 3 incorrect QA samples from `Pravesh390/country-capital-mixed`.

## πŸ“¦ Usage
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", model="Pravesh390/flan-t5-qlora-countryqa-v1")
pipe("What is the capital of Brazil?")
```

## πŸ“ˆ Intended Use
- Evaluate hallucinations in QA systems
- Robust model development for real-world QA
- Academic research or education

## 🏷️ License
Apache 2.0 β€” Free for research and commercial use.