Commit
·
7f682aa
1
Parent(s):
b207ec3
Upload model
Browse files- config.json +12 -0
- configuration_bbsnet.py +47 -0
- modeling_bbsnet.py +48 -0
- pytorch_model.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BBSNetModel"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_bbsnet.BBSNetConfig",
|
| 7 |
+
"AutoModel": "modeling_bbsnet.BBSNetModel"
|
| 8 |
+
},
|
| 9 |
+
"model_type": "bbsnet",
|
| 10 |
+
"torch_dtype": "float32",
|
| 11 |
+
"transformers_version": "4.26.1"
|
| 12 |
+
}
|
configuration_bbsnet.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
"""
|
| 6 |
+
The configuration of a model is an object that
|
| 7 |
+
will contain all the necessary information to build the model.
|
| 8 |
+
|
| 9 |
+
The three important things to remember when writing you own configuration are the following:
|
| 10 |
+
|
| 11 |
+
- you have to inherit from PretrainedConfig,
|
| 12 |
+
- the __init__ of your PretrainedConfig must accept any kwargs,
|
| 13 |
+
- those kwargs need to be passed to the superclass __init__.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class BBSNetConfig(PretrainedConfig):
|
| 18 |
+
|
| 19 |
+
"""
|
| 20 |
+
Defining a model_type for your configuration is not mandatory,
|
| 21 |
+
unless you want to register your model with the auto classes."""
|
| 22 |
+
|
| 23 |
+
model_type = "bbsnet"
|
| 24 |
+
|
| 25 |
+
def __init__(self, **kwargs):
|
| 26 |
+
super().__init__(**kwargs)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
if __name__ == "__main__":
|
| 30 |
+
"""
|
| 31 |
+
With this done, you can easily create and save your configuration like
|
| 32 |
+
you would do with any other model config of the library.
|
| 33 |
+
Here is how we can create a resnet50d config and save it:
|
| 34 |
+
"""
|
| 35 |
+
bbsnet_config = BBSNetConfig()
|
| 36 |
+
bbsnet_config.save_pretrained("custom-bbsnet")
|
| 37 |
+
|
| 38 |
+
"""
|
| 39 |
+
This will save a file named config.json inside the folder custom-resnet.
|
| 40 |
+
You can then reload your config with the from_pretrained method:
|
| 41 |
+
"""
|
| 42 |
+
bbsnet_config = BBSNetConfig.from_pretrained("custom-bbsnet")
|
| 43 |
+
|
| 44 |
+
"""
|
| 45 |
+
You can also use any other method of the PretrainedConfig class,
|
| 46 |
+
like push_to_hub() to directly upload your config to the Hub.
|
| 47 |
+
"""
|
modeling_bbsnet.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Optional
|
| 2 |
+
|
| 3 |
+
from torch import Tensor, nn
|
| 4 |
+
from transformers import PreTrainedModel
|
| 5 |
+
|
| 6 |
+
from models.BBSNet_model import BBSNet
|
| 7 |
+
|
| 8 |
+
from .configuration_bbsnet import BBSNetConfig
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class BBSNetModel(PreTrainedModel):
|
| 12 |
+
"""
|
| 13 |
+
The line that sets the config_class is not mandatory,
|
| 14 |
+
unless you want to register your model with the auto classes
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
config_class = BBSNetConfig
|
| 18 |
+
|
| 19 |
+
def __init__(self, config: BBSNetConfig):
|
| 20 |
+
super().__init__(config)
|
| 21 |
+
self.model = BBSNet()
|
| 22 |
+
self.loss = nn.BCEWithLogitsLoss()
|
| 23 |
+
|
| 24 |
+
"""
|
| 25 |
+
You can have your model return anything you want,
|
| 26 |
+
but returning a dictionary with the loss included when labels are passed,
|
| 27 |
+
will make your model directly usable inside the Trainer class.
|
| 28 |
+
Using another output format is fine as long as you are planning on
|
| 29 |
+
using your own training loop or another library for training.
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def forward(
|
| 33 |
+
self, rgbs: Tensor, depths: Tensor, gts: Optional[Tensor] = None
|
| 34 |
+
) -> Dict[str, Tensor]:
|
| 35 |
+
_, logits = self.model(rgbs, depths)
|
| 36 |
+
if gts is not None:
|
| 37 |
+
loss = self.loss(logits, gts)
|
| 38 |
+
return {"loss": loss, "logits": logits}
|
| 39 |
+
return {"logits": logits}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if __name__ == "__main__":
|
| 43 |
+
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
|
| 44 |
+
resnet50d = ResnetModelForImageClassification(resnet50d_config)
|
| 45 |
+
|
| 46 |
+
# Load pretrained weights from timm
|
| 47 |
+
pretrained_model: nn.Module = timm.create_model("resnet50d", pretrained=True)
|
| 48 |
+
resnet50d.model.load_state_dict(pretrained_model.state_dict())
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:483479ab2cc3cd42ff1be16e1ba76ac09afcb0c010487221b81c96aa22f75106
|
| 3 |
+
size 199976498
|