File size: 90,295 Bytes
afa3faa 7bce5fe afa3faa 7bce5fe afa3faa 7bce5fe 36780a6 4fca201 36780a6 afa3faa 36780a6 afa3faa 36780a6 983d9c4 36780a6 f627ea3 36780a6 afa3faa 36780a6 983d9c4 36780a6 2f443cf 36780a6 2f443cf 36780a6 2f443cf 36780a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 |
---
license: other
license_name: apache-2.0
language:
- en
tags:
- multimodal
library_name: transformers
pipeline_tag: any-to-any
---
# Qwen3-Omni
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
## Overview
### Introduction
<p align="center">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/q3o_introduction.png" width="100%"/>
<p>
Qwen3-Omni is the natively end-to-end multilingual omni-modal foundation models. It processes text, images, audio, and video, and delivers real-time streaming responses in both text and natural speech. We introduce several architectural upgrades to improve performance and efficiency. Key features:
* **State-of-the-art across modalities**: Early text-first pretraining and mixed multimodal training provide native multimodal support. While achieving strong audio and audio-video results, unimodal text and image performance does not regress. Reaches SOTA on 22 of 36 audio/video benchmarks and open-source SOTA on 32 of 36; ASR, audio understanding, and voice conversation performance is comparable to Gemini 2.5 Pro.
* **Multilingual**: Supports 119 text languages, 19 speech input languages, and 10 speech output languages.
- **Speech Input**: English, Chinese, Korean, Japanese, German, Russian, Italian, French, Spanish, Portuguese, Malay, Dutch, Indonesian, Turkish, Vietnamese, Cantonese, Arabic, Urdu.
- **Speech Output**: English, Chinese, French, German, Russian, Italian, Spanish, Portuguese, Japanese, Korean.
* **Novel Architecture**: MoE-based Thinker–Talker design with AuT pretraining for strong general representations, plus a multi-codebook design that drives latency to a minimum.
* **Real-time Audio/Video Interaction**: Low-latency streaming with natural turn-taking and immediate text or speech responses.
* **Flexible Control**: Customize behavior via system prompts for fine-grained control and easy adaptation.
* **Detailed Audio Captioner**: Qwen3-Omni-30B-A3B-Captioner is now open source: a general-purpose, highly detailed, low-hallucination audio captioning model that fills a critical gap in the open-source community.
### Model Architecture
<p align="center">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/overview.png" width="80%"/>
<p>
### Cookbooks for Usage Cases
Qwen3-Omni supports a wide range of multimodal application scenarios, covering various domain tasks involving audio, image, video, and audio-visual modalities. Below are several cookbooks demonstrating the usage cases of Qwen3-Omni and these cookbooks include our actual execution logs. You can first follow the [QuickStart](#quickstart) guide to download the model and install the necessary inference environment dependencies, then run and experiment locally—try modifying prompts or switching model types, and enjoy exploring the capabilities of Qwen3-Omni!
<table>
<thead>
<tr>
<th>Category</th>
<th>Cookbook</th>
<th>Description</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="6">Audio</td>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/speech_recognition.ipynb">Speech Recognition</a></td>
<td>Speech recognition, supporting multiple languages and long audio.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/speech_recognition.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/speech_translation.ipynb">Speech Translation</a></td>
<td>Speech-to-Text / Speech-to-Speech translation.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/speech_translation.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/music_analysis.ipynb">Music Analysis</a></td>
<td>Detailed analysis and appreciation of any music, including style, genre, rhythm, etc.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/music_analysis.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/sound_analysis.ipynb">Sound Analysis</a></td>
<td>Description and analysis of various sound effects and audio signals.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/sound_analysis.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_caption.ipynb">Audio Caption</a></td>
<td>Audio captioning, detailed description of any audio input.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_caption.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/mixed_audio_analysis.ipynb">Mixed Audio Analysis</a></td>
<td>Analysis of mixed audio content, such as speech, music, and environmental sounds.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/mixed_audio_analysis.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td rowspan="7">Visual</td>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/ocr.ipynb">OCR</a></td>
<td>OCR for complex images.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/ocr.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/object_grounding.ipynb">Object Grounding</a></td>
<td>Target detection and grounding.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/object_grounding.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/image_question.ipynb">Image Question</a></td>
<td>Answering arbitrary questions about any image.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/image_question.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/image_math.ipynb">Image Math</a></td>
<td>Solving complex mathematical problems in images, highlighting the capabilities of the Thinking model.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/image_math.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_description.ipynb">Video Description</a></td>
<td>Detailed description of video content.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_description.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_navigation.ipynb">Video Navigation</a></td>
<td>Generating navigation commands from first-person motion videos.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_navigation.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_scene_transition.ipynb">Video Scene Transition</a></td>
<td>Analysis of scene transitions in videos.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_scene_transition.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td rowspan="3">Audio-Visual</td>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_question.ipynb">Audio Visual Question</a></td>
<td>Answering arbitrary questions in audio-visual scenarios, demonstrating the model's ability to model temporal alignment between audio and video.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_question.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_interaction.ipynb">Audio Visual Interaction</a></td>
<td>Interactive communication with the model using audio-visual inputs, including task specification via audio.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_interaction.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_dialogue.ipynb">Audio Visual Dialogue</a></td>
<td>Conversational interaction with the model using audio-visual inputs, showcasing its capabilities in casual chat and assistant-like behavior.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_dialogue.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td>Agent</td>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_function_call.ipynb">Audio Function Call</a></td>
<td>Using audio input to perform function calls, enabling agent-like behaviors.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_function_call.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
<tr>
<td>Downstream Task Fine-tuning</td>
<td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/omni_captioner.ipynb">Omni Captioner</a></td>
<td>Introduction and capability demonstration of <strong>Qwen3-Omni-30B-A3B-Captioner</strong>, a downstream fine-tuned model based on Qwen3-Omni-30B-A3B-Instruct, illustrating the strong generalization ability of the Qwen3-Omni foundation model.</td>
<td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/omni_captioner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
</tr>
</tbody>
</table>
## QuickStart
### Model Description and Download
Below is the description of all Qwen3-Omni models. Please select and download the model that fits your needs.
| Model Name | Description |
|------------------------------|-------------|
| Qwen3-Omni-30B-A3B-Instruct | The Instruct model of Qwen3-Omni-30B-A3B, containing both thinker and talker, supporting audio, video, and text input, with audio and text output. For more information, please read the [Qwen3-Omni Technical Report](https://github.com/QwenLM/Qwen3-Omni/blob/main/assets/Qwen3_Omni.pdf). |
| Qwen3-Omni-30B-A3B-Thinking | The Thinking model of Qwen3-Omni-30B-A3B, containing the thinker component, equipped with chain-of-thought reasoning, supporting audio, video, and text input, with text output. For more information, please read the [Qwen3-Omni Technical Report](https://github.com/QwenLM/Qwen3-Omni/blob/main/assets/Qwen3_Omni.pdf).|
| Qwen3-Omni-30B-A3B-Captioner | A downstream audio fine-grained caption model fine-tuned from Qwen3-Omni-30B-A3B-Instruct, which produces detailed, low-hallucination captions for arbitrary audio inputs. It contains the thinker, supporting audio input and text output. For more information, you can refer to the model's [cookbook](https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/omni_captioner.ipynb). |
During loading in Hugging Face Transformers or vLLM, model weights will be automatically downloaded based on the model name. However, if your runtime environment is not conducive to downloading weights during execution, you can refer to the following commands to manually download the model weights to a local directory:
```bash
# Download through ModelScope (recommended for users in Mainland China)
pip install -U modelscope
modelscope download --model Qwen/Qwen3-Omni-30B-A3B-Instruct --local_dir ./Qwen3-Omni-30B-A3B-Instruct
modelscope download --model Qwen/Qwen3-Omni-30B-A3B-Thinking --local_dir ./Qwen3-Omni-30B-A3B-Thinking
modelscope download --model Qwen/Qwen3-Omni-30B-A3B-Captioner --local_dir ./Qwen3-Omni-30B-A3B-Captioner
# Download through Hugging Face
pip install -U "huggingface_hub[cli]"
huggingface-cli download Qwen/Qwen3-Omni-30B-A3B-Instruct --local-dir ./Qwen3-Omni-30B-A3B-Instruct
huggingface-cli download Qwen/Qwen3-Omni-30B-A3B-Thinking --local-dir ./Qwen3-Omni-30B-A3B-Thinking
huggingface-cli download Qwen/Qwen3-Omni-30B-A3B-Captioner --local-dir ./Qwen3-Omni-30B-A3B-Captioner
```
### Transformers Usage
#### Installation
The Hugging Face Transformers code for Qwen3-Omni has been successfully merged, but the PyPI package has not yet been released. Therefore, you need to install it from source using the following command. We strongly recommend that you **create a new Python environment** to avoid environment runtime issues.
```bash
# If you already have transformers installed, please uninstall it first, or create a new Python environment
# pip uninstall transformers
pip install git+https://github.com/huggingface/transformers
pip install accelerate
```
We offer a toolkit to help you handle various types of audio and visual input more conveniently, providing an API-like experience. This includes support for base64, URLs, and interleaved audio, images, and videos. You can install it using the following command and make sure your system has `ffmpeg` installed:
```bash
pip install qwen-omni-utils -U
```
Additionally, we recommend using FlashAttention 2 when running with Hugging Face Transformers to reduce GPU memory usage. However, if you are primarily using [vLLM](#vllm-usage) for inference, this installation is not necessary, as vLLM includes FlashAttention 2 by default.
```bash
pip install -U flash-attn --no-build-isolation
```
Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [FlashAttention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention 2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.
#### Code Snippet
Here is a code snippet to show you how to use Qwen3-Omni with `transformers` and `qwen_omni_utils`:
```python
import soundfile as sf
from transformers import Qwen3OmniMoeForConditionalGeneration, Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info
MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
# MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Thinking"
model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
MODEL_PATH,
dtype="auto",
device_map="auto",
attn_implementation="flash_attention_2",
)
processor = Qwen3OmniMoeProcessor.from_pretrained(MODEL_PATH)
conversation = [
{
"role": "user",
"content": [
{"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
{"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"},
{"type": "text", "text": "What can you see and hear? Answer in one short sentence."}
],
},
]
# Set whether to use audio in video
USE_AUDIO_IN_VIDEO = True
# Preparation for inference
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversation, use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = processor(text=text,
audio=audios,
images=images,
videos=videos,
return_tensors="pt",
padding=True,
use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = inputs.to(model.device).to(model.dtype)
# Inference: Generation of the output text and audio
text_ids, audio = model.generate(**inputs,
speaker="Ethan",
thinker_return_dict_in_generate=True,
use_audio_in_video=USE_AUDIO_IN_VIDEO)
text = processor.batch_decode(text_ids.sequences[:, inputs["input_ids"].shape[1] :],
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
print(text)
if audio is not None:
sf.write(
"output.wav",
audio.reshape(-1).detach().cpu().numpy(),
samplerate=24000,
)
```
Here are some more advanced usage examples. You can expand the sections below to learn more.
<details>
<summary>Batch inference</summary>
The model can batch inputs composed of mixed samples of various types such as text, images, audio, and videos as input when `return_audio=False` is set. Here is an example.
```python
from transformers import Qwen3OmniMoeForConditionalGeneration, Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info
MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
# MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Thinking"
model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
MODEL_PATH,
dtype="auto",
device_map="auto",
attn_implementation="flash_attention_2",
)
model.disable_talker()
processor = Qwen3OmniMoeProcessor.from_pretrained(MODEL_PATH)
# Conversation with image only
conversation1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
{"type": "text", "text": "What can you see in this image? Answer in one sentence."},
]
}
]
# Conversation with audio only
conversation2 = [
{
"role": "user",
"content": [
{"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"},
{"type": "text", "text": "What can you hear in this audio?"},
]
}
]
# Conversation with pure text and system prompt
conversation3 = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen-Omni."}
],
},
{
"role": "user",
"content": "Who are you?"
}
]
# Conversation with mixed media
conversation4 = [
{
"role": "user",
"content": [
{"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
{"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"},
{"type": "text", "text": "What can you see and hear? Answer in one sentence."}
],
}
]
# Combine messages for batch processing
conversations = [conversation1, conversation2, conversation3, conversation4]
# Set whether to use audio in video
USE_AUDIO_IN_VIDEO = True
# Preparation for batch inference
text = processor.apply_chat_template(conversations, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversations, use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = processor(text=text,
audio=audios,
images=images,
videos=videos,
return_tensors="pt",
padding=True,
use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = inputs.to(model.device).to(model.dtype)
# Batch inference does not support returning audio
text_ids, audio = model.generate(**inputs,
return_audio=False,
thinker_return_dict_in_generate=True,
use_audio_in_video=USE_AUDIO_IN_VIDEO)
text = processor.batch_decode(text_ids.sequences[:, inputs["input_ids"].shape[1] :],
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
print(text)
```
</details>
<details>
<summary>Use audio output or not</summary>
The model supports both text and audio outputs. If users do not need audio outputs, they can call `model.disable_talker()` after initializing the model. This option will save about `10GB` of GPU memory, but the `return_audio` option for the `generate` function will only allow `False`.
```python
model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
"Qwen/Qwen3-Omni-30B-A3B-Instruct",
dtype="auto",
device_map="auto",
attn_implementation="flash_attention_2",
)
model.disable_talker()
```
For a more flexible experience, we recommend that users decide whether to return audio when the `generate` function is called. If `return_audio` is set to `False`, the model will only return text outputs, resulting in faster text responses.
```python
model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
"Qwen/Qwen3-Omni-30B-A3B-Instruct",
dtype="auto",
device_map="auto",
attn_implementation="flash_attention_2",
)
...
text_ids, _ = model.generate(..., return_audio=False)```
</details>
<details>
<summary>Change voice type of output audio</summary>
Qwen3-Omni supports changing the voice of the output audio. The `"Qwen/Qwen3-Omni-30B-A3B-Instruct"` checkpoint supports three voice types as follows:
| Voice Type | Gender | Description |
|------------|--------|-------------|
| Ethan | Male | A bright, upbeat voice with infectious energy and a warm, approachable vibe. |
| Chelsie | Female | A honeyed, velvety voice that carries a gentle warmth and luminous clarity. |
| Aiden | Male | A warm, laid-back American voice with a gentle, boyish charm. |
Users can use the `speaker` parameter of the `generate` function to specify the voice type. By default, if `speaker` is not specified, the voice type is `Ethan`.
```python
text_ids, audio = model.generate(..., speaker="Ethan")
```
```python
text_ids, audio = model.generate(..., speaker="Chelsie")
```
```python
text_ids, audio = model.generate(..., speaker="Aiden")
```
</details>
### vLLM Usage
#### Installation
We strongly recommend using vLLM for inference and deployment of the Qwen3-Omni series models. Since our code is currently in the pull request stage, and **audio output inference support for the Instruct model will be released in the near future**, you can follow the commands below to install vLLM from source. Please note that we recommend you **create a new Python environment** to avoid runtime environment conflicts and incompatibilities. For more details on compiling vLLM from source, please refer to the [vLLM official documentation](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#set-up-using-python-only-build-without-compilation).
```bash
git clone -b qwen3_omni https://github.com/wangxiongts/vllm.git
cd vllm
pip install -r requirements/build.txt
pip install -r requirements/cuda.txt
export VLLM_PRECOMPILED_WHEEL_LOCATION=https://wheels.vllm.ai/a5dd03c1ebc5e4f56f3c9d3dc0436e9c582c978f/vllm-0.9.2-cp38-abi3-manylinux1_x86_64.whl
VLLM_USE_PRECOMPILED=1 pip install -e . -v --no-build-isolation
# If you meet an "Undefined symbol" error while using VLLM_USE_PRECOMPILED=1, please use "pip install -e . -v" to build from source.
# Install the Transformers
pip install git+https://github.com/huggingface/transformers
pip install accelerate
pip install qwen-omni-utils -U
pip install -U flash-attn --no-build-isolation
```
#### Inference
You can use the following code for vLLM inference. The `limit_mm_per_prompt` parameter specifies the maximum number of each modality's data allowed per message. Since vLLM needs to pre-allocate GPU memory, larger values will require more GPU memory; if OOM issues occur, try reducing this value. Setting `tensor_parallel_size` greater than one enables multi-GPU parallel inference, improving concurrency and throughput. In addition, `max_num_seqs` indicates the number of sequences that vLLM processes in parallel during each inference step. A larger value requires more GPU memory but enables higher batch inference speed. For more details, please refer to the [vLLM official documentation](https://docs.vllm.ai/en/latest/api/vllm/index.html#vllm.LLM). Below is a simple example of how to run Qwen3-Omni with vLLM:
```python
import os
import torch
from vllm import LLM, SamplingParams
from transformers import Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info
if __name__ == '__main__':
# vLLM engine v1 not supported yet
os.environ['VLLM_USE_V1'] = '0'
MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
# MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Thinking"
llm = LLM(
model=MODEL_PATH, trust_remote_code=True, gpu_memory_utilization=0.95,
tensor_parallel_size=torch.cuda.device_count(),
limit_mm_per_prompt={'image': 3, 'video': 3, 'audio': 3},
max_num_seqs=8,
max_model_len=32768,
seed=1234,
)
sampling_params = SamplingParams(
temperature=0.6,
top_p=0.95,
top_k=20,
max_tokens=16384,
)
processor = Qwen3OmniMoeProcessor.from_pretrained(MODEL_PATH)
messages = [
{
"role": "user",
"content": [
{"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/draw.mp4"}
],
}
]
text = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
audios, images, videos = process_mm_info(messages, use_audio_in_video=True)
inputs = {
'prompt': text,
'multi_modal_data': {},
"mm_processor_kwargs": {
"use_audio_in_video": True,
},
}
if images is not None:
inputs['multi_modal_data']['image'] = images
if videos is not None:
inputs['multi_modal_data']['video'] = videos
if audios is not None:
inputs['multi_modal_data']['audio'] = audios
outputs = llm.generate([inputs], sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
Here are some more advanced usage examples. You can expand the sections below to learn more.
<details>
<summary>Batch inference</summary>
Using vLLM enables fast batch inference, which can help you efficiently process large volumes of data or conduct benchmarking. Refer to the following code example:
```python
import os
import torch
from vllm import LLM, SamplingParams
from transformers import Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info
def build_input(processor, messages, use_audio_in_video):
text = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
audios, images, videos = process_mm_info(messages, use_audio_in_video=use_audio_in_video)
inputs = {
'prompt': text,
'multi_modal_data': {},
"mm_processor_kwargs": {
"use_audio_in_video": use_audio_in_video,
},
}
if images is not None:
inputs['multi_modal_data']['image'] = images
if videos is not None:
inputs['multi_modal_data']['video'] = videos
if audios is not None:
inputs['multi_modal_data']['audio'] = audios
return inputs
if __name__ == '__main__':
# vLLM engine v1 not supported yet
os.environ['VLLM_USE_V1'] = '0'
MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
# MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Thinking"
llm = LLM(
model=MODEL_PATH, trust_remote_code=True, gpu_memory_utilization=0.95,
tensor_parallel_size=torch.cuda.device_count(),
limit_mm_per_prompt={'image': 3, 'video': 3, 'audio': 3},
max_num_seqs=8,
max_model_len=32768,
seed=1234,
)
sampling_params = SamplingParams(
temperature=0.6,
top_p=0.95,
top_k=20,
max_tokens=16384,
)
processor = Qwen3OmniMoeProcessor.from_pretrained(MODEL_PATH)
# Conversation with image only
conversation1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
{"type": "text", "text": "What can you see in this image? Answer in one sentence."},
]
}
]
# Conversation with audio only
conversation2 = [
{
"role": "user",
"content": [
{"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"},
{"type": "text", "text": "What can you hear in this audio?"},
]
}
]
# Conversation with pure text and system prompt
conversation3 = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen-Omni."}
],
},
{
"role": "user",
"content": "Who are you? Answer in one sentence."
}
]
# Conversation with mixed media
conversation4 = [
{
"role": "user",
"content": [
{"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
{"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/cookbook/asr_fr.wav"},
{"type": "text", "text": "What can you see and hear? Answer in one sentence."}
],
}
]
USE_AUDIO_IN_VIDEO = True
# Combine messages for batch processing
conversations = [conversation1, conversation2, conversation3, conversation4]
inputs = [build_input(processor, messages, USE_AUDIO_IN_VIDEO) for messages in conversations]
outputs = llm.generate(inputs, sampling_params=sampling_params)
result = [outputs[i].outputs[0].text for i in range(len(outputs))]
print(result)
```
</details>
<details>
<summary>vLLM Serve Usage</summary>
vLLM serve for Qwen3-Omni currently only supports the thinker model. The `use_audio_in_video` parameter is not available in vLLM serve; you can handle this by separately passing video and audio inputs for processing. You can start vLLM serve through the following command:
```bash
# Qwen3-Omni-30B-A3B-Instruct for single GPU
vllm serve Qwen/Qwen3-Omni-30B-A3B-Instruct --port 8901 --host 127.0.0.1 --dtype bfloat16 --max-model-len 32768 --allowed-local-media-path / -tp 1
# Qwen3-Omni-30B-A3B-Instruct for multi-GPU (example on 4 GPUs)
vllm serve Qwen/Qwen3-Omni-30B-A3B-Instruct --port 8901 --host 127.0.0.1 --dtype bfloat16 --max-model-len 65536 --allowed-local-media-path / -tp 4
# Qwen/Qwen3-Omni-30B-A3B-Thinking for single GPU
vllm serve Qwen/Qwen3-Omni-30B-A3B-Thinking --port 8901 --host 127.0.0.1 --dtype bfloat16 --max-model-len 32768 --allowed-local-media-path / -tp 1
# Qwen/Qwen3-Omni-30B-A3B-Thinking for multi-GPU (example on 4 GPUs)
vllm serve Qwen/Qwen3-Omni-30B-A3B-Thinking --port 8901 --host 127.0.0.1 --dtype bfloat16 --max-model-len 65536 --allowed-local-media-path / -tp 4
```
Then you can use the chat API as below (via curl, for example):
```bash
curl http://localhost:8901/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "image_url", "image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"}},
{"type": "audio_url", "audio_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"}},
{"type": "text", "text": "What can you see and hear? Answer in one sentence."}
]}
]
}'
```
</details>
### Usage Tips (Recommended Reading)
#### Minimum GPU memory requirements
| Model | Precision | 15s Video | 30s Video | 60s Video | 120s Video |
|------------------------------|-----------| --------- | --------- | --------- | --------- |
| Qwen3-Omni-30B-A3B-Instruct | BF16 | 78.85 GB | 88.52 GB | 107.74 GB | 144.81 GB |
| Qwen3-Omni-30B-A3B-Thinking | BF16 | 68.74 GB | 77.79 GB | 95.76 GB | 131.65 GB |
**Note**: The table above presents the theoretical minimum memory requirements for inference with `transformers` and `BF16` precision, tested with `attn_implementation="flash_attention_2"`. The Instruct model includes both the **thinker** and **talker** components, whereas the Thinking model includes only the **thinker** part.
#### Prompt for Audio-Visual Interaction
When using Qwen3-Omni for audio-visual multimodal interaction, where the input consists of a video and its corresponding audio (with the audio serving as a query), we recommend using the **following system prompt**. This setup helps the model maintain high reasoning capability while better assuming interactive roles such as a smart assistant. Additionally, the text generated by the thinker will be more readable, with a natural, conversational tone and without complex formatting that is difficult to vocalize, leading to more stable and fluent audio output from the talker. You can customize the `user_system_prompt` field in the system prompt to include character settings or other role-specific descriptions as needed.
```
user_system_prompt = "You are Qwen-Omni, a smart voice assistant created by Alibaba Qwen."
message = {
"role": "system",
"content": [
{"type": "text", "text": f"{user_system_prompt} You are a virtual voice assistant with no gender or age.\nYou are communicating with the user.\nIn user messages, “I/me/my/we/our” refer to the user and “you/your” refer to the assistant. In your replies, address the user as “you/your” and yourself as “I/me/my”; never mirror the user’s pronouns—always shift perspective. Keep original pronouns only in direct quotes; if a reference is unclear, ask a brief clarifying question.\nInteract with users using short(no more than 50 words), brief, straightforward language, maintaining a natural tone.\nNever use formal phrasing, mechanical expressions, bullet points, overly structured language. \nYour output must consist only of the spoken content you want the user to hear. \nDo not include any descriptions of actions, emotions, sounds, or voice changes. \nDo not use asterisks, brackets, parentheses, or any other symbols to indicate tone or actions. \nYou must answer users' audio or text questions, do not directly describe the video content. \nYou should communicate in the same language strictly as the user unless they request otherwise.\nWhen you are uncertain (e.g., you can't see/hear clearly, don't understand, or the user makes a comment rather than asking a question), use appropriate questions to guide the user to continue the conversation.\nKeep replies concise and conversational, as if talking face-to-face."}
]
}
```
#### Best Practices for the Thinking Model
The `Qwen3-Omni-30B-A3B-Thinking` model is primarily designed for understanding and interacting with multimodal inputs, including text, audio, image, and video. To achieve optimal performance, we recommend that users include an explicit textual instruction or task description in each round of dialogue alongside the multimodal input. This helps clarify the intent and significantly enhances the model's ability to leverage its reasoning capabilities. For example:
```python
messages = [
{
"role": "user",
"content": [
{"type": "audio", "audio": "/path/to/audio.wav"},
{"type": "image", "image": "/path/to/image.png"},
{"type": "video", "video": "/path/to/video.mp4"},
{"type": "text", "text": "Analyze this audio, image, and video together."},
],
}
]
```
#### Use audio in video
In multimodal interaction, user-provided videos are often accompanied by audio (such as spoken questions or sounds from events in the video). This information helps the model provide a better interactive experience. We provide the following options for users to decide whether to use the audio from a video.
```python
# In data preprocessing
audios, images, videos = process_mm_info(messages, use_audio_in_video=True)
```
```python
# For Transformers
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt",
padding=True, use_audio_in_video=True)
text_ids, audio = model.generate(..., use_audio_in_video=True)
# For vLLM
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = {
'prompt': text,
'multi_modal_data': {},
"mm_processor_kwargs": {
"use_audio_in_video": True,
},
}
```
It is worth noting that during a multi-round conversation, the `use_audio_in_video` parameter must be set consistently across these steps; otherwise, unexpected results may occur.
## Evaluation
### Performance of Qwen3-Omni
Qwen3-Omni maintains state-of-the-art performance on text and visual modalities without degradation relative to same-size single-model Qwen counterparts. Across 36 audio and audio-visual benchmarks, it achieves open-source SOTA on 32 and sets the SOTA on 22, outperforming strong closed-source systems such as Gemini 2.5 Pro and GPT-4o.
<details>
<summary>Text -> Text</summary>
<table>
<thead>
<tr>
<th colspan="2" style="text-align: left;"></th>
<th style="text-align: center;">GPT-4o-0327</th>
<th style="text-align: center;">Qwen3-235B-A22B<br>Non Thinking</th>
<th style="text-align: center;">Qwen3-30B-A3B-Instruct-2507</th>
<th style="text-align: center;">Qwen3-Omni-30B-A3B-Instruct</th>
<th style="text-align: center;">Qwen3-Omni-Flash-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2" style="text-align: left; vertical-align: middle;">General<br>Tasks</td>
<td style="text-align: left;">MMLU-Redux</td>
<td style="text-align: center;"><strong>91.3</strong></td>
<td style="text-align: center;">89.2</td>
<td style="text-align: center;">89.3</td>
<td style="text-align: center;">86.6</td>
<td style="text-align: center;">86.8</td>
</tr>
<tr>
<td style="text-align: left;">GPQA</td>
<td style="text-align: center;">66.9</td>
<td style="text-align: center;">62.9</td>
<td style="text-align: center;"><strong>70.4</strong></td>
<td style="text-align: center;">69.6</td>
<td style="text-align: center;">69.7</td>
</tr>
<tr>
<td rowspan="2" style="text-align: left; vertical-align: middle;">Reasoning</td>
<td style="text-align: left;">AIME25</td>
<td style="text-align: center;">26.7</td>
<td style="text-align: center;">24.7</td>
<td style="text-align: center;">61.3</td>
<td style="text-align: center;">65.0</td>
<td style="text-align: center;"><strong>65.9</strong></td>
</tr>
<tr>
<td style="text-align: left;">ZebraLogic</td>
<td style="text-align: center;">52.6</td>
<td style="text-align: center;">37.7</td>
<td style="text-align: center;"><strong>90.0</strong></td>
<td style="text-align: center;">76.0</td>
<td style="text-align: center;">76.1</td>
</tr>
<tr>
<td style="text-align: left; vertical-align: middle;">Code</td>
<td style="text-align: left;">MultiPL-E</td>
<td style="text-align: center;">82.7</td>
<td style="text-align: center;">79.3</td>
<td style="text-align: center;"><strong>83.8</strong></td>
<td style="text-align: center;">81.4</td>
<td style="text-align: center;">81.5</td>
</tr>
</tbody>
<tbody>
<tr style="border-top: 1px solid #ddd;">
<td rowspan="3" style="text-align: left; vertical-align: middle;">Alignment<br>Tasks</td>
<td style="text-align: left;">IFEval</td>
<td style="text-align: center;">83.9</td>
<td style="text-align: center;">83.2</td>
<td style="text-align: center;"><strong>84.7</strong></td>
<td style="text-align: center;">81.0</td>
<td style="text-align: center;">81.7</td>
</tr>
<tr>
<td style="text-align: left;">Creative Writing v3</td>
<td style="text-align: center;">84.9</td>
<td style="text-align: center;">80.4</td>
<td style="text-align: center;"><strong>86.0</strong></td>
<td style="text-align: center;">80.6</td>
<td style="text-align: center;">81.8</td>
</tr>
<tr>
<td style="text-align: left;">WritingBench</td>
<td style="text-align: center;">75.5</td>
<td style="text-align: center;">77.0</td>
<td style="text-align: center;"><strong>85.5</strong></td>
<td style="text-align: center;">82.6</td>
<td style="text-align: center;">83.0</td>
</tr>
<tr>
<td style="text-align: left; vertical-align: middle;">Agent</td>
<td style="text-align: left;">BFCL-v3</td>
<td style="text-align: center;">66.5</td>
<td style="text-align: center;"><strong>68.0</strong></td>
<td style="text-align: center;">65.1</td>
<td style="text-align: center;">64.4</td>
<td style="text-align: center;">65.0</td>
</tr>
<tr>
<td rowspan="2" style="text-align: left; vertical-align: middle;">Multilingual<br>Tasks</td>
<td style="text-align: left;">MultiIF</td>
<td style="text-align: center;"><strong>70.4</strong></td>
<td style="text-align: center;">70.2</td>
<td style="text-align: center;">67.9</td>
<td style="text-align: center;">64.0</td>
<td style="text-align: center;">64.7</td>
</tr>
<tr>
<td style="text-align: left;">PolyMATH</td>
<td style="text-align: center;">25.5</td>
<td style="text-align: center;">27.0</td>
<td style="text-align: center;"><strong>43.1</strong></td>
<td style="text-align: center;">37.9</td>
<td style="text-align: center;">39.3</td>
</tr>
</tbody>
</table>
<table>
<thead>
<tr style="border-bottom: 1px solid black;">
<th></th>
<th></th>
<th>Gemini-2.5-Flash<br>Thinking</th>
<th>Qwen3-235B-A22B<br>Thinking</th>
<th>Qwen3-30B-A3B-Thinking-2507</th>
<th>Qwen3-Omni-30B-A3B-Thinking</th>
<th>Qwen3-Omni-Flash-Thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="2"><em>General<br>Tasks</em></td>
<td>MMLU-Redux</td>
<td>92.1</td>
<td><b>92.7</b></td>
<td>91.4</td>
<td>88.8</td>
<td>89.7</td>
</tr>
<tr style="border-top: 1px solid #ddd;">
<td>GPQA</td>
<td><b>82.8</b></td>
<td>71.1</td>
<td>73.4</td>
<td>73.1</td>
<td>73.1</td>
</tr>
<tr style="border-top: 1px solid black;">
<td rowspan="2"><em>Reasoning</em></td>
<td>AIME25</td>
<td>72.0</td>
<td>81.5</td>
<td><b>85.0</b></td>
<td>73.7</td>
<td>74.0</td>
</tr>
<tr style="border-top: 1px solid #ddd;">
<td>LiveBench 20241125</td>
<td>74.3</td>
<td><b>77.1</b></td>
<td>76.8</td>
<td>71.8</td>
<td>70.3</td>
</tr>
<tr style="border-top: 1px solid black;">
<td><em>Code</em></td>
<td>MultiPL-E</td>
<td><b>84.5</b></td>
<td>79.9</td>
<td>81.3</td>
<td>80.6</td>
<td>81.0</td>
</tr>
<tr style="border-top: 1px solid #ddd;">
<td rowspan="4"><em>Alignment<br>Tasks</em></td>
<td>IFEval</td>
<td><b>89.8</b></td>
<td>83.4</td>
<td>88.9</td>
<td>85.1</td>
<td>85.2</td>
</tr>
<tr style="border-top: 1px solid #ddd;">
<td>Arena-Hard v2</td>
<td>56.7</td>
<td><b>61.5</b></td>
<td>56.0</td>
<td>55.1</td>
<td>57.8</td>
</tr>
<tr style="border-top: 1px solid #ddd;">
<td>Creative Writing v3</td>
<td><b>85.0</b></td>
<td>84.6</td>
<td>84.4</td>
<td>82.5</td>
<td>83.6</td>
</tr>
<tr style="border-top: 1px solid #ddd;">
<td>WritingBench</td>
<td>83.9</td>
<td>80.3</td>
<td>85.0</td>
<td>85.5</td>
<td><b>85.9</b></td>
</tr>
<tr style="border-top: 1px solid black;">
<td><em>Agent</em></td>
<td>BFCL-v3</td>
<td>68.6</td>
<td>70.8</td>
<td><b>72.4</b></td>
<td>63.2</td>
<td>64.5</td>
</tr>
<tr style="border-top: 1px solid black;">
<td rowspan="2"><em>Multilingual<br>Tasks</em></td>
<td>MultiIF</td>
<td>74.4</td>
<td>71.9</td>
<td><b>76.4</b></td>
<td>72.9</td>
<td>73.2</td>
</tr>
<tr>
<td>PolyMATH</td>
<td>49.8</td>
<td><b>54.7</b></td>
<td>52.6</td>
<td>47.1</td>
<td>48.7</td>
</tr>
</tbody>
</table>
</details>
<details>
<summary>Audio -> Text</summary>
<table style="width:100%; border-collapse: collapse;">
<thead>
<tr>
<th align="left" style="padding: 8px;"></th>
<th align="center" style="padding: 8px;">Seed-ASR</th>
<th align="center" style="padding: 8px;">Voxtral-Mini</th>
<th align="center" style="padding: 8px;">Voxtral-Small</th>
<th align="center" style="padding: 8px;">GPT-4o-Transcribe</th>
<th align="center" style="padding: 8px;">Gemini-2.5-Pro</th>
<th align="center" style="padding: 8px;">Qwen2.5-Omni</th>
<th align="center" style="padding: 8px;">Qwen3-Omni-30B-A3B-Instruct</th>
<th align="center" style="padding: 8px;">Qwen3-Omni-Flash-Instruct</th>
</tr>
</thead>
<tbody>
<tr style="border-top: 1px solid #333;">
<td colspan="9" align="center"; style="border-top: 1px solid black; border-bottom: 1px solid black;"><em>EN & ZH ASR (wer)</em></td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Wenetspeech<br><em>net</em> | <em>meeting</em></td>
<td align="center" style="padding: 8px;">4.66 | <strong>5.69</strong></td>
<td align="center" style="padding: 8px;">24.30 | 31.53</td>
<td align="center" style="padding: 8px;">20.33 | 26.08</td>
<td align="center" style="padding: 8px;">15.30 | 32.27</td>
<td align="center" style="padding: 8px;">14.43 | 13.47</td>
<td align="center" style="padding: 8px;">5.91 | 7.65</td>
<td align="center" style="padding: 8px;">4.69 | 5.89</td>
<td align="center" style="padding: 8px;"><strong>4.62</strong> | 5.75</td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Librispeech<br><em>clean</em> | <em>other</em></td>
<td align="center" style="padding: 8px;">1.58 | 2.84</td>
<td align="center" style="padding: 8px;">1.88 | 4.12</td>
<td align="center" style="padding: 8px;">1.56 | 3.30</td>
<td align="center" style="padding: 8px;">1.39 | 3.75</td>
<td align="center" style="padding: 8px;">2.89 | 3.56</td>
<td align="center" style="padding: 8px;">1.74 | 3.45</td>
<td align="center" style="padding: 8px;"><strong>1.22</strong> | 2.48</td>
<td align="center" style="padding: 8px;">1.27 | <strong>2.44</strong></td>
</tr>
<tr>
<td align="left" style="padding: 8px;">CV15-en</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;">9.47</td>
<td align="center" style="padding: 8px;">7.79</td>
<td align="center" style="padding: 8px;">10.01</td>
<td align="center" style="padding: 8px;">9.89</td>
<td align="center" style="padding: 8px;">7.61</td>
<td align="center" style="padding: 8px;">6.05</td>
<td align="center" style="padding: 8px;"><strong>5.94</strong></td>
</tr>
<tr>
<td align="left" style="padding: 8px;">CV15-zh</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;">24.67</td>
<td align="center" style="padding: 8px;">19.30</td>
<td align="center" style="padding: 8px;">9.84</td>
<td align="center" style="padding: 8px;">8.00</td>
<td align="center" style="padding: 8px;">5.13</td>
<td align="center" style="padding: 8px;">4.31</td>
<td align="center" style="padding: 8px;"><strong>4.28</strong></td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Fleurs-en</td>
<td align="center" style="padding: 8px;">3.40</td>
<td align="center" style="padding: 8px;">3.96</td>
<td align="center" style="padding: 8px;">3.77</td>
<td align="center" style="padding: 8px;">3.32</td>
<td align="center" style="padding: 8px;">2.94</td>
<td align="center" style="padding: 8px;">3.77</td>
<td align="center" style="padding: 8px;"><strong>2.72</strong></td>
<td align="center" style="padding: 8px;">2.74</td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Fleurs-zh</td>
<td align="center" style="padding: 8px;">2.69</td>
<td align="center" style="padding: 8px;">12.22</td>
<td align="center" style="padding: 8px;">7.98</td>
<td align="center" style="padding: 8px;">2.44</td>
<td align="center" style="padding: 8px;">2.71</td>
<td align="center" style="padding: 8px;">2.54</td>
<td align="center" style="padding: 8px;">2.20</td>
<td align="center" style="padding: 8px;"><strong>2.19</strong></td>
</tr>
<tr style="border-top: 1px solid #333;">
<td colspan="9" align="center"; style="border-top: 1px solid black; border-bottom: 1px solid black;"><em>Multilingual ASR (wer)</em></td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Fleurs-avg<br>(19 lang)</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;">15.67</td>
<td align="center" style="padding: 8px;">8.09</td>
<td align="center" style="padding: 8px;">4.48</td>
<td align="center" style="padding: 8px;">5.55</td>
<td align="center" style="padding: 8px;">14.04</td>
<td align="center" style="padding: 8px;">5.33</td>
<td align="center" style="padding: 8px;"><strong>5.31</strong></td>
</tr>
<tr style="border-top: 1px solid #333;">
<td colspan="9" align="center"; style="border-top: 1px solid black; border-bottom: 1px solid black;"><em>Lyric ASR (wer)</em></td>
</tr>
<tr>
<td align="left" style="padding: 8px;">MIR-1K (vocal-only)</td>
<td align="center" style="padding: 8px;">6.45</td>
<td align="center" style="padding: 8px;">23.33</td>
<td align="center" style="padding: 8px;">18.73</td>
<td align="center" style="padding: 8px;">11.87</td>
<td align="center" style="padding: 8px;">9.85</td>
<td align="center" style="padding: 8px;">8.15</td>
<td align="center" style="padding: 8px;">5.90</td>
<td align="center" style="padding: 8px;"><strong>5.85</strong></td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Opencpop-test</td>
<td align="center" style="padding: 8px;">2.98</td>
<td align="center" style="padding: 8px;">31.01</td>
<td align="center" style="padding: 8px;">16.06</td>
<td align="center" style="padding: 8px;">7.93</td>
<td align="center" style="padding: 8px;">6.49</td>
<td align="center" style="padding: 8px;">2.84</td>
<td align="center" style="padding: 8px;"><strong>1.54</strong></td>
<td align="center" style="padding: 8px;">2.02</td>
</tr>
<tr style="border-top: 1px solid #333;">
<td colspan="9" align="center"; style="border-top: 1px solid black; border-bottom: 1px solid black;"><em>S2TT (BLEU)</em></td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Fleurs-en2xx</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;">30.35</td>
<td align="center" style="padding: 8px;">37.85</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;"><strong>39.25</strong></td>
<td align="center" style="padding: 8px;">29.22</td>
<td align="center" style="padding: 8px;">37.50</td>
<td align="center" style="padding: 8px;">36.22</td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Fleurs-xx2en</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;">27.54</td>
<td align="center" style="padding: 8px;">32.81</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;"><strong>35.41</strong></td>
<td align="center" style="padding: 8px;">28.61</td>
<td align="center" style="padding: 8px;">31.08</td>
<td align="center" style="padding: 8px;">30.71</td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Fleurs-zh2xx</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;">17.03</td>
<td align="center" style="padding: 8px;">22.05</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;"><strong>26.63</strong></td>
<td align="center" style="padding: 8px;">17.97</td>
<td align="center" style="padding: 8px;">25.17</td>
<td align="center" style="padding: 8px;">25.10</td>
</tr>
<tr>
<td align="left" style="padding: 8px;">Fleurs-xx2zh</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;">28.75</td>
<td align="center" style="padding: 8px;">34.82</td>
<td align="center" style="padding: 8px;">-</td>
<td align="center" style="padding: 8px;"><strong>37.50</strong></td>
<td align="center" style="padding: 8px;">27.68</td>
<td align="center" style="padding: 8px;">33.13</td>
<td align="center" style="padding: 8px;">31.19</td>
</tr>
</tbody>
</table>
<table style="width:100%; border-collapse: collapse;">
<thead>
<tr style="border-bottom: 1px solid #ddd;">
<th style="text-align:left; padding: 8px;"></th>
<th style="text-align:center; padding: 8px;">GPT-4o-Audio</th>
<th style="text-align:center; padding: 8px;">Gemini-2.5-Flash</th>
<th style="text-align:center; padding: 8px;">Gemini-2.5-Pro</th>
<th style="text-align:center; padding: 8px;">Qwen2.5-Omni</th>
<th style="text-align:center; padding: 8px;">Qwen3-Omni-30B-A3B-Instruct</th>
<th style="text-align:center; padding: 8px;">Qwen3-Omni-30B-A3B-Thinking</th>
<th style="text-align:center; padding: 8px;">Qwen3-Omni-Flash-Instruct</th>
<th style="text-align:center; padding: 8px;">Qwen3-Omni-Flash-Thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="9" align="center" style="padding: 8px; font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;"><strong>VoiceBench</strong></td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">AlpacaEval</td>
<td style="text-align:center; padding: 8px;">95.6</td>
<td style="text-align:center; padding: 8px;">96.1</td>
<td style="text-align:center; padding: 8px;">94.3</td>
<td style="text-align:center; padding: 8px;">89.9</td>
<td style="text-align:center; padding: 8px;">94.8</td>
<td style="text-align:center; padding: 8px;">96.4</td>
<td style="text-align:center; padding: 8px;">95.4</td>
<td style="text-align:center; padding: 8px;"><strong>96.8</strong></td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">CommonEval</td>
<td style="text-align:center; padding: 8px;">89.8</td>
<td style="text-align:center; padding: 8px;">88.3</td>
<td style="text-align:center; padding: 8px;">88.4</td>
<td style="text-align:center; padding: 8px;">76.7</td>
<td style="text-align:center; padding: 8px;">90.8</td>
<td style="text-align:center; padding: 8px;">90.5</td>
<td style="text-align:center; padding: 8px;"><strong>91.0</strong></td>
<td style="text-align:center; padding: 8px;">90.9</td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">WildVoice</td>
<td style="text-align:center; padding: 8px;">91.6</td>
<td style="text-align:center; padding: 8px;">92.1</td>
<td style="text-align:center; padding: 8px;">93.4</td>
<td style="text-align:center; padding: 8px;">77.7</td>
<td style="text-align:center; padding: 8px;">91.6</td>
<td style="text-align:center; padding: 8px;">90.5</td>
<td style="text-align:center; padding: 8px;"><strong>92.3</strong></td>
<td style="text-align:center; padding: 8px;">90.9</td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">SD-QA</td>
<td style="text-align:center; padding: 8px;">75.5</td>
<td style="text-align:center; padding: 8px;">84.5</td>
<td style="text-align:center; padding: 8px;"><strong>90.1</strong></td>
<td style="text-align:center; padding: 8px;">56.4</td>
<td style="text-align:center; padding: 8px;">76.9</td>
<td style="text-align:center; padding: 8px;">78.1</td>
<td style="text-align:center; padding: 8px;">76.8</td>
<td style="text-align:center; padding: 8px;">78.5</td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">MMSU</td>
<td style="text-align:center; padding: 8px;">80.3</td>
<td style="text-align:center; padding: 8px;">66.1</td>
<td style="text-align:center; padding: 8px;">71.1</td>
<td style="text-align:center; padding: 8px;">61.7</td>
<td style="text-align:center; padding: 8px;">68.1</td>
<td style="text-align:center; padding: 8px;">83.0</td>
<td style="text-align:center; padding: 8px;">68.4</td>
<td style="text-align:center; padding: 8px;"><strong>84.3</strong></td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">OpenBookQA</td>
<td style="text-align:center; padding: 8px;">89.2</td>
<td style="text-align:center; padding: 8px;">56.9</td>
<td style="text-align:center; padding: 8px;">92.3</td>
<td style="text-align:center; padding: 8px;">80.9</td>
<td style="text-align:center; padding: 8px;">89.7</td>
<td style="text-align:center; padding: 8px;">94.3</td>
<td style="text-align:center; padding: 8px;">91.4</td>
<td style="text-align:center; padding: 8px;"><strong>95.0</strong></td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">BBH</td>
<td style="text-align:center; padding: 8px;">84.1</td>
<td style="text-align:center; padding: 8px;">83.9</td>
<td style="text-align:center; padding: 8px;"><strong>92.6</strong></td>
<td style="text-align:center; padding: 8px;">66.7</td>
<td style="text-align:center; padding: 8px;">80.4</td>
<td style="text-align:center; padding: 8px;">88.9</td>
<td style="text-align:center; padding: 8px;">80.6</td>
<td style="text-align:center; padding: 8px;">89.6</td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">IFEval</td>
<td style="text-align:center; padding: 8px;">76.0</td>
<td style="text-align:center; padding: 8px;">83.8</td>
<td style="text-align:center; padding: 8px;"><strong>85.7</strong></td>
<td style="text-align:center; padding: 8px;">53.5</td>
<td style="text-align:center; padding: 8px;">77.8</td>
<td style="text-align:center; padding: 8px;">80.6</td>
<td style="text-align:center; padding: 8px;">75.2</td>
<td style="text-align:center; padding: 8px;">80.8</td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">AdvBench</td>
<td style="text-align:center; padding: 8px;">98.7</td>
<td style="text-align:center; padding: 8px;">98.9</td>
<td style="text-align:center; padding: 8px;">98.1</td>
<td style="text-align:center; padding: 8px;">99.2</td>
<td style="text-align:center; padding: 8px;"><strong>99.3</strong></td>
<td style="text-align:center; padding: 8px;">97.2</td>
<td style="text-align:center; padding: 8px;"><strong>99.4</strong></td>
<td style="text-align:center; padding: 8px;">98.9</td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">Overall</td>
<td style="text-align:center; padding: 8px;">86.8</td>
<td style="text-align:center; padding: 8px;">83.4</td>
<td style="text-align:center; padding: 8px;"><strong>89.6</strong></td>
<td style="text-align:center; padding: 8px;">73.6</td>
<td style="text-align:center; padding: 8px;">85.5</td>
<td style="text-align:center; padding: 8px;">88.8</td>
<td style="text-align:center; padding: 8px;">85.6</td>
<td style="text-align:center; padding: 8px;">89.5</td>
</tr>
<tr>
<td colspan="9" align="center" style="padding: 8px; font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;"><strong>Audio Reasoning</strong></td>
</tr>
<tr>
<td style="text-align:left; padding: 8px;">MMAU-v05.15.25</td>
<td style="text-align:center; padding: 8px;">62.5</td>
<td style="text-align:center; padding: 8px;">71.8</td>
<td style="text-align:center; padding: 8px;">77.4</td>
<td style="text-align:center; padding: 8px;">65.5</td>
<td style="text-align:center; padding: 8px;">77.5</td>
<td style="text-align:center; padding: 8px;">75.4</td>
<td style="text-align:center; padding: 8px;"><strong>77.6</strong></td>
<td style="text-align:center; padding: 8px;">76.5</td>
</tr>
<tr">
<td style="text-align:left; padding: 8px;">MMSU</td>
<td style="text-align:center; padding: 8px;">56.4</td>
<td style="text-align:center; padding: 8px;">70.2</td>
<td style="text-align:center; padding: 8px;"><strong>77.7</strong></td>
<td style="text-align:center; padding: 8px;">62.6</td>
<td style="text-align:center; padding: 8px;">69.0</td>
<td style="text-align:center; padding: 8px;">70.2</td>
<td style="text-align:center; padding: 8px;">69.1</td>
<td style="text-align:center; padding: 8px;">71.3</td>
</tr>
</tbody>
</table>
<table>
<thead>
<tr style="border-bottom: 1px solid black;">
<th style="text-align: left;"></th>
<th style="text-align: center;">Best Specialist<br>Models</th>
<th style="text-align: center;">GPT-4o-Audio</th>
<th style="text-align: center;">Gemini-2.5-Pro</th>
<th style="text-align: center;">Qwen2.5-Omni</th>
<th style="text-align: center;">Qwen3-Omni-30B-A3B-Instruct</th>
<th style="text-align: center;">Qwen3-Omni-Flash-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left;">RUL-MuchoMusic</td>
<td style="text-align: center;">47.6 (Audio Flamingo 3)</td>
<td style="text-align: center;">36.1</td>
<td style="text-align: center;">49.4</td>
<td style="text-align: center;">47.3</td>
<td style="text-align: center;">52.0</td>
<td style="text-align: center;"><strong>52.1</strong></td>
</tr>
<tr>
<td style="text-align: left;">GTZAN<br><em>Acc.</em></td>
<td style="text-align: center;">87.9 (CLaMP 3)</td>
<td style="text-align: center;">76.5</td>
<td style="text-align: center;">81.0</td>
<td style="text-align: center;">81.7</td>
<td style="text-align: center;">93.0</td>
<td style="text-align: center;"><strong>93.1</strong></td>
</tr>
<tr>
<td style="text-align: left;">MTG Genre<br><em>Micro F1</em></td>
<td style="text-align: center;">35.8 (MuQ-MuLan)</td>
<td style="text-align: center;">25.3</td>
<td style="text-align: center;">32.6</td>
<td style="text-align: center;">32.5</td>
<td style="text-align: center;">39.0</td>
<td style="text-align: center;"><strong>39.5</strong></td>
</tr>
<tr>
<td style="text-align: left;">MTG Mood/Theme<br><em>Micro F1</em></td>
<td style="text-align: center;">10.9 (MuQ-MuLan)</td>
<td style="text-align: center;">11.3</td>
<td style="text-align: center;">14.1</td>
<td style="text-align: center;">8.9</td>
<td style="text-align: center;">21.0</td>
<td style="text-align: center;"><strong>21.7</strong></td>
</tr>
<tr>
<td style="text-align: left;">MTG Instrument<br><em>Micro F1</em></td>
<td style="text-align: center;">39.8 (MuQ-MuLan)</td>
<td style="text-align: center;">34.2</td>
<td style="text-align: center;">33.0</td>
<td style="text-align: center;">22.6</td>
<td style="text-align: center;">40.5</td>
<td style="text-align: center;"><strong>40.7</strong></td>
</tr>
<tr>
<td style="text-align: left;">MTG Top50<br><em>Micro F1</em></td>
<td style="text-align: center;">33.2 (MuQ-MuLan)</td>
<td style="text-align: center;">25.0</td>
<td style="text-align: center;">26.1</td>
<td style="text-align: center;">21.6</td>
<td style="text-align: center;">36.7</td>
<td style="text-align: center;"><strong>36.9</strong></td>
</tr>
<tr>
<td style="text-align: left;">MagnaTagATune<br><em>Micro F1</em></td>
<td style="text-align: center;">41.6 (MuQ)</td>
<td style="text-align: center;">29.2</td>
<td style="text-align: center;">28.1</td>
<td style="text-align: center;">30.1</td>
<td style="text-align: center;">44.3</td>
<td style="text-align: center;"><strong>46.8</strong></td>
</tr>
</tbody>
</table>
</details>
<details>
<summary>Vision -> Text</summary>
<table style="width:100%; border-collapse: collapse;">
<thead>
<tr style="border-bottom: 1px solid black;">
<th style="text-align: left;">Datasets</th>
<th style="text-align: center;">GPT4-o</th>
<th style="text-align: center;">Gemini-2.0-Flash</th>
<th style="text-align: center;">Qwen2.5-VL<br>72B</th>
<th style="text-align: center;">Qwen3-Omni-30B-A3B<br>-Instruct</th>
<th style="text-align: center;">Qwen3-Omni-Flash<br>-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid #ddd; border-bottom: 1px solid black;">General Visual Question Answering</td>
</tr>
<tr>
<td style="text-align: left;">MMStar</td>
<td style="text-align: center;">64.7</td>
<td style="text-align: center;"><strong>71.4</strong></td>
<td style="text-align: center;">70.8</td>
<td style="text-align: center;">68.5</td>
<td style="text-align: center;">69.3</td>
</tr>
<tr>
<td style="text-align: left;">HallusionBench</td>
<td style="text-align: center;">55.0</td>
<td style="text-align: center;">56.3</td>
<td style="text-align: center;">55.2</td>
<td style="text-align: center;"><strong>59.7</strong></td>
<td style="text-align: center;">58.5</td>
</tr>
<tr>
<td style="text-align: left;">MM-MT-Bench</td>
<td style="text-align: center;"><strong>7.7</strong></td>
<td style="text-align: center;">6.7</td>
<td style="text-align: center;">7.6</td>
<td style="text-align: center;">7.4</td>
<td style="text-align: center;">7.6</td>
</tr>
<tr>
<td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Math & STEM</td>
</tr>
<tr>
<td style="text-align: left;">MMMU_val</td>
<td style="text-align: center;">69.1</td>
<td style="text-align: center;"><strong>71.3</strong></td>
<td style="text-align: center;">70.2</td>
<td style="text-align: center;">69.1</td>
<td style="text-align: center;">69.8</td>
</tr>
<tr>
<td style="text-align: left;">MMMU_pro</td>
<td style="text-align: center;">51.9</td>
<td style="text-align: center;">56.1</td>
<td style="text-align: center;">51.1</td>
<td style="text-align: center;">57.0</td>
<td style="text-align: center;"><strong>57.6</strong></td>
</tr>
<tr>
<td style="text-align: left;">MathVista_mini</td>
<td style="text-align: center;">63.8</td>
<td style="text-align: center;">71.4</td>
<td style="text-align: center;">74.8</td>
<td style="text-align: center;">75.9</td>
<td style="text-align: center;"><strong>77.4</strong></td>
</tr>
<tr>
<td style="text-align: left;">MathVision_full</td>
<td style="text-align: center;">30.4</td>
<td style="text-align: center;">48.6</td>
<td style="text-align: center;">38.1</td>
<td style="text-align: center;">56.3</td>
<td style="text-align: center;"><strong>58.3</strong></td>
</tr>
<tr>
<td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Documentation Understanding</td>
</tr>
<tr>
<td style="text-align: left;">AI2D</td>
<td style="text-align: center;">84.6</td>
<td style="text-align: center;">86.7</td>
<td style="text-align: center;"><strong>88.7</strong></td>
<td style="text-align: center;">85.2</td>
<td style="text-align: center;">86.4</td>
</tr>
<tr>
<td style="text-align: left;">ChartQA_test</td>
<td style="text-align: center;">86.7</td>
<td style="text-align: center;">64.6</td>
<td style="text-align: center;"><strong>89.5</strong></td>
<td style="text-align: center;">86.8</td>
<td style="text-align: center;">87.1</td>
</tr>
<tr>
<td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Counting</td>
</tr>
<tr>
<td style="text-align: left;">CountBench</td>
<td style="text-align: center;">87.9</td>
<td style="text-align: center;">91.2</td>
<td style="text-align: center;"><strong>93.6</strong></td>
<td style="text-align: center;">90.0</td>
<td style="text-align: center;">90.0</td>
</tr>
<tr>
<td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Video Understanding</td>
</tr>
<tr>
<td style="text-align: left;">Video-MME</td>
<td style="text-align: center;">71.9</td>
<td style="text-align: center;">72.4</td>
<td style="text-align: center;"><strong>73.3</strong></td>
<td style="text-align: center;">70.5</td>
<td style="text-align: center;">71.4</td>
</tr>
<tr>
<td style="text-align: left;">LVBench</td>
<td style="text-align: center;">30.8</td>
<td style="text-align: center;"><strong>57.9</strong></td>
<td style="text-align: center;">47.3</td>
<td style="text-align: center;">50.2</td>
<td style="text-align: center;">51.1</td>
</tr>
<tr>
<td style="text-align: left;">MLVU</td>
<td style="text-align: center;">64.6</td>
<td style="text-align: center;">71.0</td>
<td style="text-align: center;">74.6</td>
<td style="text-align: center;">75.2</td>
<td style="text-align: center;"><strong>75.7</strong></td>
</tr>
</tbody>
</table>
<table style="width: 100%; border-collapse: collapse;">
<thead style="border-bottom: 1px solid black;">
<tr>
<th align="left" style="padding: 6px;">Datasets</th>
<th align="center" style="padding: 6px;">Gemini-2.5-flash-thinking</th>
<th align="center" style="padding: 6px;">InternVL-3.5-241B-A28B</th>
<th align="center" style="padding: 6px;">Qwen3-Omni-30B-A3B-Thinking</th>
<th align="center" style="padding: 6px;">Qwen3-Omni-Flash-Thinking</th>
</tr>
</thead>
<tbody>
<tr style="border-top: 2px solid black; border-bottom: 1px solid #ccc;">
<td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-bottom: 1px solid black;">General Visual Question Answering</td>
</tr>
<tr>
<td style="padding: 6px;">MMStar</td>
<td align="center" style="padding: 6px;">75.5</td>
<td align="center" style="padding: 6px;"><b>77.9</b></td>
<td align="center" style="padding: 6px;">74.9</td>
<td align="center" style="padding: 6px;">75.5</td>
</tr>
<tr>
<td style="padding: 6px;">HallusionBench</td>
<td align="center" style="padding: 6px;">61.1</td>
<td align="center" style="padding: 6px;">57.3</td>
<td align="center" style="padding: 6px;">62.8</td>
<td align="center" style="padding: 6px;"><b>63.4</b></td>
</tr>
<tr>
<td style="padding: 6px;">MM-MT-Bench</td>
<td align="center" style="padding: 6px;">7.8</td>
<td align="center" style="padding: 6px;">–</td>
<td align="center" style="padding: 6px;"><b>8.0</b></td>
<td align="center" style="padding: 6px;"><b>8.0</b></td>
</tr>
<tr style="border-top: 1px solid black; border-bottom: 1px solid #ccc;">
<td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Math & STEM</td>
</tr>
<tr>
<td style="padding: 6px;">MMMU_val</td>
<td align="center" style="padding: 6px;">76.9</td>
<td align="center" style="padding: 6px;"><b>77.7</b></td>
<td align="center" style="padding: 6px;">75.6</td>
<td align="center" style="padding: 6px;">75.0</td>
</tr>
<tr>
<td style="padding: 6px;">MMMU_pro</td>
<td align="center" style="padding: 6px;"><b>65.8</b></td>
<td align="center" style="padding: 6px;">–</td>
<td align="center" style="padding: 6px;">60.5</td>
<td align="center" style="padding: 6px;">60.8</td>
</tr>
<tr>
<td style="padding: 6px;">MathVista_mini</td>
<td align="center" style="padding: 6px;">77.6</td>
<td align="center" style="padding: 6px;"><b>82.7</b></td>
<td align="center" style="padding: 6px;">80.0</td>
<td align="center" style="padding: 6px;">81.2</td>
</tr>
<tr>
<td style="padding: 6px;">MathVision_full</td>
<td align="center" style="padding: 6px;">62.3</td>
<td align="center" style="padding: 6px;"><b>63.9</b></td>
<td align="center" style="padding: 6px;">62.9</td>
<td align="center" style="padding: 6px;">63.8</td>
</tr>
<tr style="border-top: 1px solid black; border-bottom: 1px solid #ccc;">
<td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Documentation Understanding</td>
</tr>
<tr>
<td style="padding: 6px;">AI2D_test</td>
<td align="center" style="padding: 6px;"><b>88.6</b></td>
<td align="center" style="padding: 6px;">87.3</td>
<td align="center" style="padding: 6px;">86.1</td>
<td align="center" style="padding: 6px;">86.8</td>
</tr>
<tr>
<td style="padding: 6px;">ChartQA_test</td>
<td align="center" style="padding: 6px;">–</td>
<td align="center" style="padding: 6px;">88.0</td>
<td align="center" style="padding: 6px;"><b>89.5</b></td>
<td align="center" style="padding: 6px;">89.3</td>
</tr>
<tr style="border-top: 1px solid black; border-bottom: 1px solid #ccc;">
<td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Counting</td>
</tr>
<tr>
<td style="padding: 6px;">CountBench</td>
<td align="center" style="padding: 6px;">88.6</td>
<td align="center" style="padding: 6px;">–</td>
<td align="center" style="padding: 6px;">88.6</td>
<td align="center" style="padding: 6px;"><b>92.5</b></td>
</tr>
<tr style="border-top: 1px solid black; border-bottom: 1px solid #ccc;">
<td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Video Understanding</td>
</tr>
<tr>
<td style="padding: 6px;">Video-MME</td>
<td align="center" style="padding: 6px;"><b>79.6</b></td>
<td align="center" style="padding: 6px;">72.9</td>
<td align="center" style="padding: 6px;">69.7</td>
<td align="center" style="padding: 6px;">69.8</td>
</tr>
<tr>
<td style="padding: 6px;">LVBench</td>
<td align="center" style="padding: 6px;"><b>64.5</b></td>
<td align="center" style="padding: 6px;">–</td>
<td align="center" style="padding: 6px;">49.0</td>
<td align="center" style="padding: 6px;">49.5</td>
</tr>
<tr>
<td style="padding: 6px;">MLVU</td>
<td align="center" style="padding: 6px;"><b>82.1</b></td>
<td align="center" style="padding: 6px;">78.2</td>
<td align="center" style="padding: 6px;">72.9</td>
<td align="center" style="padding: 6px;">73.9</td>
</tr>
</tbody>
</table>
</details>
<details>
<summary>AudioVisual -> Text</summary>
<table>
<thead>
<tr>
<th>Datasets</th>
<th>Previous Open-source SoTA</th>
<th>Gemini-2.5-Flash</th>
<th>Qwen2.5-Omni</th>
<th>Qwen3-Omni-30B-A3B-Instruct</th>
<th>Qwen3-Omni-Flash-Instruct</th>
</tr>
</thead>
<tbody>
<tr>
<td>WorldSense</td>
<td>47.1</td>
<td>50.9</td>
<td>45.4</td>
<td>54.0</td>
<td><strong>54.1</strong></td>
</tr>
</tbody>
</table>
<table>
<thead>
<tr>
<th>Datasets</th>
<th>Previous Open-source SoTA</th>
<th>Gemini-2.5-Flash-Thinking</th>
<th>Qwen3-Omni-30B-A3B-Thinking</th>
<th>Qwen3-Omni-Flash-Thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>DailyOmni</td>
<td>69.8</td>
<td>72.7</td>
<td>75.8</b></td>
<td><b>76.2</td>
</tr>
<tr>
<td>VideoHolmes</td>
<td>55.6</td>
<td>49.5</td>
<td><b>57.3</b></td>
<td><b>57.3</b></td>
</tr>
</tbody>
</table>
</details>
<details>
<summary>Zero-shot Speech Generation</summary>
<table>
<thead>
<tr>
<th align="left">Datasets</th>
<th align="left">Model</th>
<th align="left">Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td colspan="2" align="center"><em>Content Consistency</em></td>
</tr>
</tbody>
<tbody>
<tr>
<td rowspan="10" align="center" valign="middle"><strong>SEED</strong><br><em>test-zh</em> | <em>test-en</em></td>
<td align="left">Seed-TTS<sub>ICL</sub></td>
<td align="left">1.11 | 2.24</td>
</tr>
<tr>
<td align="left">Seed-TTS<sub>RL</sub></td>
<td align="left">1.00 | 1.94</td>
</tr>
<tr>
<td align="left">MaskGCT</td>
<td align="left">2.27 | 2.62</td>
</tr>
<tr>
<td align="left">E2 TTS</td>
<td align="left">1.97 | 2.19</td>
</tr>
<tr>
<td align="left">F5-TTS</td>
<td align="left">1.56 | 1.83</td>
</tr>
<tr>
<td align="left">Spark TTS</td>
<td align="left">1.20 | 1.98</td>
</tr>
<tr>
<td align="left">CosyVoice 2</td>
<td align="left">1.45 | 2.57</td>
</tr>
<tr>
<td align="left">CosyVoice 3</td>
<td align="left"><strong>0.71</strong> | 1.45</td>
</tr>
<tr>
<td align="left">Qwen2.5-Omni-7B</td>
<td align="left">1.42 | 2.33</td>
</tr>
<tr>
<td align="left">Qwen3-Omni-30B-A3B</td>
<td align="left">1.07 | <strong>1.39</strong></td>
</tr>
</tbody>
</table>
</details>
<details>
<summary>Multilingual Speech Generation </summary>
<table>
<thead>
<tr>
<th rowspan="2" align="left">Language</th>
<th colspan="3" style="text-align:center; padding: 8px; font-weight: bold; border-bottom: 1px solid #ddd;">Content Consistency</th>
<th colspan="3" style="text-align:center; padding: 8px; font-weight: bold; border-bottom: 1px solid #ddd;">Speaker Similarity</th>
</tr>
<tr>
<th align="center">Qwen3-Omni-30B-A3B</th>
<th align="center">MiniMax</th>
<th align="center">ElevenLabs</th>
<th align="center">Qwen3-Omni-30B-A3B</th>
<th align="center">MiniMax</th>
<th align="center">ElevenLabs</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Chinese</td>
<td align="center"><strong>0.716</strong></td>
<td align="center">2.252</td>
<td align="center">16.026</td>
<td align="center">0.772</td>
<td align="center"><strong>0.780</strong></td>
<td align="center">0.677</td>
</tr>
<tr>
<td align="left">English</td>
<td align="center"><strong>1.069</strong></td>
<td align="center">2.164</td>
<td align="center">2.339</td>
<td align="center"><strong>0.773</strong></td>
<td align="center">0.756</td>
<td align="center">0.613</td>
</tr>
<tr>
<td align="left">German</td>
<td align="center">0.777</td>
<td align="center">1.906</td>
<td align="center"><strong>0.572</strong></td>
<td align="center"><strong>0.738</strong></td>
<td align="center">0.733</td>
<td align="center">0.614</td>
</tr>
<tr>
<td align="left">Italian</td>
<td align="center"><strong>1.067</strong></td>
<td align="center">1.543</td>
<td align="center">1.743</td>
<td align="center"><strong>0.742</strong></td>
<td align="center">0.699</td>
<td align="center">0.579</td>
</tr>
<tr>
<td align="left">Portuguese</td>
<td align="center">1.872</td>
<td align="center">1.877</td>
<td align="center"><strong>1.331</strong></td>
<td align="center">0.770</td>
<td align="center"><strong>0.805</strong></td>
<td align="center">0.711</td>
</tr>
<tr>
<td align="left">Spanish</td>
<td align="center">1.765</td>
<td align="center"><strong>1.029</strong></td>
<td align="center">1.084</td>
<td align="center">0.744</td>
<td align="center"><strong>0.762</strong></td>
<td align="center">0.615</td>
</tr>
<tr>
<td align="left">Japanese</td>
<td align="center">3.631</td>
<td align="center"><strong>3.519</strong></td>
<td align="center">10.646</td>
<td align="center">0.763</td>
<td align="center"><strong>0.776</strong></td>
<td align="center">0.738</td>
</tr>
<tr>
<td align="left">Korean</td>
<td align="center"><strong>1.670</strong></td>
<td align="center">1.747</td>
<td align="center">1.865</td>
<td align="center"><strong>0.778</strong></td>
<td align="center">0.776</td>
<td align="center">0.700</td>
</tr>
<tr>
<td align="left">French</td>
<td align="center"><strong>2.505</strong></td>
<td align="center">4.099</td>
<td align="center">5.216</td>
<td align="center"><strong>0.689</strong></td>
<td align="center">0.628</td>
<td align="center">0.535</td>
</tr>
<tr>
<td align="left">Russian</td>
<td align="center">3.986</td>
<td align="center">4.281</td>
<td align="center"><strong>3.878</strong></td>
<td align="center">0.759</td>
<td align="center"><strong>0.761</strong></td>
<td align="center">0.676</td>
</tr>
</tbody>
</table>
</details>
<details>
<summary>Cross-Lingual Speech Generation </summary>
<table>
<thead>
<tr>
<th style="text-align: left;">Language</th>
<th style="text-align: left;">Qwen3-Omni-30B-A3B</th>
<th style="text-align: left;">CosyVoice3</th>
<th style="text-align: left;">CosyVoice2</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left;">en-to-zh</td>
<td style="text-align: left;">5.37</td>
<td style="text-align: left;"><strong>5.09</strong></td>
<td style="text-align: left;">13.5</td>
</tr>
<tr>
<td style="text-align: left;">ja-to-zh</td>
<td style="text-align: left;">3.32</td>
<td style="text-align: left;"><strong>3.05</strong></td>
<td style="text-align: left;">48.1</td>
</tr>
<tr>
<td style="text-align: left;">ko-to-zh</td>
<td style="text-align: left;"><strong>0.99</strong></td>
<td style="text-align: left;">1.06</td>
<td style="text-align: left;">7.70</td>
</tr>
<tr>
<td style="text-align: left;">zh-to-en</td>
<td style="text-align: left;"><strong>2.76</strong></td>
<td style="text-align: left;">2.98</td>
<td style="text-align: left;">6.47</td>
</tr>
<tr>
<td style="text-align: left;">ja-to-en</td>
<td style="text-align: left;"><strong>3.31</strong></td>
<td style="text-align: left;">4.20</td>
<td style="text-align: left;">17.1</td>
</tr>
<tr>
<td style="text-align: left;">ko-to-en</td>
<td style="text-align: left;"><strong>3.34</strong></td>
<td style="text-align: left;">4.19</td>
<td style="text-align: left;">11.2</td>
</tr>
<tr>
<td style="text-align: left;">zh-to-ja</td>
<td style="text-align: left;">8.29</td>
<td style="text-align: left;"><strong>7.08</strong></td>
<td style="text-align: left;">13.1</td>
</tr>
<tr>
<td style="text-align: left;">en-to-ja</td>
<td style="text-align: left;">7.53</td>
<td style="text-align: left;"><strong>6.80</strong></td>
<td style="text-align: left;">14.9</td>
</tr>
<tr>
<td style="text-align: left;">ko-to-ja</td>
<td style="text-align: left;">4.24</td>
<td style="text-align: left;"><strong>3.93</strong></td>
<td style="text-align: left;">5.86</td>
</tr>
<tr>
<td style="text-align: left;">zh-to-ko</td>
<td style="text-align: left;"><strong>5.13</strong></td>
<td style="text-align: left;">14.4</td>
<td style="text-align: left;">24.8</td>
</tr>
<tr>
<td style="text-align: left;">en-to-ko</td>
<td style="text-align: left;"><strong>4.96</strong></td>
<td style="text-align: left;">5.87</td>
<td style="text-align: left;">21.9</td>
</tr>
<tr>
<td style="text-align: left;">ja-to-ko</td>
<td style="text-align: left;"><strong>6.23</strong></td>
<td style="text-align: left;">7.92</td>
<td style="text-align: left;">21.5</td>
</tr>
</tbody>
</table>
</details>
### Setting for Evaluation
* **Decoding Strategy**: For the Qwen3-Omni series across all evaluation benchmarks, `Instruct` models use greedy decoding during generation without sampling. For `Thinking` models, the decoding parameters should be taken from the `generation_config.json` file in the checkpoint.
* **Benchmark-Specific Formatting**: For the majority of evaluation benchmarks, they come with their own ChatML formatting to embed the question or prompt. It should be noted that all video data are set to `fps=2` during evaluation.
* **Default Prompts**: For tasks in certain benchmarks that do not include a prompt, we use the following prompt settings:
| Task Type | Prompt |
| :--- | :--- |
| Auto Speech Recognition (ASR) for Chinese | 请将这段中文语音转换为纯文本。 |
| Auto Speech Recognition (ASR) for Other languages | Transcribe the <language> audio into text. |
| Speech-to-Text Translation (S2TT) | Listen to the provided <source_language> speech and produce a translation in <target_language> text. |
| Song Lyrics Recognition | Transcribe the song lyrics into text without any punctuation, separate lines with line breaks, and output only the lyrics without additional explanations. |
* **System Prompt**: No `system prompt` should be set for any evaluation benchmark.
* **Input Sequence**: The question or prompt should be input as user text. Unless otherwise specified by the benchmark, the text should come **after** multimodal data in the sequence. For example:
```python
messages = [
{
"role": "user",
"content": [
{"type": "audio", "audio": "/path/to/audio.wav"},
{"type": "image", "image": "/path/to/image.png"},
{"type": "video", "video": "/path/to/video.mp4"},
{"type": "text", "text": "Describe the audio, image and video."},
],
},
]
```
<!-- ## Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)
```BibTeX
@article{Qwen3-Omni,
title={Qwen3-Omni Technical Report},
author={Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfa Zhu, Yuanjun Lv, Yongqi Wang, Dake Guo, He Wang, Linhan Ma, Pei Zhang, Xinyu Zhang, Hongkun Hao, Zishan Guo, Baosong Yang, Bin Zhang, Ziyang Ma, Xipin Wei, Shuai Bai, Keqin Chen, Xuejing Liu, Peng Wang, Mingkun Yang, Dayiheng Liu, Xingzhang Ren, Bo Zheng, Rui Men, Fan Zhou, Bowen Yu, Jianxin Yang, Le Yu, Jingren Zhou, Junyang Lin},
journal={arXiv preprint arXiv},
year={2025}
}
``` -->
<br>
|