File size: 90,295 Bytes
afa3faa
 
 
 
 
 
 
 
 
 
7bce5fe
afa3faa
7bce5fe
afa3faa
 
7bce5fe
36780a6
 
 
 
 
 
4fca201
36780a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa3faa
36780a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa3faa
36780a6
 
 
 
983d9c4
36780a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f627ea3
36780a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa3faa
36780a6
 
 
 
 
 
 
 
 
 
983d9c4
36780a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f443cf
 
36780a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f443cf
36780a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f443cf
36780a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
---
license: other
license_name: apache-2.0
language:
- en
tags:
- multimodal
library_name: transformers
pipeline_tag: any-to-any
---

# Qwen3-Omni

<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>


## Overview
### Introduction

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/q3o_introduction.png" width="100%"/>
<p>

Qwen3-Omni is the natively end-to-end multilingual omni-modal foundation models. It processes text, images, audio, and video, and delivers real-time streaming responses in both text and natural speech. We introduce several architectural upgrades to improve performance and efficiency. Key features:

* **State-of-the-art across modalities**: Early text-first pretraining and mixed multimodal training provide native multimodal support. While achieving strong audio and audio-video results, unimodal text and image performance does not regress. Reaches SOTA on 22 of 36 audio/video benchmarks and open-source SOTA on 32 of 36; ASR, audio understanding, and voice conversation performance is comparable to Gemini 2.5 Pro.

* **Multilingual**: Supports 119 text languages, 19 speech input languages, and 10 speech output languages.
  - **Speech Input**: English, Chinese, Korean, Japanese, German, Russian, Italian, French, Spanish, Portuguese, Malay, Dutch, Indonesian, Turkish, Vietnamese, Cantonese, Arabic, Urdu.
  - **Speech Output**: English, Chinese, French, German, Russian, Italian, Spanish, Portuguese, Japanese, Korean.

* **Novel Architecture**: MoE-based Thinker–Talker design with AuT pretraining for strong general representations, plus a multi-codebook design that drives latency to a minimum.

* **Real-time Audio/Video Interaction**: Low-latency streaming with natural turn-taking and immediate text or speech responses.

* **Flexible Control**: Customize behavior via system prompts for fine-grained control and easy adaptation.

* **Detailed Audio Captioner**: Qwen3-Omni-30B-A3B-Captioner is now open source: a general-purpose, highly detailed, low-hallucination audio captioning model that fills a critical gap in the open-source community.

### Model Architecture

<p align="center">
    <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/overview.png" width="80%"/>
<p>

### Cookbooks for Usage Cases

Qwen3-Omni supports a wide range of multimodal application scenarios, covering various domain tasks involving audio, image, video, and audio-visual modalities. Below are several cookbooks demonstrating the usage cases of Qwen3-Omni and these cookbooks include our actual execution logs. You can first follow the [QuickStart](#quickstart) guide to download the model and install the necessary inference environment dependencies, then run and experiment locally—try modifying prompts or switching model types, and enjoy exploring the capabilities of Qwen3-Omni!

<table>
  <thead>
    <tr>
      <th>Category</th>
      <th>Cookbook</th>
      <th>Description</th>
      <th>Open</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="6">Audio</td>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/speech_recognition.ipynb">Speech Recognition</a></td>
      <td>Speech recognition, supporting multiple languages and long audio.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/speech_recognition.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/speech_translation.ipynb">Speech Translation</a></td>
      <td>Speech-to-Text / Speech-to-Speech translation.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/speech_translation.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/music_analysis.ipynb">Music Analysis</a></td>
      <td>Detailed analysis and appreciation of any music, including style, genre, rhythm, etc.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/music_analysis.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/sound_analysis.ipynb">Sound Analysis</a></td>
      <td>Description and analysis of various sound effects and audio signals.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/sound_analysis.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_caption.ipynb">Audio Caption</a></td>
      <td>Audio captioning, detailed description of any audio input.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_caption.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/mixed_audio_analysis.ipynb">Mixed Audio Analysis</a></td>
      <td>Analysis of mixed audio content, such as speech, music, and environmental sounds.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/mixed_audio_analysis.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td rowspan="7">Visual</td>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/ocr.ipynb">OCR</a></td>
      <td>OCR for complex images.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/ocr.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/object_grounding.ipynb">Object Grounding</a></td>
      <td>Target detection and grounding.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/object_grounding.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/image_question.ipynb">Image Question</a></td>
      <td>Answering arbitrary questions about any image.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/image_question.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/image_math.ipynb">Image Math</a></td>
      <td>Solving complex mathematical problems in images, highlighting the capabilities of the Thinking model.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/image_math.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_description.ipynb">Video Description</a></td>
      <td>Detailed description of video content.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_description.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_navigation.ipynb">Video Navigation</a></td>
      <td>Generating navigation commands from first-person motion videos.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_navigation.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_scene_transition.ipynb">Video Scene Transition</a></td>
      <td>Analysis of scene transitions in videos.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/video_scene_transition.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td rowspan="3">Audio-Visual</td>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_question.ipynb">Audio Visual Question</a></td>
      <td>Answering arbitrary questions in audio-visual scenarios, demonstrating the model's ability to model temporal alignment between audio and video.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_question.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_interaction.ipynb">Audio Visual Interaction</a></td>
      <td>Interactive communication with the model using audio-visual inputs, including task specification via audio.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_interaction.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_dialogue.ipynb">Audio Visual Dialogue</a></td>
      <td>Conversational interaction with the model using audio-visual inputs, showcasing its capabilities in casual chat and assistant-like behavior.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_visual_dialogue.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td>Agent</td>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_function_call.ipynb">Audio Function Call</a></td>
      <td>Using audio input to perform function calls, enabling agent-like behaviors.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/audio_function_call.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
    <tr>
      <td>Downstream Task Fine-tuning</td>
      <td><a href="https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/omni_captioner.ipynb">Omni Captioner</a></td>
      <td>Introduction and capability demonstration of <strong>Qwen3-Omni-30B-A3B-Captioner</strong>, a downstream fine-tuned model based on Qwen3-Omni-30B-A3B-Instruct, illustrating the strong generalization ability of the Qwen3-Omni foundation model.</td>
      <td><a href="https://colab.research.google.com/github/QwenLM/Qwen3-Omni/blob/main/cookbooks/omni_captioner.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></td>
    </tr>
  </tbody>
</table>

## QuickStart

### Model Description and Download

Below is the description of all Qwen3-Omni models. Please select and download the model that fits your needs.

| Model Name                   | Description |
|------------------------------|-------------|
| Qwen3-Omni-30B-A3B-Instruct  | The Instruct model of Qwen3-Omni-30B-A3B, containing both thinker and talker, supporting audio, video, and text input, with audio and text output. For more information, please read the [Qwen3-Omni Technical Report](https://github.com/QwenLM/Qwen3-Omni/blob/main/assets/Qwen3_Omni.pdf). |
| Qwen3-Omni-30B-A3B-Thinking  | The Thinking model of Qwen3-Omni-30B-A3B, containing the thinker component, equipped with chain-of-thought reasoning, supporting audio, video, and text input, with text output. For more information, please read the [Qwen3-Omni Technical Report](https://github.com/QwenLM/Qwen3-Omni/blob/main/assets/Qwen3_Omni.pdf).|
| Qwen3-Omni-30B-A3B-Captioner | A downstream audio fine-grained caption model fine-tuned from Qwen3-Omni-30B-A3B-Instruct, which produces detailed, low-hallucination captions for arbitrary audio inputs. It contains the thinker, supporting audio input and text output. For more information, you can refer to the model's [cookbook](https://github.com/QwenLM/Qwen3-Omni/blob/main/cookbooks/omni_captioner.ipynb). |

During loading in Hugging Face Transformers or vLLM, model weights will be automatically downloaded based on the model name. However, if your runtime environment is not conducive to downloading weights during execution, you can refer to the following commands to manually download the model weights to a local directory:

```bash
# Download through ModelScope (recommended for users in Mainland China)
pip install -U modelscope
modelscope download --model Qwen/Qwen3-Omni-30B-A3B-Instruct --local_dir ./Qwen3-Omni-30B-A3B-Instruct
modelscope download --model Qwen/Qwen3-Omni-30B-A3B-Thinking --local_dir ./Qwen3-Omni-30B-A3B-Thinking
modelscope download --model Qwen/Qwen3-Omni-30B-A3B-Captioner --local_dir ./Qwen3-Omni-30B-A3B-Captioner

# Download through Hugging Face
pip install -U "huggingface_hub[cli]"
huggingface-cli download Qwen/Qwen3-Omni-30B-A3B-Instruct --local-dir ./Qwen3-Omni-30B-A3B-Instruct
huggingface-cli download Qwen/Qwen3-Omni-30B-A3B-Thinking --local-dir ./Qwen3-Omni-30B-A3B-Thinking
huggingface-cli download Qwen/Qwen3-Omni-30B-A3B-Captioner --local-dir ./Qwen3-Omni-30B-A3B-Captioner
```

### Transformers Usage

#### Installation

The Hugging Face Transformers code for Qwen3-Omni has been successfully merged, but the PyPI package has not yet been released. Therefore, you need to install it from source using the following command. We strongly recommend that you **create a new Python environment** to avoid environment runtime issues.

```bash
# If you already have transformers installed, please uninstall it first, or create a new Python environment
# pip uninstall transformers
pip install git+https://github.com/huggingface/transformers
pip install accelerate
```

We offer a toolkit to help you handle various types of audio and visual input more conveniently, providing an API-like experience. This includes support for base64, URLs, and interleaved audio, images, and videos. You can install it using the following command and make sure your system has `ffmpeg` installed:

```bash
pip install qwen-omni-utils -U
```

Additionally, we recommend using FlashAttention 2 when running with Hugging Face Transformers to reduce GPU memory usage. However, if you are primarily using [vLLM](#vllm-usage) for inference, this installation is not necessary, as vLLM includes FlashAttention 2 by default.

```bash
pip install -U flash-attn --no-build-isolation
```

Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [FlashAttention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention 2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.

#### Code Snippet

Here is a code snippet to show you how to use Qwen3-Omni with `transformers` and `qwen_omni_utils`:

```python
import soundfile as sf

from transformers import Qwen3OmniMoeForConditionalGeneration, Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info

MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
# MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Thinking"

model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
    MODEL_PATH,
    dtype="auto",
    device_map="auto",
    attn_implementation="flash_attention_2",
)

processor = Qwen3OmniMoeProcessor.from_pretrained(MODEL_PATH)

conversation = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
            {"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"},
            {"type": "text", "text": "What can you see and hear? Answer in one short sentence."}
        ],
    },
]

# Set whether to use audio in video
USE_AUDIO_IN_VIDEO = True

# Preparation for inference
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversation, use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = processor(text=text, 
                   audio=audios, 
                   images=images, 
                   videos=videos, 
                   return_tensors="pt", 
                   padding=True, 
                   use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = inputs.to(model.device).to(model.dtype)

# Inference: Generation of the output text and audio
text_ids, audio = model.generate(**inputs, 
                                 speaker="Ethan", 
                                 thinker_return_dict_in_generate=True,
                                 use_audio_in_video=USE_AUDIO_IN_VIDEO)

text = processor.batch_decode(text_ids.sequences[:, inputs["input_ids"].shape[1] :],
                              skip_special_tokens=True,
                              clean_up_tokenization_spaces=False)
print(text)
if audio is not None:
    sf.write(
        "output.wav",
        audio.reshape(-1).detach().cpu().numpy(),
        samplerate=24000,
    )
```

Here are some more advanced usage examples. You can expand the sections below to learn more.

<details>
<summary>Batch inference</summary>

The model can batch inputs composed of mixed samples of various types such as text, images, audio, and videos as input when `return_audio=False` is set. Here is an example.

```python
from transformers import Qwen3OmniMoeForConditionalGeneration, Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info

MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
# MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Thinking"

model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
    MODEL_PATH,
    dtype="auto",
    device_map="auto",
    attn_implementation="flash_attention_2",
)
model.disable_talker()

processor = Qwen3OmniMoeProcessor.from_pretrained(MODEL_PATH)

# Conversation with image only
conversation1 = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
            {"type": "text", "text": "What can you see in this image? Answer in one sentence."},
        ]
    }
]

# Conversation with audio only
conversation2 = [
    {
        "role": "user",
        "content": [
            {"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"},
            {"type": "text", "text": "What can you hear in this audio?"},
        ]
    }
]

# Conversation with pure text and system prompt
conversation3 = [
    {
        "role": "system",
        "content": [
            {"type": "text", "text": "You are Qwen-Omni."}
        ],
    },
    {
        "role": "user",
        "content": "Who are you?"
    }
]

# Conversation with mixed media
conversation4 = [
    {
        "role": "user",
        "content": [
            {"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
            {"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"},
            {"type": "text", "text": "What can you see and hear? Answer in one sentence."}
        ],
    }
]

# Combine messages for batch processing
conversations = [conversation1, conversation2, conversation3, conversation4]

# Set whether to use audio in video
USE_AUDIO_IN_VIDEO = True

# Preparation for batch inference
text = processor.apply_chat_template(conversations, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversations, use_audio_in_video=USE_AUDIO_IN_VIDEO)

inputs = processor(text=text, 
                   audio=audios, 
                   images=images, 
                   videos=videos, 
                   return_tensors="pt", 
                   padding=True, 
                   use_audio_in_video=USE_AUDIO_IN_VIDEO)
inputs = inputs.to(model.device).to(model.dtype)

# Batch inference does not support returning audio
text_ids, audio = model.generate(**inputs,
                                 return_audio=False,
                                 thinker_return_dict_in_generate=True,
                                 use_audio_in_video=USE_AUDIO_IN_VIDEO)

text = processor.batch_decode(text_ids.sequences[:, inputs["input_ids"].shape[1] :],
                              skip_special_tokens=True,
                              clean_up_tokenization_spaces=False)
print(text)
```

</details>

<details>
<summary>Use audio output or not</summary>

The model supports both text and audio outputs. If users do not need audio outputs, they can call `model.disable_talker()` after initializing the model. This option will save about `10GB` of GPU memory, but the `return_audio` option for the `generate` function will only allow `False`.
```python
model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
    "Qwen/Qwen3-Omni-30B-A3B-Instruct",
    dtype="auto",
    device_map="auto",
    attn_implementation="flash_attention_2",
)
model.disable_talker()
```

For a more flexible experience, we recommend that users decide whether to return audio when the `generate` function is called. If `return_audio` is set to `False`, the model will only return text outputs, resulting in faster text responses.

```python
model = Qwen3OmniMoeForConditionalGeneration.from_pretrained(
    "Qwen/Qwen3-Omni-30B-A3B-Instruct",
    dtype="auto",
    device_map="auto",
    attn_implementation="flash_attention_2",
)
...
text_ids, _ = model.generate(..., return_audio=False)```

</details>

<details>
<summary>Change voice type of output audio</summary>

Qwen3-Omni supports changing the voice of the output audio. The `"Qwen/Qwen3-Omni-30B-A3B-Instruct"` checkpoint supports three voice types as follows:

| Voice Type | Gender | Description |
|------------|--------|-------------|
| Ethan      | Male   | A bright, upbeat voice with infectious energy and a warm, approachable vibe. |
| Chelsie    | Female | A honeyed, velvety voice that carries a gentle warmth and luminous clarity. |
| Aiden      | Male   | A warm, laid-back American voice with a gentle, boyish charm. |

Users can use the `speaker` parameter of the `generate` function to specify the voice type. By default, if `speaker` is not specified, the voice type is `Ethan`.

```python
text_ids, audio = model.generate(..., speaker="Ethan")
```

```python
text_ids, audio = model.generate(..., speaker="Chelsie")
```

```python
text_ids, audio = model.generate(..., speaker="Aiden")
```

</details>

### vLLM Usage

#### Installation

We strongly recommend using vLLM for inference and deployment of the Qwen3-Omni series models. Since our code is currently in the pull request stage, and **audio output inference support for the Instruct model will be released in the near future**, you can follow the commands below to install vLLM from source. Please note that we recommend you **create a new Python environment** to avoid runtime environment conflicts and incompatibilities. For more details on compiling vLLM from source, please refer to the [vLLM official documentation](https://docs.vllm.ai/en/latest/getting_started/installation/gpu.html#set-up-using-python-only-build-without-compilation).

```bash
git clone -b qwen3_omni https://github.com/wangxiongts/vllm.git
cd vllm
pip install -r requirements/build.txt
pip install -r requirements/cuda.txt
export VLLM_PRECOMPILED_WHEEL_LOCATION=https://wheels.vllm.ai/a5dd03c1ebc5e4f56f3c9d3dc0436e9c582c978f/vllm-0.9.2-cp38-abi3-manylinux1_x86_64.whl
VLLM_USE_PRECOMPILED=1 pip install -e . -v --no-build-isolation
# If you meet an "Undefined symbol" error while using VLLM_USE_PRECOMPILED=1, please use "pip install -e . -v" to build from source.
# Install the Transformers
pip install git+https://github.com/huggingface/transformers
pip install accelerate
pip install qwen-omni-utils -U
pip install -U flash-attn --no-build-isolation
```

#### Inference

You can use the following code for vLLM inference. The `limit_mm_per_prompt` parameter specifies the maximum number of each modality's data allowed per message. Since vLLM needs to pre-allocate GPU memory, larger values will require more GPU memory; if OOM issues occur, try reducing this value. Setting `tensor_parallel_size` greater than one enables multi-GPU parallel inference, improving concurrency and throughput. In addition, `max_num_seqs` indicates the number of sequences that vLLM processes in parallel during each inference step. A larger value requires more GPU memory but enables higher batch inference speed. For more details, please refer to the [vLLM official documentation](https://docs.vllm.ai/en/latest/api/vllm/index.html#vllm.LLM). Below is a simple example of how to run Qwen3-Omni with vLLM:

```python
import os
import torch

from vllm import LLM, SamplingParams
from transformers import Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info

if __name__ == '__main__':
    # vLLM engine v1 not supported yet
    os.environ['VLLM_USE_V1'] = '0'

    MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
    # MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Thinking"

    llm = LLM(
            model=MODEL_PATH, trust_remote_code=True, gpu_memory_utilization=0.95,
            tensor_parallel_size=torch.cuda.device_count(),
            limit_mm_per_prompt={'image': 3, 'video': 3, 'audio': 3},
            max_num_seqs=8,
            max_model_len=32768,
            seed=1234,
    )

    sampling_params = SamplingParams(
        temperature=0.6,
        top_p=0.95,
        top_k=20,
        max_tokens=16384,
    )

    processor = Qwen3OmniMoeProcessor.from_pretrained(MODEL_PATH)

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/draw.mp4"}
            ], 
        }
    ]

    text = processor.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )
    audios, images, videos = process_mm_info(messages, use_audio_in_video=True)

    inputs = {
        'prompt': text,
        'multi_modal_data': {},
        "mm_processor_kwargs": {
            "use_audio_in_video": True,
        },
    }

    if images is not None:
        inputs['multi_modal_data']['image'] = images
    if videos is not None:
        inputs['multi_modal_data']['video'] = videos
    if audios is not None:
        inputs['multi_modal_data']['audio'] = audios

    outputs = llm.generate([inputs], sampling_params=sampling_params)

    print(outputs[0].outputs[0].text)
```

Here are some more advanced usage examples. You can expand the sections below to learn more.

<details>
<summary>Batch inference</summary>

Using vLLM enables fast batch inference, which can help you efficiently process large volumes of data or conduct benchmarking. Refer to the following code example:

```python
import os
import torch

from vllm import LLM, SamplingParams
from transformers import Qwen3OmniMoeProcessor
from qwen_omni_utils import process_mm_info

def build_input(processor, messages, use_audio_in_video):
    text = processor.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True,
    )
    audios, images, videos = process_mm_info(messages, use_audio_in_video=use_audio_in_video)

    inputs = {
        'prompt': text,
        'multi_modal_data': {},
        "mm_processor_kwargs": {
            "use_audio_in_video": use_audio_in_video,
        },
    }

    if images is not None:
        inputs['multi_modal_data']['image'] = images
    if videos is not None:
        inputs['multi_modal_data']['video'] = videos
    if audios is not None:
        inputs['multi_modal_data']['audio'] = audios
    
    return inputs

if __name__ == '__main__':
    # vLLM engine v1 not supported yet
    os.environ['VLLM_USE_V1'] = '0'

    MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Instruct"
    # MODEL_PATH = "Qwen/Qwen3-Omni-30B-A3B-Thinking"

    llm = LLM(
            model=MODEL_PATH, trust_remote_code=True, gpu_memory_utilization=0.95,
            tensor_parallel_size=torch.cuda.device_count(),
            limit_mm_per_prompt={'image': 3, 'video': 3, 'audio': 3},
            max_num_seqs=8,
            max_model_len=32768,
            seed=1234,
    )

    sampling_params = SamplingParams(
        temperature=0.6,
        top_p=0.95,
        top_k=20,
        max_tokens=16384,
    )

    processor = Qwen3OmniMoeProcessor.from_pretrained(MODEL_PATH)

    # Conversation with image only
    conversation1 = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
                {"type": "text", "text": "What can you see in this image? Answer in one sentence."},
            ]
        }
    ]

    # Conversation with audio only
    conversation2 = [
        {
            "role": "user",
            "content": [
                {"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"},
                {"type": "text", "text": "What can you hear in this audio?"},
            ]
        }
    ]

    # Conversation with pure text and system prompt
    conversation3 = [
        {
            "role": "system",
            "content": [
                {"type": "text", "text": "You are Qwen-Omni."}
            ],
        },
        {
            "role": "user",
            "content": "Who are you? Answer in one sentence."
        }
    ]

    # Conversation with mixed media
    conversation4 = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"},
                {"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/cookbook/asr_fr.wav"},
                {"type": "text", "text": "What can you see and hear? Answer in one sentence."}
            ],
        }
    ]
    
    USE_AUDIO_IN_VIDEO = True

    # Combine messages for batch processing
    conversations = [conversation1, conversation2, conversation3, conversation4]
    inputs = [build_input(processor, messages, USE_AUDIO_IN_VIDEO) for messages in conversations]

    outputs = llm.generate(inputs, sampling_params=sampling_params)

    result = [outputs[i].outputs[0].text for i in range(len(outputs))]
    print(result)
```

</details>

<details>
<summary>vLLM Serve Usage</summary>

vLLM serve for Qwen3-Omni currently only supports the thinker model. The `use_audio_in_video` parameter is not available in vLLM serve; you can handle this by separately passing video and audio inputs for processing. You can start vLLM serve through the following command:

```bash
# Qwen3-Omni-30B-A3B-Instruct for single GPU
vllm serve Qwen/Qwen3-Omni-30B-A3B-Instruct --port 8901 --host 127.0.0.1 --dtype bfloat16 --max-model-len 32768 --allowed-local-media-path / -tp 1
# Qwen3-Omni-30B-A3B-Instruct for multi-GPU (example on 4 GPUs)
vllm serve Qwen/Qwen3-Omni-30B-A3B-Instruct --port 8901 --host 127.0.0.1 --dtype bfloat16 --max-model-len 65536 --allowed-local-media-path / -tp 4
# Qwen/Qwen3-Omni-30B-A3B-Thinking for single GPU
vllm serve Qwen/Qwen3-Omni-30B-A3B-Thinking --port 8901 --host 127.0.0.1 --dtype bfloat16 --max-model-len 32768 --allowed-local-media-path / -tp 1
# Qwen/Qwen3-Omni-30B-A3B-Thinking for multi-GPU (example on 4 GPUs)
vllm serve Qwen/Qwen3-Omni-30B-A3B-Thinking --port 8901 --host 127.0.0.1 --dtype bfloat16 --max-model-len 65536 --allowed-local-media-path / -tp 4
```

Then you can use the chat API as below (via curl, for example):
```bash
curl http://localhost:8901/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
    "messages": [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": [
        {"type": "image_url", "image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cars.jpg"}},
        {"type": "audio_url", "audio_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Omni/demo/cough.wav"}},
        {"type": "text", "text": "What can you see and hear? Answer in one sentence."}
    ]}
    ]
    }'
```

</details>

### Usage Tips (Recommended Reading)

#### Minimum GPU memory requirements

| Model                        | Precision | 15s Video | 30s Video | 60s Video | 120s Video   |
|------------------------------|-----------| --------- | --------- | --------- | --------- |
| Qwen3-Omni-30B-A3B-Instruct  | BF16      | 78.85 GB  | 88.52 GB  | 107.74 GB | 144.81 GB |
| Qwen3-Omni-30B-A3B-Thinking  | BF16      | 68.74 GB  | 77.79 GB  | 95.76 GB  | 131.65 GB  |

**Note**: The table above presents the theoretical minimum memory requirements for inference with `transformers` and `BF16` precision, tested with `attn_implementation="flash_attention_2"`. The Instruct model includes both the **thinker** and **talker** components, whereas the Thinking model includes only the **thinker** part.

#### Prompt for Audio-Visual Interaction

When using Qwen3-Omni for audio-visual multimodal interaction, where the input consists of a video and its corresponding audio (with the audio serving as a query), we recommend using the **following system prompt**. This setup helps the model maintain high reasoning capability while better assuming interactive roles such as a smart assistant. Additionally, the text generated by the thinker will be more readable, with a natural, conversational tone and without complex formatting that is difficult to vocalize, leading to more stable and fluent audio output from the talker. You can customize the `user_system_prompt` field in the system prompt to include character settings or other role-specific descriptions as needed.

```
user_system_prompt = "You are Qwen-Omni, a smart voice assistant created by Alibaba Qwen."
message = {
    "role": "system",
    "content": [
          {"type": "text", "text": f"{user_system_prompt} You are a virtual voice assistant with no gender or age.\nYou are communicating with the user.\nIn user messages, “I/me/my/we/our” refer to the user and “you/your” refer to the assistant. In your replies, address the user as “you/your” and yourself as “I/me/my”; never mirror the user’s pronouns—always shift perspective. Keep original pronouns only in direct quotes; if a reference is unclear, ask a brief clarifying question.\nInteract with users using short(no more than 50 words), brief, straightforward language, maintaining a natural tone.\nNever use formal phrasing, mechanical expressions, bullet points, overly structured language. \nYour output must consist only of the spoken content you want the user to hear. \nDo not include any descriptions of actions, emotions, sounds, or voice changes. \nDo not use asterisks, brackets, parentheses, or any other symbols to indicate tone or actions. \nYou must answer users' audio or text questions, do not directly describe the video content. \nYou should communicate in the same language strictly as the user unless they request otherwise.\nWhen you are uncertain (e.g., you can't see/hear clearly, don't understand, or the user makes a comment rather than asking a question), use appropriate questions to guide the user to continue the conversation.\nKeep replies concise and conversational, as if talking face-to-face."}
    ]
}
```

#### Best Practices for the Thinking Model

The `Qwen3-Omni-30B-A3B-Thinking` model is primarily designed for understanding and interacting with multimodal inputs, including text, audio, image, and video. To achieve optimal performance, we recommend that users include an explicit textual instruction or task description in each round of dialogue alongside the multimodal input. This helps clarify the intent and significantly enhances the model's ability to leverage its reasoning capabilities. For example:

```python
messages = [
    {
        "role": "user",
        "content": [
            {"type": "audio", "audio": "/path/to/audio.wav"},
            {"type": "image", "image": "/path/to/image.png"},
            {"type": "video", "video": "/path/to/video.mp4"},
            {"type": "text", "text": "Analyze this audio, image, and video together."},
        ], 
    }
]
```

#### Use audio in video

In multimodal interaction, user-provided videos are often accompanied by audio (such as spoken questions or sounds from events in the video). This information helps the model provide a better interactive experience. We provide the following options for users to decide whether to use the audio from a video.

```python
# In data preprocessing
audios, images, videos = process_mm_info(messages, use_audio_in_video=True)
```

```python
# For Transformers
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", 
                   padding=True, use_audio_in_video=True)
text_ids, audio = model.generate(..., use_audio_in_video=True)

# For vLLM
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = {
    'prompt': text,
    'multi_modal_data': {},
    "mm_processor_kwargs": {
        "use_audio_in_video": True,
    },
}
```

It is worth noting that during a multi-round conversation, the `use_audio_in_video` parameter must be set consistently across these steps; otherwise, unexpected results may occur.

## Evaluation

### Performance of Qwen3-Omni

Qwen3-Omni maintains state-of-the-art performance on text and visual modalities without degradation relative to same-size single-model Qwen counterparts. Across 36 audio and audio-visual benchmarks, it achieves open-source SOTA on 32 and sets the SOTA on 22, outperforming strong closed-source systems such as Gemini 2.5 Pro and GPT-4o.

<details>
<summary>Text -> Text</summary>

<table>
  <thead>
    <tr>
      <th colspan="2" style="text-align: left;"></th>
      <th style="text-align: center;">GPT-4o-0327</th>
      <th style="text-align: center;">Qwen3-235B-A22B<br>Non Thinking</th>
      <th style="text-align: center;">Qwen3-30B-A3B-Instruct-2507</th>
      <th style="text-align: center;">Qwen3-Omni-30B-A3B-Instruct</th>
      <th style="text-align: center;">Qwen3-Omni-Flash-Instruct</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="2" style="text-align: left; vertical-align: middle;">General<br>Tasks</td>
      <td style="text-align: left;">MMLU-Redux</td>
      <td style="text-align: center;"><strong>91.3</strong></td>
      <td style="text-align: center;">89.2</td>
      <td style="text-align: center;">89.3</td>
      <td style="text-align: center;">86.6</td>
      <td style="text-align: center;">86.8</td>
    </tr>
    <tr>
      <td style="text-align: left;">GPQA</td>
      <td style="text-align: center;">66.9</td>
      <td style="text-align: center;">62.9</td>
      <td style="text-align: center;"><strong>70.4</strong></td>
      <td style="text-align: center;">69.6</td>
      <td style="text-align: center;">69.7</td>
    </tr>
    <tr>
      <td rowspan="2" style="text-align: left; vertical-align: middle;">Reasoning</td>
      <td style="text-align: left;">AIME25</td>
      <td style="text-align: center;">26.7</td>
      <td style="text-align: center;">24.7</td>
      <td style="text-align: center;">61.3</td>
      <td style="text-align: center;">65.0</td>
      <td style="text-align: center;"><strong>65.9</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">ZebraLogic</td>
      <td style="text-align: center;">52.6</td>
      <td style="text-align: center;">37.7</td>
      <td style="text-align: center;"><strong>90.0</strong></td>
      <td style="text-align: center;">76.0</td>
      <td style="text-align: center;">76.1</td>
    </tr>
    <tr>
      <td style="text-align: left; vertical-align: middle;">Code</td>
      <td style="text-align: left;">MultiPL-E</td>
      <td style="text-align: center;">82.7</td>
      <td style="text-align: center;">79.3</td>
      <td style="text-align: center;"><strong>83.8</strong></td>
      <td style="text-align: center;">81.4</td>
      <td style="text-align: center;">81.5</td>
    </tr>
  </tbody>
  <tbody>
    <tr style="border-top: 1px solid #ddd;">
      <td rowspan="3" style="text-align: left; vertical-align: middle;">Alignment<br>Tasks</td>
      <td style="text-align: left;">IFEval</td>
      <td style="text-align: center;">83.9</td>
      <td style="text-align: center;">83.2</td>
      <td style="text-align: center;"><strong>84.7</strong></td>
      <td style="text-align: center;">81.0</td>
      <td style="text-align: center;">81.7</td>
    </tr>
    <tr>
      <td style="text-align: left;">Creative Writing v3</td>
      <td style="text-align: center;">84.9</td>
      <td style="text-align: center;">80.4</td>
      <td style="text-align: center;"><strong>86.0</strong></td>
      <td style="text-align: center;">80.6</td>
      <td style="text-align: center;">81.8</td>
    </tr>
    <tr>
      <td style="text-align: left;">WritingBench</td>
      <td style="text-align: center;">75.5</td>
      <td style="text-align: center;">77.0</td>
      <td style="text-align: center;"><strong>85.5</strong></td>
      <td style="text-align: center;">82.6</td>
      <td style="text-align: center;">83.0</td>
    </tr>
    <tr>
      <td style="text-align: left; vertical-align: middle;">Agent</td>
      <td style="text-align: left;">BFCL-v3</td>
      <td style="text-align: center;">66.5</td>
      <td style="text-align: center;"><strong>68.0</strong></td>
      <td style="text-align: center;">65.1</td>
      <td style="text-align: center;">64.4</td>
      <td style="text-align: center;">65.0</td>
    </tr>
    <tr>
      <td rowspan="2" style="text-align: left; vertical-align: middle;">Multilingual<br>Tasks</td>
      <td style="text-align: left;">MultiIF</td>
      <td style="text-align: center;"><strong>70.4</strong></td>
      <td style="text-align: center;">70.2</td>
      <td style="text-align: center;">67.9</td>
      <td style="text-align: center;">64.0</td>
      <td style="text-align: center;">64.7</td>
    </tr>
    <tr>
      <td style="text-align: left;">PolyMATH</td>
      <td style="text-align: center;">25.5</td>
      <td style="text-align: center;">27.0</td>
      <td style="text-align: center;"><strong>43.1</strong></td>
      <td style="text-align: center;">37.9</td>
      <td style="text-align: center;">39.3</td>
    </tr>
  </tbody>
</table>

<table>
  <thead>
    <tr style="border-bottom: 1px solid black;">
      <th></th>
      <th></th>
      <th>Gemini-2.5-Flash<br>Thinking</th>
      <th>Qwen3-235B-A22B<br>Thinking</th>
      <th>Qwen3-30B-A3B-Thinking-2507</th>
      <th>Qwen3-Omni-30B-A3B-Thinking</th>
      <th>Qwen3-Omni-Flash-Thinking</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="2"><em>General<br>Tasks</em></td>
      <td>MMLU-Redux</td>
      <td>92.1</td>
      <td><b>92.7</b></td>
      <td>91.4</td>
      <td>88.8</td>
      <td>89.7</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td>GPQA</td>
      <td><b>82.8</b></td>
      <td>71.1</td>
      <td>73.4</td>
      <td>73.1</td>
      <td>73.1</td>
    </tr>
    <tr style="border-top: 1px solid black;">
      <td rowspan="2"><em>Reasoning</em></td>
      <td>AIME25</td>
      <td>72.0</td>
      <td>81.5</td>
      <td><b>85.0</b></td>
      <td>73.7</td>
      <td>74.0</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td>LiveBench 20241125</td>
      <td>74.3</td>
      <td><b>77.1</b></td>
      <td>76.8</td>
      <td>71.8</td>
      <td>70.3</td>
    </tr>
    <tr style="border-top: 1px solid black;">
      <td><em>Code</em></td>
      <td>MultiPL-E</td>
      <td><b>84.5</b></td>
      <td>79.9</td>
      <td>81.3</td>
      <td>80.6</td>
      <td>81.0</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td rowspan="4"><em>Alignment<br>Tasks</em></td>
      <td>IFEval</td>
      <td><b>89.8</b></td>
      <td>83.4</td>
      <td>88.9</td>
      <td>85.1</td>
      <td>85.2</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td>Arena-Hard v2</td>
      <td>56.7</td>
      <td><b>61.5</b></td>
      <td>56.0</td>
      <td>55.1</td>
      <td>57.8</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td>Creative Writing v3</td>
      <td><b>85.0</b></td>
      <td>84.6</td>
      <td>84.4</td>
      <td>82.5</td>
      <td>83.6</td>
    </tr>
    <tr style="border-top: 1px solid #ddd;">
      <td>WritingBench</td>
      <td>83.9</td>
      <td>80.3</td>
      <td>85.0</td>
      <td>85.5</td>
      <td><b>85.9</b></td>
    </tr>
    <tr style="border-top: 1px solid black;">
      <td><em>Agent</em></td>
      <td>BFCL-v3</td>
      <td>68.6</td>
      <td>70.8</td>
      <td><b>72.4</b></td>
      <td>63.2</td>
      <td>64.5</td>
    </tr>
    <tr style="border-top: 1px solid black;">
      <td rowspan="2"><em>Multilingual<br>Tasks</em></td>
      <td>MultiIF</td>
      <td>74.4</td>
      <td>71.9</td>
      <td><b>76.4</b></td>
      <td>72.9</td>
      <td>73.2</td>
    </tr>
    <tr>
      <td>PolyMATH</td>
      <td>49.8</td>
      <td><b>54.7</b></td>
      <td>52.6</td>
      <td>47.1</td>
      <td>48.7</td>
    </tr>
  </tbody>
</table>

</details>

<details>
<summary>Audio -> Text</summary>

<table style="width:100%; border-collapse: collapse;">
<thead>
  <tr>
    <th align="left" style="padding: 8px;"></th>
    <th align="center" style="padding: 8px;">Seed-ASR</th>
    <th align="center" style="padding: 8px;">Voxtral-Mini</th>
    <th align="center" style="padding: 8px;">Voxtral-Small</th>
    <th align="center" style="padding: 8px;">GPT-4o-Transcribe</th>
    <th align="center" style="padding: 8px;">Gemini-2.5-Pro</th>
    <th align="center" style="padding: 8px;">Qwen2.5-Omni</th>
    <th align="center" style="padding: 8px;">Qwen3-Omni-30B-A3B-Instruct</th>
    <th align="center" style="padding: 8px;">Qwen3-Omni-Flash-Instruct</th>
  </tr>
</thead>
<tbody>
  <tr style="border-top: 1px solid #333;">
    <td colspan="9" align="center"; style="border-top: 1px solid black; border-bottom: 1px solid black;"><em>EN & ZH ASR (wer)</em></td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Wenetspeech<br><em>net</em> | <em>meeting</em></td>
    <td align="center" style="padding: 8px;">4.66 | <strong>5.69</strong></td>
    <td align="center" style="padding: 8px;">24.30 | 31.53</td>
    <td align="center" style="padding: 8px;">20.33 | 26.08</td>
    <td align="center" style="padding: 8px;">15.30 | 32.27</td>
    <td align="center" style="padding: 8px;">14.43 | 13.47</td>
    <td align="center" style="padding: 8px;">5.91 | 7.65</td>
    <td align="center" style="padding: 8px;">4.69 | 5.89</td>
    <td align="center" style="padding: 8px;"><strong>4.62</strong> | 5.75</td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Librispeech<br><em>clean</em> | <em>other</em></td>
    <td align="center" style="padding: 8px;">1.58 | 2.84</td>
    <td align="center" style="padding: 8px;">1.88 | 4.12</td>
    <td align="center" style="padding: 8px;">1.56 | 3.30</td>
    <td align="center" style="padding: 8px;">1.39 | 3.75</td>
    <td align="center" style="padding: 8px;">2.89 | 3.56</td>
    <td align="center" style="padding: 8px;">1.74 | 3.45</td>
    <td align="center" style="padding: 8px;"><strong>1.22</strong> | 2.48</td>
    <td align="center" style="padding: 8px;">1.27 | <strong>2.44</strong></td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">CV15-en</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;">9.47</td>
    <td align="center" style="padding: 8px;">7.79</td>
    <td align="center" style="padding: 8px;">10.01</td>
    <td align="center" style="padding: 8px;">9.89</td>
    <td align="center" style="padding: 8px;">7.61</td>
    <td align="center" style="padding: 8px;">6.05</td>
    <td align="center" style="padding: 8px;"><strong>5.94</strong></td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">CV15-zh</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;">24.67</td>
    <td align="center" style="padding: 8px;">19.30</td>
    <td align="center" style="padding: 8px;">9.84</td>
    <td align="center" style="padding: 8px;">8.00</td>
    <td align="center" style="padding: 8px;">5.13</td>
    <td align="center" style="padding: 8px;">4.31</td>
    <td align="center" style="padding: 8px;"><strong>4.28</strong></td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Fleurs-en</td>
    <td align="center" style="padding: 8px;">3.40</td>
    <td align="center" style="padding: 8px;">3.96</td>
    <td align="center" style="padding: 8px;">3.77</td>
    <td align="center" style="padding: 8px;">3.32</td>
    <td align="center" style="padding: 8px;">2.94</td>
    <td align="center" style="padding: 8px;">3.77</td>
    <td align="center" style="padding: 8px;"><strong>2.72</strong></td>
    <td align="center" style="padding: 8px;">2.74</td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Fleurs-zh</td>
    <td align="center" style="padding: 8px;">2.69</td>
    <td align="center" style="padding: 8px;">12.22</td>
    <td align="center" style="padding: 8px;">7.98</td>
    <td align="center" style="padding: 8px;">2.44</td>
    <td align="center" style="padding: 8px;">2.71</td>
    <td align="center" style="padding: 8px;">2.54</td>
    <td align="center" style="padding: 8px;">2.20</td>
    <td align="center" style="padding: 8px;"><strong>2.19</strong></td>
  </tr>
  <tr style="border-top: 1px solid #333;">
    <td colspan="9" align="center"; style="border-top: 1px solid black; border-bottom: 1px solid black;"><em>Multilingual ASR (wer)</em></td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Fleurs-avg<br>(19 lang)</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;">15.67</td>
    <td align="center" style="padding: 8px;">8.09</td>
    <td align="center" style="padding: 8px;">4.48</td>
    <td align="center" style="padding: 8px;">5.55</td>
    <td align="center" style="padding: 8px;">14.04</td>
    <td align="center" style="padding: 8px;">5.33</td>
    <td align="center" style="padding: 8px;"><strong>5.31</strong></td>
  </tr>
  <tr style="border-top: 1px solid #333;">
    <td colspan="9" align="center"; style="border-top: 1px solid black; border-bottom: 1px solid black;"><em>Lyric ASR (wer)</em></td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">MIR-1K (vocal-only)</td>
    <td align="center" style="padding: 8px;">6.45</td>
    <td align="center" style="padding: 8px;">23.33</td>
    <td align="center" style="padding: 8px;">18.73</td>
    <td align="center" style="padding: 8px;">11.87</td>
    <td align="center" style="padding: 8px;">9.85</td>
    <td align="center" style="padding: 8px;">8.15</td>
    <td align="center" style="padding: 8px;">5.90</td>
    <td align="center" style="padding: 8px;"><strong>5.85</strong></td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Opencpop-test</td>
    <td align="center" style="padding: 8px;">2.98</td>
    <td align="center" style="padding: 8px;">31.01</td>
    <td align="center" style="padding: 8px;">16.06</td>
    <td align="center" style="padding: 8px;">7.93</td>
    <td align="center" style="padding: 8px;">6.49</td>
    <td align="center" style="padding: 8px;">2.84</td>
    <td align="center" style="padding: 8px;"><strong>1.54</strong></td>
    <td align="center" style="padding: 8px;">2.02</td>
  </tr>
  <tr style="border-top: 1px solid #333;">
    <td colspan="9" align="center"; style="border-top: 1px solid black; border-bottom: 1px solid black;"><em>S2TT (BLEU)</em></td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Fleurs-en2xx</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;">30.35</td>
    <td align="center" style="padding: 8px;">37.85</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;"><strong>39.25</strong></td>
    <td align="center" style="padding: 8px;">29.22</td>
    <td align="center" style="padding: 8px;">37.50</td>
    <td align="center" style="padding: 8px;">36.22</td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Fleurs-xx2en</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;">27.54</td>
    <td align="center" style="padding: 8px;">32.81</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;"><strong>35.41</strong></td>
    <td align="center" style="padding: 8px;">28.61</td>
    <td align="center" style="padding: 8px;">31.08</td>
    <td align="center" style="padding: 8px;">30.71</td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Fleurs-zh2xx</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;">17.03</td>
    <td align="center" style="padding: 8px;">22.05</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;"><strong>26.63</strong></td>
    <td align="center" style="padding: 8px;">17.97</td>
    <td align="center" style="padding: 8px;">25.17</td>
    <td align="center" style="padding: 8px;">25.10</td>
  </tr>
  <tr>
    <td align="left" style="padding: 8px;">Fleurs-xx2zh</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;">28.75</td>
    <td align="center" style="padding: 8px;">34.82</td>
    <td align="center" style="padding: 8px;">-</td>
    <td align="center" style="padding: 8px;"><strong>37.50</strong></td>
    <td align="center" style="padding: 8px;">27.68</td>
    <td align="center" style="padding: 8px;">33.13</td>
    <td align="center" style="padding: 8px;">31.19</td>
  </tr>
</tbody>
</table>

<table style="width:100%; border-collapse: collapse;">
  <thead>
    <tr style="border-bottom: 1px solid #ddd;">
      <th style="text-align:left; padding: 8px;"></th>
      <th style="text-align:center; padding: 8px;">GPT-4o-Audio</th>
      <th style="text-align:center; padding: 8px;">Gemini-2.5-Flash</th>
      <th style="text-align:center; padding: 8px;">Gemini-2.5-Pro</th>
      <th style="text-align:center; padding: 8px;">Qwen2.5-Omni</th>
      <th style="text-align:center; padding: 8px;">Qwen3-Omni-30B-A3B-Instruct</th>
      <th style="text-align:center; padding: 8px;">Qwen3-Omni-30B-A3B-Thinking</th>
      <th style="text-align:center; padding: 8px;">Qwen3-Omni-Flash-Instruct</th>
      <th style="text-align:center; padding: 8px;">Qwen3-Omni-Flash-Thinking</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td colspan="9" align="center" style="padding: 8px; font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;"><strong>VoiceBench</strong></td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">AlpacaEval</td>
      <td style="text-align:center; padding: 8px;">95.6</td>
      <td style="text-align:center; padding: 8px;">96.1</td>
      <td style="text-align:center; padding: 8px;">94.3</td>
      <td style="text-align:center; padding: 8px;">89.9</td>
      <td style="text-align:center; padding: 8px;">94.8</td>
      <td style="text-align:center; padding: 8px;">96.4</td>
      <td style="text-align:center; padding: 8px;">95.4</td>
      <td style="text-align:center; padding: 8px;"><strong>96.8</strong></td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">CommonEval</td>
      <td style="text-align:center; padding: 8px;">89.8</td>
      <td style="text-align:center; padding: 8px;">88.3</td>
      <td style="text-align:center; padding: 8px;">88.4</td>
      <td style="text-align:center; padding: 8px;">76.7</td>
      <td style="text-align:center; padding: 8px;">90.8</td>
      <td style="text-align:center; padding: 8px;">90.5</td>
      <td style="text-align:center; padding: 8px;"><strong>91.0</strong></td>
      <td style="text-align:center; padding: 8px;">90.9</td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">WildVoice</td>
      <td style="text-align:center; padding: 8px;">91.6</td>
      <td style="text-align:center; padding: 8px;">92.1</td>
      <td style="text-align:center; padding: 8px;">93.4</td>
      <td style="text-align:center; padding: 8px;">77.7</td>
      <td style="text-align:center; padding: 8px;">91.6</td>
      <td style="text-align:center; padding: 8px;">90.5</td>
      <td style="text-align:center; padding: 8px;"><strong>92.3</strong></td>
      <td style="text-align:center; padding: 8px;">90.9</td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">SD-QA</td>
      <td style="text-align:center; padding: 8px;">75.5</td>
      <td style="text-align:center; padding: 8px;">84.5</td>
      <td style="text-align:center; padding: 8px;"><strong>90.1</strong></td>
      <td style="text-align:center; padding: 8px;">56.4</td>
      <td style="text-align:center; padding: 8px;">76.9</td>
      <td style="text-align:center; padding: 8px;">78.1</td>
      <td style="text-align:center; padding: 8px;">76.8</td>
      <td style="text-align:center; padding: 8px;">78.5</td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">MMSU</td>
      <td style="text-align:center; padding: 8px;">80.3</td>
      <td style="text-align:center; padding: 8px;">66.1</td>
      <td style="text-align:center; padding: 8px;">71.1</td>
      <td style="text-align:center; padding: 8px;">61.7</td>
      <td style="text-align:center; padding: 8px;">68.1</td>
      <td style="text-align:center; padding: 8px;">83.0</td>
      <td style="text-align:center; padding: 8px;">68.4</td>
      <td style="text-align:center; padding: 8px;"><strong>84.3</strong></td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">OpenBookQA</td>
      <td style="text-align:center; padding: 8px;">89.2</td>
      <td style="text-align:center; padding: 8px;">56.9</td>
      <td style="text-align:center; padding: 8px;">92.3</td>
      <td style="text-align:center; padding: 8px;">80.9</td>
      <td style="text-align:center; padding: 8px;">89.7</td>
      <td style="text-align:center; padding: 8px;">94.3</td>
      <td style="text-align:center; padding: 8px;">91.4</td>
      <td style="text-align:center; padding: 8px;"><strong>95.0</strong></td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">BBH</td>
      <td style="text-align:center; padding: 8px;">84.1</td>
      <td style="text-align:center; padding: 8px;">83.9</td>
      <td style="text-align:center; padding: 8px;"><strong>92.6</strong></td>
      <td style="text-align:center; padding: 8px;">66.7</td>
      <td style="text-align:center; padding: 8px;">80.4</td>
      <td style="text-align:center; padding: 8px;">88.9</td>
      <td style="text-align:center; padding: 8px;">80.6</td>
      <td style="text-align:center; padding: 8px;">89.6</td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">IFEval</td>
      <td style="text-align:center; padding: 8px;">76.0</td>
      <td style="text-align:center; padding: 8px;">83.8</td>
      <td style="text-align:center; padding: 8px;"><strong>85.7</strong></td>
      <td style="text-align:center; padding: 8px;">53.5</td>
      <td style="text-align:center; padding: 8px;">77.8</td>
      <td style="text-align:center; padding: 8px;">80.6</td>
      <td style="text-align:center; padding: 8px;">75.2</td>
      <td style="text-align:center; padding: 8px;">80.8</td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">AdvBench</td>
      <td style="text-align:center; padding: 8px;">98.7</td>
      <td style="text-align:center; padding: 8px;">98.9</td>
      <td style="text-align:center; padding: 8px;">98.1</td>
      <td style="text-align:center; padding: 8px;">99.2</td>
      <td style="text-align:center; padding: 8px;"><strong>99.3</strong></td>
      <td style="text-align:center; padding: 8px;">97.2</td>
      <td style="text-align:center; padding: 8px;"><strong>99.4</strong></td>
      <td style="text-align:center; padding: 8px;">98.9</td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">Overall</td>
      <td style="text-align:center; padding: 8px;">86.8</td>
      <td style="text-align:center; padding: 8px;">83.4</td>
      <td style="text-align:center; padding: 8px;"><strong>89.6</strong></td>
      <td style="text-align:center; padding: 8px;">73.6</td>
      <td style="text-align:center; padding: 8px;">85.5</td>
      <td style="text-align:center; padding: 8px;">88.8</td>
      <td style="text-align:center; padding: 8px;">85.6</td>
      <td style="text-align:center; padding: 8px;">89.5</td>
    </tr>
    <tr>
      <td colspan="9" align="center" style="padding: 8px; font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;"><strong>Audio Reasoning</strong></td>
    </tr>
    <tr>
      <td style="text-align:left; padding: 8px;">MMAU-v05.15.25</td>
      <td style="text-align:center; padding: 8px;">62.5</td>
      <td style="text-align:center; padding: 8px;">71.8</td>
      <td style="text-align:center; padding: 8px;">77.4</td>
      <td style="text-align:center; padding: 8px;">65.5</td>
      <td style="text-align:center; padding: 8px;">77.5</td>
      <td style="text-align:center; padding: 8px;">75.4</td>
      <td style="text-align:center; padding: 8px;"><strong>77.6</strong></td>
      <td style="text-align:center; padding: 8px;">76.5</td>
    </tr>
    <tr">
      <td style="text-align:left; padding: 8px;">MMSU</td>
      <td style="text-align:center; padding: 8px;">56.4</td>
      <td style="text-align:center; padding: 8px;">70.2</td>
      <td style="text-align:center; padding: 8px;"><strong>77.7</strong></td>
      <td style="text-align:center; padding: 8px;">62.6</td>
      <td style="text-align:center; padding: 8px;">69.0</td>
      <td style="text-align:center; padding: 8px;">70.2</td>
      <td style="text-align:center; padding: 8px;">69.1</td>
      <td style="text-align:center; padding: 8px;">71.3</td>
    </tr>
  </tbody>
</table>

<table>
  <thead>
    <tr style="border-bottom: 1px solid black;">
      <th style="text-align: left;"></th>
      <th style="text-align: center;">Best Specialist<br>Models</th>
      <th style="text-align: center;">GPT-4o-Audio</th>
      <th style="text-align: center;">Gemini-2.5-Pro</th>
      <th style="text-align: center;">Qwen2.5-Omni</th>
      <th style="text-align: center;">Qwen3-Omni-30B-A3B-Instruct</th>
      <th style="text-align: center;">Qwen3-Omni-Flash-Instruct</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="text-align: left;">RUL-MuchoMusic</td>
      <td style="text-align: center;">47.6 (Audio Flamingo 3)</td>
      <td style="text-align: center;">36.1</td>
      <td style="text-align: center;">49.4</td>
      <td style="text-align: center;">47.3</td>
      <td style="text-align: center;">52.0</td>
      <td style="text-align: center;"><strong>52.1</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">GTZAN<br><em>Acc.</em></td>
      <td style="text-align: center;">87.9 (CLaMP 3)</td>
      <td style="text-align: center;">76.5</td>
      <td style="text-align: center;">81.0</td>
      <td style="text-align: center;">81.7</td>
      <td style="text-align: center;">93.0</td>
      <td style="text-align: center;"><strong>93.1</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">MTG Genre<br><em>Micro F1</em></td>
      <td style="text-align: center;">35.8 (MuQ-MuLan)</td>
      <td style="text-align: center;">25.3</td>
      <td style="text-align: center;">32.6</td>
      <td style="text-align: center;">32.5</td>
      <td style="text-align: center;">39.0</td>
      <td style="text-align: center;"><strong>39.5</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">MTG Mood/Theme<br><em>Micro F1</em></td>
      <td style="text-align: center;">10.9 (MuQ-MuLan)</td>
      <td style="text-align: center;">11.3</td>
      <td style="text-align: center;">14.1</td>
      <td style="text-align: center;">8.9</td>
      <td style="text-align: center;">21.0</td>
      <td style="text-align: center;"><strong>21.7</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">MTG Instrument<br><em>Micro F1</em></td>
      <td style="text-align: center;">39.8 (MuQ-MuLan)</td>
      <td style="text-align: center;">34.2</td>
      <td style="text-align: center;">33.0</td>
      <td style="text-align: center;">22.6</td>
      <td style="text-align: center;">40.5</td>
      <td style="text-align: center;"><strong>40.7</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">MTG Top50<br><em>Micro F1</em></td>
      <td style="text-align: center;">33.2 (MuQ-MuLan)</td>
      <td style="text-align: center;">25.0</td>
      <td style="text-align: center;">26.1</td>
      <td style="text-align: center;">21.6</td>
      <td style="text-align: center;">36.7</td>
      <td style="text-align: center;"><strong>36.9</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">MagnaTagATune<br><em>Micro F1</em></td>
      <td style="text-align: center;">41.6 (MuQ)</td>
      <td style="text-align: center;">29.2</td>
      <td style="text-align: center;">28.1</td>
      <td style="text-align: center;">30.1</td>
      <td style="text-align: center;">44.3</td>
      <td style="text-align: center;"><strong>46.8</strong></td>
    </tr>
  </tbody>
</table>

</details>

<details>
<summary>Vision -> Text</summary>

<table style="width:100%; border-collapse: collapse;">
  <thead>
    <tr style="border-bottom: 1px solid black;">
      <th style="text-align: left;">Datasets</th>
      <th style="text-align: center;">GPT4-o</th>
      <th style="text-align: center;">Gemini-2.0-Flash</th>
      <th style="text-align: center;">Qwen2.5-VL<br>72B</th>
      <th style="text-align: center;">Qwen3-Omni-30B-A3B<br>-Instruct</th>
      <th style="text-align: center;">Qwen3-Omni-Flash<br>-Instruct</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid #ddd; border-bottom: 1px solid black;">General Visual Question Answering</td>
    </tr>
    <tr>
      <td style="text-align: left;">MMStar</td>
      <td style="text-align: center;">64.7</td>
      <td style="text-align: center;"><strong>71.4</strong></td>
      <td style="text-align: center;">70.8</td>
      <td style="text-align: center;">68.5</td>
      <td style="text-align: center;">69.3</td>
    </tr>
    <tr>
      <td style="text-align: left;">HallusionBench</td>
      <td style="text-align: center;">55.0</td>
      <td style="text-align: center;">56.3</td>
      <td style="text-align: center;">55.2</td>
      <td style="text-align: center;"><strong>59.7</strong></td>
      <td style="text-align: center;">58.5</td>
    </tr>
    <tr>
      <td style="text-align: left;">MM-MT-Bench</td>
      <td style="text-align: center;"><strong>7.7</strong></td>
      <td style="text-align: center;">6.7</td>
      <td style="text-align: center;">7.6</td>
      <td style="text-align: center;">7.4</td>
      <td style="text-align: center;">7.6</td>
    </tr>
    <tr>
      <td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Math & STEM</td>
    </tr>
    <tr>
      <td style="text-align: left;">MMMU_val</td>
      <td style="text-align: center;">69.1</td>
      <td style="text-align: center;"><strong>71.3</strong></td>
      <td style="text-align: center;">70.2</td>
      <td style="text-align: center;">69.1</td>
      <td style="text-align: center;">69.8</td>
    </tr>
    <tr>
      <td style="text-align: left;">MMMU_pro</td>
      <td style="text-align: center;">51.9</td>
      <td style="text-align: center;">56.1</td>
      <td style="text-align: center;">51.1</td>
      <td style="text-align: center;">57.0</td>
      <td style="text-align: center;"><strong>57.6</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">MathVista_mini</td>
      <td style="text-align: center;">63.8</td>
      <td style="text-align: center;">71.4</td>
      <td style="text-align: center;">74.8</td>
      <td style="text-align: center;">75.9</td>
      <td style="text-align: center;"><strong>77.4</strong></td>
    </tr>
    <tr>
      <td style="text-align: left;">MathVision_full</td>
      <td style="text-align: center;">30.4</td>
      <td style="text-align: center;">48.6</td>
      <td style="text-align: center;">38.1</td>
      <td style="text-align: center;">56.3</td>
      <td style="text-align: center;"><strong>58.3</strong></td>
    </tr>
    <tr>
      <td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Documentation Understanding</td>
    </tr>
    <tr>
      <td style="text-align: left;">AI2D</td>
      <td style="text-align: center;">84.6</td>
      <td style="text-align: center;">86.7</td>
      <td style="text-align: center;"><strong>88.7</strong></td>
      <td style="text-align: center;">85.2</td>
      <td style="text-align: center;">86.4</td>
    </tr>
    <tr>
      <td style="text-align: left;">ChartQA_test</td>
      <td style="text-align: center;">86.7</td>
      <td style="text-align: center;">64.6</td>
      <td style="text-align: center;"><strong>89.5</strong></td>
      <td style="text-align: center;">86.8</td>
      <td style="text-align: center;">87.1</td>
    </tr>
    <tr>
      <td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Counting</td>
    </tr>
    <tr>
      <td style="text-align: left;">CountBench</td>
      <td style="text-align: center;">87.9</td>
      <td style="text-align: center;">91.2</td>
      <td style="text-align: center;"><strong>93.6</strong></td>
      <td style="text-align: center;">90.0</td>
      <td style="text-align: center;">90.0</td>
    </tr>
    <tr>
      <td colspan="6" align="center" style="font-weight: bold; border-top: 1px solid black; border-bottom: 1px solid black;">Video Understanding</td>
    </tr>
    <tr>
      <td style="text-align: left;">Video-MME</td>
      <td style="text-align: center;">71.9</td>
      <td style="text-align: center;">72.4</td>
      <td style="text-align: center;"><strong>73.3</strong></td>
      <td style="text-align: center;">70.5</td>
      <td style="text-align: center;">71.4</td>
    </tr>
    <tr>
      <td style="text-align: left;">LVBench</td>
      <td style="text-align: center;">30.8</td>
      <td style="text-align: center;"><strong>57.9</strong></td>
      <td style="text-align: center;">47.3</td>
      <td style="text-align: center;">50.2</td>
      <td style="text-align: center;">51.1</td>
    </tr>
    <tr>
      <td style="text-align: left;">MLVU</td>
      <td style="text-align: center;">64.6</td>
      <td style="text-align: center;">71.0</td>
      <td style="text-align: center;">74.6</td>
      <td style="text-align: center;">75.2</td>
      <td style="text-align: center;"><strong>75.7</strong></td>
    </tr>
  </tbody>
</table>

<table style="width: 100%; border-collapse: collapse;">
  <thead style="border-bottom: 1px solid black;">
    <tr>
      <th align="left" style="padding: 6px;">Datasets</th>
      <th align="center" style="padding: 6px;">Gemini-2.5-flash-thinking</th>
      <th align="center" style="padding: 6px;">InternVL-3.5-241B-A28B</th>
      <th align="center" style="padding: 6px;">Qwen3-Omni-30B-A3B-Thinking</th>
      <th align="center" style="padding: 6px;">Qwen3-Omni-Flash-Thinking</th>
    </tr>
  </thead>
  <tbody>
    <tr style="border-top: 2px solid black; border-bottom: 1px solid #ccc;">
      <td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-bottom: 1px solid black;">General Visual Question Answering</td>
    </tr>
    <tr>
      <td style="padding: 6px;">MMStar</td>
      <td align="center" style="padding: 6px;">75.5</td>
      <td align="center" style="padding: 6px;"><b>77.9</b></td>
      <td align="center" style="padding: 6px;">74.9</td>
      <td align="center" style="padding: 6px;">75.5</td>
    </tr>
    <tr>
      <td style="padding: 6px;">HallusionBench</td>
      <td align="center" style="padding: 6px;">61.1</td>
      <td align="center" style="padding: 6px;">57.3</td>
      <td align="center" style="padding: 6px;">62.8</td>
      <td align="center" style="padding: 6px;"><b>63.4</b></td>
    </tr>
    <tr>
      <td style="padding: 6px;">MM-MT-Bench</td>
      <td align="center" style="padding: 6px;">7.8</td>
      <td align="center" style="padding: 6px;">–</td>
      <td align="center" style="padding: 6px;"><b>8.0</b></td>
      <td align="center" style="padding: 6px;"><b>8.0</b></td>
    </tr>
    <tr style="border-top: 1px solid black; border-bottom: 1px solid #ccc;">
      <td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-top: 1px solid black;  border-bottom: 1px solid black;">Math & STEM</td>
    </tr>
    <tr>
      <td style="padding: 6px;">MMMU_val</td>
      <td align="center" style="padding: 6px;">76.9</td>
      <td align="center" style="padding: 6px;"><b>77.7</b></td>
      <td align="center" style="padding: 6px;">75.6</td>
      <td align="center" style="padding: 6px;">75.0</td>
    </tr>
    <tr>
      <td style="padding: 6px;">MMMU_pro</td>
      <td align="center" style="padding: 6px;"><b>65.8</b></td>
      <td align="center" style="padding: 6px;">–</td>
      <td align="center" style="padding: 6px;">60.5</td>
      <td align="center" style="padding: 6px;">60.8</td>
    </tr>
    <tr>
      <td style="padding: 6px;">MathVista_mini</td>
      <td align="center" style="padding: 6px;">77.6</td>
      <td align="center" style="padding: 6px;"><b>82.7</b></td>
      <td align="center" style="padding: 6px;">80.0</td>
      <td align="center" style="padding: 6px;">81.2</td>
    </tr>
    <tr>
      <td style="padding: 6px;">MathVision_full</td>
      <td align="center" style="padding: 6px;">62.3</td>
      <td align="center" style="padding: 6px;"><b>63.9</b></td>
      <td align="center" style="padding: 6px;">62.9</td>
      <td align="center" style="padding: 6px;">63.8</td>
    </tr>
    <tr style="border-top: 1px solid black; border-bottom: 1px solid #ccc;">
      <td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-top: 1px solid black;  border-bottom: 1px solid black;">Documentation Understanding</td>
    </tr>
    <tr>
      <td style="padding: 6px;">AI2D_test</td>
      <td align="center" style="padding: 6px;"><b>88.6</b></td>
      <td align="center" style="padding: 6px;">87.3</td>
      <td align="center" style="padding: 6px;">86.1</td>
      <td align="center" style="padding: 6px;">86.8</td>
    </tr>
    <tr>
      <td style="padding: 6px;">ChartQA_test</td>
      <td align="center" style="padding: 6px;">–</td>
      <td align="center" style="padding: 6px;">88.0</td>
      <td align="center" style="padding: 6px;"><b>89.5</b></td>
      <td align="center" style="padding: 6px;">89.3</td>
    </tr>
    <tr style="border-top: 1px solid black; border-bottom: 1px solid #ccc;">
      <td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-top: 1px solid black;  border-bottom: 1px solid black;">Counting</td>
    </tr>
    <tr>
      <td style="padding: 6px;">CountBench</td>
      <td align="center" style="padding: 6px;">88.6</td>
      <td align="center" style="padding: 6px;">–</td>
      <td align="center" style="padding: 6px;">88.6</td>
      <td align="center" style="padding: 6px;"><b>92.5</b></td>
    </tr>
    <tr style="border-top: 1px solid black; border-bottom: 1px solid #ccc;">
      <td colspan="5" align="center" style="padding: 6px 0; font-weight: bold; border-top: 1px solid black;  border-bottom: 1px solid black;">Video Understanding</td>
    </tr>
    <tr>
      <td style="padding: 6px;">Video-MME</td>
      <td align="center" style="padding: 6px;"><b>79.6</b></td>
      <td align="center" style="padding: 6px;">72.9</td>
      <td align="center" style="padding: 6px;">69.7</td>
      <td align="center" style="padding: 6px;">69.8</td>
    </tr>
    <tr>
      <td style="padding: 6px;">LVBench</td>
      <td align="center" style="padding: 6px;"><b>64.5</b></td>
      <td align="center" style="padding: 6px;">–</td>
      <td align="center" style="padding: 6px;">49.0</td>
      <td align="center" style="padding: 6px;">49.5</td>
    </tr>
    <tr>
      <td style="padding: 6px;">MLVU</td>
      <td align="center" style="padding: 6px;"><b>82.1</b></td>
      <td align="center" style="padding: 6px;">78.2</td>
      <td align="center" style="padding: 6px;">72.9</td>
      <td align="center" style="padding: 6px;">73.9</td>
    </tr>
  </tbody>
</table>

</details>

<details>
<summary>AudioVisual -> Text</summary>

<table>
  <thead>
    <tr>
      <th>Datasets</th>
      <th>Previous Open-source SoTA</th>
      <th>Gemini-2.5-Flash</th>
      <th>Qwen2.5-Omni</th>
      <th>Qwen3-Omni-30B-A3B-Instruct</th>
      <th>Qwen3-Omni-Flash-Instruct</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>WorldSense</td>
      <td>47.1</td>
      <td>50.9</td>
      <td>45.4</td>
      <td>54.0</td>
      <td><strong>54.1</strong></td>
    </tr>
  </tbody>
</table>

<table>
  <thead>
    <tr>
      <th>Datasets</th>
      <th>Previous Open-source SoTA</th>
      <th>Gemini-2.5-Flash-Thinking</th>
      <th>Qwen3-Omni-30B-A3B-Thinking</th>
      <th>Qwen3-Omni-Flash-Thinking</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>DailyOmni</td>
      <td>69.8</td>
      <td>72.7</td>
      <td>75.8</b></td>
      <td><b>76.2</td>
    </tr>
    <tr>
      <td>VideoHolmes</td>
      <td>55.6</td>
      <td>49.5</td>
      <td><b>57.3</b></td>
      <td><b>57.3</b></td>
    </tr>
  </tbody>
</table>

</details>


<details>
<summary>Zero-shot Speech Generation</summary>

<table>
  <thead>
    <tr>
      <th align="left">Datasets</th>
      <th align="left">Model</th>
      <th align="left">Performance</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>&nbsp;</td>
      <td colspan="2" align="center"><em>Content Consistency</em></td>
    </tr>
  </tbody>
  <tbody>
    <tr>
      <td rowspan="10" align="center" valign="middle"><strong>SEED</strong><br><em>test-zh</em> | <em>test-en</em></td>
      <td align="left">Seed-TTS<sub>ICL</sub></td>
      <td align="left">1.11 | 2.24</td>
    </tr>
    <tr>
      <td align="left">Seed-TTS<sub>RL</sub></td>
      <td align="left">1.00 | 1.94</td>
    </tr>
    <tr>
      <td align="left">MaskGCT</td>
      <td align="left">2.27 | 2.62</td>
    </tr>
    <tr>
      <td align="left">E2 TTS</td>
      <td align="left">1.97 | 2.19</td>
    </tr>
    <tr>
      <td align="left">F5-TTS</td>
      <td align="left">1.56 | 1.83</td>
    </tr>
    <tr>
      <td align="left">Spark TTS</td>
      <td align="left">1.20 | 1.98</td>
    </tr>
    <tr>
      <td align="left">CosyVoice 2</td>
      <td align="left">1.45 | 2.57</td>
    </tr>
    <tr>
      <td align="left">CosyVoice 3</td>
      <td align="left"><strong>0.71</strong> | 1.45</td>
    </tr>
    <tr>
      <td align="left">Qwen2.5-Omni-7B</td>
      <td align="left">1.42 | 2.33</td>
    </tr>
    <tr>
      <td align="left">Qwen3-Omni-30B-A3B</td>
      <td align="left">1.07 | <strong>1.39</strong></td>
    </tr>
  </tbody>
</table>

</details>

<details>
<summary>Multilingual Speech Generation </summary>

<table>
  <thead>
    <tr>
      <th rowspan="2" align="left">Language</th>
      <th colspan="3" style="text-align:center; padding: 8px; font-weight: bold; border-bottom: 1px solid #ddd;">Content Consistency</th>
      <th colspan="3"  style="text-align:center; padding: 8px; font-weight: bold; border-bottom: 1px solid #ddd;">Speaker Similarity</th>
    </tr>
    <tr>
      <th align="center">Qwen3-Omni-30B-A3B</th>
      <th align="center">MiniMax</th>
      <th align="center">ElevenLabs</th>
      <th align="center">Qwen3-Omni-30B-A3B</th>
      <th align="center">MiniMax</th>
      <th align="center">ElevenLabs</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td align="left">Chinese</td>
      <td align="center"><strong>0.716</strong></td>
      <td align="center">2.252</td>
      <td align="center">16.026</td>
      <td align="center">0.772</td>
      <td align="center"><strong>0.780</strong></td>
      <td align="center">0.677</td>
    </tr>
    <tr>
      <td align="left">English</td>
      <td align="center"><strong>1.069</strong></td>
      <td align="center">2.164</td>
      <td align="center">2.339</td>
      <td align="center"><strong>0.773</strong></td>
      <td align="center">0.756</td>
      <td align="center">0.613</td>
    </tr>
    <tr>
      <td align="left">German</td>
      <td align="center">0.777</td>
      <td align="center">1.906</td>
      <td align="center"><strong>0.572</strong></td>
      <td align="center"><strong>0.738</strong></td>
      <td align="center">0.733</td>
      <td align="center">0.614</td>
    </tr>
    <tr>
      <td align="left">Italian</td>
      <td align="center"><strong>1.067</strong></td>
      <td align="center">1.543</td>
      <td align="center">1.743</td>
      <td align="center"><strong>0.742</strong></td>
      <td align="center">0.699</td>
      <td align="center">0.579</td>
    </tr>
    <tr>
      <td align="left">Portuguese</td>
      <td align="center">1.872</td>
      <td align="center">1.877</td>
      <td align="center"><strong>1.331</strong></td>
      <td align="center">0.770</td>
      <td align="center"><strong>0.805</strong></td>
      <td align="center">0.711</td>
    </tr>
    <tr>
      <td align="left">Spanish</td>
      <td align="center">1.765</td>
      <td align="center"><strong>1.029</strong></td>
      <td align="center">1.084</td>
      <td align="center">0.744</td>
      <td align="center"><strong>0.762</strong></td>
      <td align="center">0.615</td>
    </tr>
    <tr>
      <td align="left">Japanese</td>
      <td align="center">3.631</td>
      <td align="center"><strong>3.519</strong></td>
      <td align="center">10.646</td>
      <td align="center">0.763</td>
      <td align="center"><strong>0.776</strong></td>
      <td align="center">0.738</td>
    </tr>
    <tr>
      <td align="left">Korean</td>
      <td align="center"><strong>1.670</strong></td>
      <td align="center">1.747</td>
      <td align="center">1.865</td>
      <td align="center"><strong>0.778</strong></td>
      <td align="center">0.776</td>
      <td align="center">0.700</td>
    </tr>
    <tr>
      <td align="left">French</td>
      <td align="center"><strong>2.505</strong></td>
      <td align="center">4.099</td>
      <td align="center">5.216</td>
      <td align="center"><strong>0.689</strong></td>
      <td align="center">0.628</td>
      <td align="center">0.535</td>
    </tr>
    <tr>
      <td align="left">Russian</td>
      <td align="center">3.986</td>
      <td align="center">4.281</td>
      <td align="center"><strong>3.878</strong></td>
      <td align="center">0.759</td>
      <td align="center"><strong>0.761</strong></td>
      <td align="center">0.676</td>
    </tr>
  </tbody>
</table>

</details>

<details>
<summary>Cross-Lingual Speech Generation </summary>

<table>
  <thead>
    <tr>
      <th style="text-align: left;">Language</th>
      <th style="text-align: left;">Qwen3-Omni-30B-A3B</th>
      <th style="text-align: left;">CosyVoice3</th>
      <th style="text-align: left;">CosyVoice2</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td style="text-align: left;">en-to-zh</td>
      <td style="text-align: left;">5.37</td>
      <td style="text-align: left;"><strong>5.09</strong></td>
      <td style="text-align: left;">13.5</td>
    </tr>
    <tr>
      <td style="text-align: left;">ja-to-zh</td>
      <td style="text-align: left;">3.32</td>
      <td style="text-align: left;"><strong>3.05</strong></td>
      <td style="text-align: left;">48.1</td>
    </tr>
    <tr>
      <td style="text-align: left;">ko-to-zh</td>
      <td style="text-align: left;"><strong>0.99</strong></td>
      <td style="text-align: left;">1.06</td>
      <td style="text-align: left;">7.70</td>
    </tr>
    <tr>
      <td style="text-align: left;">zh-to-en</td>
      <td style="text-align: left;"><strong>2.76</strong></td>
      <td style="text-align: left;">2.98</td>
      <td style="text-align: left;">6.47</td>
    </tr>
    <tr>
      <td style="text-align: left;">ja-to-en</td>
      <td style="text-align: left;"><strong>3.31</strong></td>
      <td style="text-align: left;">4.20</td>
      <td style="text-align: left;">17.1</td>
    </tr>
    <tr>
      <td style="text-align: left;">ko-to-en</td>
      <td style="text-align: left;"><strong>3.34</strong></td>
      <td style="text-align: left;">4.19</td>
      <td style="text-align: left;">11.2</td>
    </tr>
    <tr>
      <td style="text-align: left;">zh-to-ja</td>
      <td style="text-align: left;">8.29</td>
      <td style="text-align: left;"><strong>7.08</strong></td>
      <td style="text-align: left;">13.1</td>
    </tr>
    <tr>
      <td style="text-align: left;">en-to-ja</td>
      <td style="text-align: left;">7.53</td>
      <td style="text-align: left;"><strong>6.80</strong></td>
      <td style="text-align: left;">14.9</td>
    </tr>
    <tr>
      <td style="text-align: left;">ko-to-ja</td>
      <td style="text-align: left;">4.24</td>
      <td style="text-align: left;"><strong>3.93</strong></td>
      <td style="text-align: left;">5.86</td>
    </tr>
    <tr>
      <td style="text-align: left;">zh-to-ko</td>
      <td style="text-align: left;"><strong>5.13</strong></td>
      <td style="text-align: left;">14.4</td>
      <td style="text-align: left;">24.8</td>
    </tr>
    <tr>
      <td style="text-align: left;">en-to-ko</td>
      <td style="text-align: left;"><strong>4.96</strong></td>
      <td style="text-align: left;">5.87</td>
      <td style="text-align: left;">21.9</td>
    </tr>
    <tr>
      <td style="text-align: left;">ja-to-ko</td>
      <td style="text-align: left;"><strong>6.23</strong></td>
      <td style="text-align: left;">7.92</td>
      <td style="text-align: left;">21.5</td>
    </tr>
  </tbody>
</table>

</details>


### Setting for Evaluation

*   **Decoding Strategy**: For the Qwen3-Omni series across all evaluation benchmarks, `Instruct` models use greedy decoding during generation without sampling. For `Thinking` models, the decoding parameters should be taken from the `generation_config.json` file in the checkpoint.
*   **Benchmark-Specific Formatting**: For the majority of evaluation benchmarks, they come with their own ChatML formatting to embed the question or prompt. It should be noted that all video data are set to `fps=2` during evaluation.
*   **Default Prompts**: For tasks in certain benchmarks that do not include a prompt, we use the following prompt settings:

| Task Type | Prompt |
| :--- | :--- |
| Auto Speech Recognition (ASR) for Chinese | 请将这段中文语音转换为纯文本。 |
| Auto Speech Recognition (ASR) for Other languages | Transcribe the <language> audio into text. |
| Speech-to-Text Translation (S2TT) | Listen to the provided <source_language> speech and produce a translation in <target_language> text. |
| Song Lyrics Recognition | Transcribe the song lyrics into text without any punctuation, separate lines with line breaks, and output only the lyrics without additional explanations. |

*   **System Prompt**: No `system prompt` should be set for any evaluation benchmark.
*   **Input Sequence**: The question or prompt should be input as user text. Unless otherwise specified by the benchmark, the text should come **after** multimodal data in the sequence. For example:

```python
messages = [
    {
        "role": "user",
        "content": [
            {"type": "audio", "audio": "/path/to/audio.wav"},
            {"type": "image", "image": "/path/to/image.png"},
            {"type": "video", "video": "/path/to/video.mp4"},
            {"type": "text", "text": "Describe the audio, image and video."},
        ],
    },
]
```


<!-- ## Citation

If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)


```BibTeX
@article{Qwen3-Omni,
  title={Qwen3-Omni Technical Report},
  author={Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfa Zhu, Yuanjun Lv, Yongqi Wang, Dake Guo, He Wang, Linhan Ma, Pei Zhang, Xinyu Zhang, Hongkun Hao, Zishan Guo, Baosong Yang, Bin Zhang, Ziyang Ma, Xipin Wei, Shuai Bai, Keqin Chen, Xuejing Liu, Peng Wang, Mingkun Yang, Dayiheng Liu, Xingzhang Ren, Bo Zheng, Rui Men, Fan Zhou, Bowen Yu, Jianxin Yang, Le Yu, Jingren Zhou, Junyang Lin},
  journal={arXiv preprint arXiv},
  year={2025}
}
``` -->

<br>