Commit
·
e674a89
1
Parent(s):
b4d5d67
Upload model
Browse files- BBSNet_model.py +458 -0
- ResNet.py +156 -0
- modeling_bbsnet.py +1 -2
BBSNet_model.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torchvision
|
| 4 |
+
|
| 5 |
+
from .ResNet import ResNet50
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
| 9 |
+
"3x3 convolution with padding"
|
| 10 |
+
return nn.Conv2d(
|
| 11 |
+
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class TransBasicBlock(nn.Module):
|
| 16 |
+
expansion = 1
|
| 17 |
+
|
| 18 |
+
def __init__(self, inplanes, planes, stride=1, upsample=None, **kwargs):
|
| 19 |
+
super(TransBasicBlock, self).__init__()
|
| 20 |
+
self.conv1 = conv3x3(inplanes, inplanes)
|
| 21 |
+
self.bn1 = nn.BatchNorm2d(inplanes)
|
| 22 |
+
self.relu = nn.ReLU(inplace=True)
|
| 23 |
+
if upsample is not None and stride != 1:
|
| 24 |
+
self.conv2 = nn.ConvTranspose2d(
|
| 25 |
+
inplanes,
|
| 26 |
+
planes,
|
| 27 |
+
kernel_size=3,
|
| 28 |
+
stride=stride,
|
| 29 |
+
padding=1,
|
| 30 |
+
output_padding=1,
|
| 31 |
+
bias=False,
|
| 32 |
+
)
|
| 33 |
+
else:
|
| 34 |
+
self.conv2 = conv3x3(inplanes, planes, stride)
|
| 35 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 36 |
+
self.upsample = upsample
|
| 37 |
+
self.stride = stride
|
| 38 |
+
|
| 39 |
+
def forward(self, x):
|
| 40 |
+
residual = x
|
| 41 |
+
|
| 42 |
+
out = self.conv1(x)
|
| 43 |
+
out = self.bn1(out)
|
| 44 |
+
out = self.relu(out)
|
| 45 |
+
|
| 46 |
+
out = self.conv2(out)
|
| 47 |
+
out = self.bn2(out)
|
| 48 |
+
|
| 49 |
+
if self.upsample is not None:
|
| 50 |
+
residual = self.upsample(x)
|
| 51 |
+
|
| 52 |
+
out += residual
|
| 53 |
+
out = self.relu(out)
|
| 54 |
+
|
| 55 |
+
return out
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class ChannelAttention(nn.Module):
|
| 59 |
+
def __init__(self, in_planes, ratio=16):
|
| 60 |
+
super(ChannelAttention, self).__init__()
|
| 61 |
+
|
| 62 |
+
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
| 63 |
+
|
| 64 |
+
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
|
| 65 |
+
self.relu1 = nn.ReLU()
|
| 66 |
+
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
|
| 67 |
+
|
| 68 |
+
self.sigmoid = nn.Sigmoid()
|
| 69 |
+
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
|
| 72 |
+
out = max_out
|
| 73 |
+
return self.sigmoid(out)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class SpatialAttention(nn.Module):
|
| 77 |
+
def __init__(self, kernel_size=7):
|
| 78 |
+
super(SpatialAttention, self).__init__()
|
| 79 |
+
|
| 80 |
+
assert kernel_size in (3, 7), "kernel size must be 3 or 7"
|
| 81 |
+
padding = 3 if kernel_size == 7 else 1
|
| 82 |
+
|
| 83 |
+
self.conv1 = nn.Conv2d(1, 1, kernel_size, padding=padding, bias=False)
|
| 84 |
+
self.sigmoid = nn.Sigmoid()
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
| 88 |
+
x = max_out
|
| 89 |
+
x = self.conv1(x)
|
| 90 |
+
return self.sigmoid(x)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class BasicConv2d(nn.Module):
|
| 94 |
+
def __init__(
|
| 95 |
+
self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1
|
| 96 |
+
):
|
| 97 |
+
super(BasicConv2d, self).__init__()
|
| 98 |
+
self.conv = nn.Conv2d(
|
| 99 |
+
in_planes,
|
| 100 |
+
out_planes,
|
| 101 |
+
kernel_size=kernel_size,
|
| 102 |
+
stride=stride,
|
| 103 |
+
padding=padding,
|
| 104 |
+
dilation=dilation,
|
| 105 |
+
bias=False,
|
| 106 |
+
)
|
| 107 |
+
self.bn = nn.BatchNorm2d(out_planes)
|
| 108 |
+
self.relu = nn.ReLU(inplace=True)
|
| 109 |
+
|
| 110 |
+
def forward(self, x):
|
| 111 |
+
x = self.conv(x)
|
| 112 |
+
x = self.bn(x)
|
| 113 |
+
return x
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# Global Contextual module
|
| 117 |
+
class GCM(nn.Module):
|
| 118 |
+
def __init__(self, in_channel, out_channel):
|
| 119 |
+
super(GCM, self).__init__()
|
| 120 |
+
self.relu = nn.ReLU(True)
|
| 121 |
+
self.branch0 = nn.Sequential(
|
| 122 |
+
BasicConv2d(in_channel, out_channel, 1),
|
| 123 |
+
)
|
| 124 |
+
self.branch1 = nn.Sequential(
|
| 125 |
+
BasicConv2d(in_channel, out_channel, 1),
|
| 126 |
+
BasicConv2d(out_channel, out_channel, kernel_size=(1, 3), padding=(0, 1)),
|
| 127 |
+
BasicConv2d(out_channel, out_channel, kernel_size=(3, 1), padding=(1, 0)),
|
| 128 |
+
BasicConv2d(out_channel, out_channel, 3, padding=3, dilation=3),
|
| 129 |
+
)
|
| 130 |
+
self.branch2 = nn.Sequential(
|
| 131 |
+
BasicConv2d(in_channel, out_channel, 1),
|
| 132 |
+
BasicConv2d(out_channel, out_channel, kernel_size=(1, 5), padding=(0, 2)),
|
| 133 |
+
BasicConv2d(out_channel, out_channel, kernel_size=(5, 1), padding=(2, 0)),
|
| 134 |
+
BasicConv2d(out_channel, out_channel, 3, padding=5, dilation=5),
|
| 135 |
+
)
|
| 136 |
+
self.branch3 = nn.Sequential(
|
| 137 |
+
BasicConv2d(in_channel, out_channel, 1),
|
| 138 |
+
BasicConv2d(out_channel, out_channel, kernel_size=(1, 7), padding=(0, 3)),
|
| 139 |
+
BasicConv2d(out_channel, out_channel, kernel_size=(7, 1), padding=(3, 0)),
|
| 140 |
+
BasicConv2d(out_channel, out_channel, 3, padding=7, dilation=7),
|
| 141 |
+
)
|
| 142 |
+
self.conv_cat = BasicConv2d(4 * out_channel, out_channel, 3, padding=1)
|
| 143 |
+
self.conv_res = BasicConv2d(in_channel, out_channel, 1)
|
| 144 |
+
|
| 145 |
+
def forward(self, x):
|
| 146 |
+
x0 = self.branch0(x)
|
| 147 |
+
x1 = self.branch1(x)
|
| 148 |
+
x2 = self.branch2(x)
|
| 149 |
+
x3 = self.branch3(x)
|
| 150 |
+
|
| 151 |
+
x_cat = self.conv_cat(torch.cat((x0, x1, x2, x3), 1))
|
| 152 |
+
|
| 153 |
+
x = self.relu(x_cat + self.conv_res(x))
|
| 154 |
+
return x
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# aggregation of the high-level(teacher) features
|
| 158 |
+
class aggregation_init(nn.Module):
|
| 159 |
+
def __init__(self, channel):
|
| 160 |
+
super(aggregation_init, self).__init__()
|
| 161 |
+
self.relu = nn.ReLU(True)
|
| 162 |
+
|
| 163 |
+
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
|
| 164 |
+
self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1)
|
| 165 |
+
self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1)
|
| 166 |
+
self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1)
|
| 167 |
+
self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1)
|
| 168 |
+
self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
|
| 169 |
+
|
| 170 |
+
self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
|
| 171 |
+
self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1)
|
| 172 |
+
self.conv4 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1)
|
| 173 |
+
self.conv5 = nn.Conv2d(3 * channel, 1, 1)
|
| 174 |
+
|
| 175 |
+
def forward(self, x1, x2, x3):
|
| 176 |
+
x1_1 = x1
|
| 177 |
+
x2_1 = self.conv_upsample1(self.upsample(x1)) * x2
|
| 178 |
+
x3_1 = (
|
| 179 |
+
self.conv_upsample2(self.upsample(self.upsample(x1)))
|
| 180 |
+
* self.conv_upsample3(self.upsample(x2))
|
| 181 |
+
* x3
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1)
|
| 185 |
+
x2_2 = self.conv_concat2(x2_2)
|
| 186 |
+
|
| 187 |
+
x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1)
|
| 188 |
+
x3_2 = self.conv_concat3(x3_2)
|
| 189 |
+
|
| 190 |
+
x = self.conv4(x3_2)
|
| 191 |
+
x = self.conv5(x)
|
| 192 |
+
|
| 193 |
+
return x
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# aggregation of the low-level(student) features
|
| 197 |
+
class aggregation_final(nn.Module):
|
| 198 |
+
def __init__(self, channel):
|
| 199 |
+
super(aggregation_final, self).__init__()
|
| 200 |
+
self.relu = nn.ReLU(True)
|
| 201 |
+
|
| 202 |
+
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
|
| 203 |
+
self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1)
|
| 204 |
+
self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1)
|
| 205 |
+
self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1)
|
| 206 |
+
self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1)
|
| 207 |
+
self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
|
| 208 |
+
|
| 209 |
+
self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
|
| 210 |
+
self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1)
|
| 211 |
+
|
| 212 |
+
def forward(self, x1, x2, x3):
|
| 213 |
+
x1_1 = x1
|
| 214 |
+
x2_1 = self.conv_upsample1(self.upsample(x1)) * x2
|
| 215 |
+
x3_1 = self.conv_upsample2(self.upsample(x1)) * self.conv_upsample3(x2) * x3
|
| 216 |
+
|
| 217 |
+
x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1)
|
| 218 |
+
x2_2 = self.conv_concat2(x2_2)
|
| 219 |
+
|
| 220 |
+
x3_2 = torch.cat((x3_1, self.conv_upsample5(x2_2)), 1)
|
| 221 |
+
x3_2 = self.conv_concat3(x3_2)
|
| 222 |
+
|
| 223 |
+
return x3_2
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
# Refinement flow
|
| 227 |
+
class Refine(nn.Module):
|
| 228 |
+
def __init__(self):
|
| 229 |
+
super(Refine, self).__init__()
|
| 230 |
+
self.upsample2 = nn.Upsample(
|
| 231 |
+
scale_factor=2, mode="bilinear", align_corners=True
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
def forward(self, attention, x1, x2, x3):
|
| 235 |
+
# Note that there is an error in the manuscript. In the paper, the refinement strategy is depicted as ""f'=f*S1"", it should be ""f'=f+f*S1"".
|
| 236 |
+
x1 = x1 + torch.mul(x1, self.upsample2(attention))
|
| 237 |
+
x2 = x2 + torch.mul(x2, self.upsample2(attention))
|
| 238 |
+
x3 = x3 + torch.mul(x3, attention)
|
| 239 |
+
|
| 240 |
+
return x1, x2, x3
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
# BBSNet
|
| 244 |
+
class BBSNet(nn.Module):
|
| 245 |
+
def __init__(self, channel=32):
|
| 246 |
+
super(BBSNet, self).__init__()
|
| 247 |
+
|
| 248 |
+
# Backbone model
|
| 249 |
+
self.resnet = ResNet50("rgb")
|
| 250 |
+
self.resnet_depth = ResNet50("rgbd")
|
| 251 |
+
|
| 252 |
+
# Decoder 1
|
| 253 |
+
self.rfb2_1 = GCM(512, channel)
|
| 254 |
+
self.rfb3_1 = GCM(1024, channel)
|
| 255 |
+
self.rfb4_1 = GCM(2048, channel)
|
| 256 |
+
self.agg1 = aggregation_init(channel)
|
| 257 |
+
|
| 258 |
+
# Decoder 2
|
| 259 |
+
self.rfb0_2 = GCM(64, channel)
|
| 260 |
+
self.rfb1_2 = GCM(256, channel)
|
| 261 |
+
self.rfb5_2 = GCM(512, channel)
|
| 262 |
+
self.agg2 = aggregation_final(channel)
|
| 263 |
+
|
| 264 |
+
# upsample function
|
| 265 |
+
self.upsample = nn.Upsample(scale_factor=8, mode="bilinear", align_corners=True)
|
| 266 |
+
self.upsample4 = nn.Upsample(
|
| 267 |
+
scale_factor=4, mode="bilinear", align_corners=True
|
| 268 |
+
)
|
| 269 |
+
self.upsample2 = nn.Upsample(
|
| 270 |
+
scale_factor=2, mode="bilinear", align_corners=True
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
# Refinement flow
|
| 274 |
+
self.HA = Refine()
|
| 275 |
+
|
| 276 |
+
# Components of DEM module
|
| 277 |
+
self.atten_depth_channel_0 = ChannelAttention(64)
|
| 278 |
+
self.atten_depth_channel_1 = ChannelAttention(256)
|
| 279 |
+
self.atten_depth_channel_2 = ChannelAttention(512)
|
| 280 |
+
self.atten_depth_channel_3_1 = ChannelAttention(1024)
|
| 281 |
+
self.atten_depth_channel_4_1 = ChannelAttention(2048)
|
| 282 |
+
|
| 283 |
+
self.atten_depth_spatial_0 = SpatialAttention()
|
| 284 |
+
self.atten_depth_spatial_1 = SpatialAttention()
|
| 285 |
+
self.atten_depth_spatial_2 = SpatialAttention()
|
| 286 |
+
self.atten_depth_spatial_3_1 = SpatialAttention()
|
| 287 |
+
self.atten_depth_spatial_4_1 = SpatialAttention()
|
| 288 |
+
|
| 289 |
+
# Components of PTM module
|
| 290 |
+
self.inplanes = 32 * 2
|
| 291 |
+
self.deconv1 = self._make_transpose(TransBasicBlock, 32 * 2, 3, stride=2)
|
| 292 |
+
self.inplanes = 32
|
| 293 |
+
self.deconv2 = self._make_transpose(TransBasicBlock, 32, 3, stride=2)
|
| 294 |
+
self.agant1 = self._make_agant_layer(32 * 3, 32 * 2)
|
| 295 |
+
self.agant2 = self._make_agant_layer(32 * 2, 32)
|
| 296 |
+
self.out0_conv = nn.Conv2d(32 * 3, 1, kernel_size=1, stride=1, bias=True)
|
| 297 |
+
self.out1_conv = nn.Conv2d(32 * 2, 1, kernel_size=1, stride=1, bias=True)
|
| 298 |
+
self.out2_conv = nn.Conv2d(32 * 1, 1, kernel_size=1, stride=1, bias=True)
|
| 299 |
+
|
| 300 |
+
if self.training:
|
| 301 |
+
self.initialize_weights()
|
| 302 |
+
|
| 303 |
+
def forward(self, x, x_depth):
|
| 304 |
+
x = self.resnet.conv1(x)
|
| 305 |
+
x = self.resnet.bn1(x)
|
| 306 |
+
x = self.resnet.relu(x)
|
| 307 |
+
x = self.resnet.maxpool(x)
|
| 308 |
+
|
| 309 |
+
x_depth = self.resnet_depth.conv1(x_depth)
|
| 310 |
+
x_depth = self.resnet_depth.bn1(x_depth)
|
| 311 |
+
x_depth = self.resnet_depth.relu(x_depth)
|
| 312 |
+
x_depth = self.resnet_depth.maxpool(x_depth)
|
| 313 |
+
|
| 314 |
+
# layer0 merge
|
| 315 |
+
temp = x_depth.mul(self.atten_depth_channel_0(x_depth))
|
| 316 |
+
temp = temp.mul(self.atten_depth_spatial_0(temp))
|
| 317 |
+
x = x + temp
|
| 318 |
+
# layer0 merge end
|
| 319 |
+
|
| 320 |
+
x1 = self.resnet.layer1(x) # 256 x 64 x 64
|
| 321 |
+
x1_depth = self.resnet_depth.layer1(x_depth)
|
| 322 |
+
|
| 323 |
+
# layer1 merge
|
| 324 |
+
temp = x1_depth.mul(self.atten_depth_channel_1(x1_depth))
|
| 325 |
+
temp = temp.mul(self.atten_depth_spatial_1(temp))
|
| 326 |
+
x1 = x1 + temp
|
| 327 |
+
# layer1 merge end
|
| 328 |
+
|
| 329 |
+
x2 = self.resnet.layer2(x1) # 512 x 32 x 32
|
| 330 |
+
x2_depth = self.resnet_depth.layer2(x1_depth)
|
| 331 |
+
|
| 332 |
+
# layer2 merge
|
| 333 |
+
temp = x2_depth.mul(self.atten_depth_channel_2(x2_depth))
|
| 334 |
+
temp = temp.mul(self.atten_depth_spatial_2(temp))
|
| 335 |
+
x2 = x2 + temp
|
| 336 |
+
# layer2 merge end
|
| 337 |
+
|
| 338 |
+
x2_1 = x2
|
| 339 |
+
|
| 340 |
+
x3_1 = self.resnet.layer3_1(x2_1) # 1024 x 16 x 16
|
| 341 |
+
x3_1_depth = self.resnet_depth.layer3_1(x2_depth)
|
| 342 |
+
|
| 343 |
+
# layer3_1 merge
|
| 344 |
+
temp = x3_1_depth.mul(self.atten_depth_channel_3_1(x3_1_depth))
|
| 345 |
+
temp = temp.mul(self.atten_depth_spatial_3_1(temp))
|
| 346 |
+
x3_1 = x3_1 + temp
|
| 347 |
+
# layer3_1 merge end
|
| 348 |
+
|
| 349 |
+
x4_1 = self.resnet.layer4_1(x3_1) # 2048 x 8 x 8
|
| 350 |
+
x4_1_depth = self.resnet_depth.layer4_1(x3_1_depth)
|
| 351 |
+
|
| 352 |
+
# layer4_1 merge
|
| 353 |
+
temp = x4_1_depth.mul(self.atten_depth_channel_4_1(x4_1_depth))
|
| 354 |
+
temp = temp.mul(self.atten_depth_spatial_4_1(temp))
|
| 355 |
+
x4_1 = x4_1 + temp
|
| 356 |
+
# layer4_1 merge end
|
| 357 |
+
|
| 358 |
+
# produce initial saliency map by decoder1
|
| 359 |
+
x2_1 = self.rfb2_1(x2_1)
|
| 360 |
+
x3_1 = self.rfb3_1(x3_1)
|
| 361 |
+
x4_1 = self.rfb4_1(x4_1)
|
| 362 |
+
attention_map = self.agg1(x4_1, x3_1, x2_1)
|
| 363 |
+
|
| 364 |
+
# Refine low-layer features by initial map
|
| 365 |
+
x, x1, x5 = self.HA(attention_map.sigmoid(), x, x1, x2)
|
| 366 |
+
|
| 367 |
+
# produce final saliency map by decoder2
|
| 368 |
+
x0_2 = self.rfb0_2(x)
|
| 369 |
+
x1_2 = self.rfb1_2(x1)
|
| 370 |
+
x5_2 = self.rfb5_2(x5)
|
| 371 |
+
y = self.agg2(x5_2, x1_2, x0_2) # *4
|
| 372 |
+
|
| 373 |
+
# PTM module
|
| 374 |
+
y = self.agant1(y)
|
| 375 |
+
y = self.deconv1(y)
|
| 376 |
+
y = self.agant2(y)
|
| 377 |
+
y = self.deconv2(y)
|
| 378 |
+
y = self.out2_conv(y)
|
| 379 |
+
|
| 380 |
+
return self.upsample(attention_map), y
|
| 381 |
+
|
| 382 |
+
def _make_agant_layer(self, inplanes, planes):
|
| 383 |
+
layers = nn.Sequential(
|
| 384 |
+
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False),
|
| 385 |
+
nn.BatchNorm2d(planes),
|
| 386 |
+
nn.ReLU(inplace=True),
|
| 387 |
+
)
|
| 388 |
+
return layers
|
| 389 |
+
|
| 390 |
+
def _make_transpose(self, block, planes, blocks, stride=1):
|
| 391 |
+
upsample = None
|
| 392 |
+
if stride != 1:
|
| 393 |
+
upsample = nn.Sequential(
|
| 394 |
+
nn.ConvTranspose2d(
|
| 395 |
+
self.inplanes,
|
| 396 |
+
planes,
|
| 397 |
+
kernel_size=2,
|
| 398 |
+
stride=stride,
|
| 399 |
+
padding=0,
|
| 400 |
+
bias=False,
|
| 401 |
+
),
|
| 402 |
+
nn.BatchNorm2d(planes),
|
| 403 |
+
)
|
| 404 |
+
elif self.inplanes != planes:
|
| 405 |
+
upsample = nn.Sequential(
|
| 406 |
+
nn.Conv2d(
|
| 407 |
+
self.inplanes, planes, kernel_size=1, stride=stride, bias=False
|
| 408 |
+
),
|
| 409 |
+
nn.BatchNorm2d(planes),
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
layers = []
|
| 413 |
+
|
| 414 |
+
for i in range(1, blocks):
|
| 415 |
+
layers.append(block(self.inplanes, self.inplanes))
|
| 416 |
+
|
| 417 |
+
layers.append(block(self.inplanes, planes, stride, upsample))
|
| 418 |
+
self.inplanes = planes
|
| 419 |
+
|
| 420 |
+
return nn.Sequential(*layers)
|
| 421 |
+
|
| 422 |
+
# initialize the weights
|
| 423 |
+
def initialize_weights(self):
|
| 424 |
+
res50 = torchvision.models.resnet50(pretrained=True)
|
| 425 |
+
pretrained_dict = res50.state_dict()
|
| 426 |
+
all_params = {}
|
| 427 |
+
for k, v in self.resnet.state_dict().items():
|
| 428 |
+
if k in pretrained_dict.keys():
|
| 429 |
+
v = pretrained_dict[k]
|
| 430 |
+
all_params[k] = v
|
| 431 |
+
elif "_1" in k:
|
| 432 |
+
name = k.split("_1")[0] + k.split("_1")[1]
|
| 433 |
+
v = pretrained_dict[name]
|
| 434 |
+
all_params[k] = v
|
| 435 |
+
elif "_2" in k:
|
| 436 |
+
name = k.split("_2")[0] + k.split("_2")[1]
|
| 437 |
+
v = pretrained_dict[name]
|
| 438 |
+
all_params[k] = v
|
| 439 |
+
assert len(all_params.keys()) == len(self.resnet.state_dict().keys())
|
| 440 |
+
self.resnet.load_state_dict(all_params)
|
| 441 |
+
|
| 442 |
+
all_params = {}
|
| 443 |
+
for k, v in self.resnet_depth.state_dict().items():
|
| 444 |
+
if k == "conv1.weight":
|
| 445 |
+
all_params[k] = torch.nn.init.normal_(v, mean=0, std=1)
|
| 446 |
+
elif k in pretrained_dict.keys():
|
| 447 |
+
v = pretrained_dict[k]
|
| 448 |
+
all_params[k] = v
|
| 449 |
+
elif "_1" in k:
|
| 450 |
+
name = k.split("_1")[0] + k.split("_1")[1]
|
| 451 |
+
v = pretrained_dict[name]
|
| 452 |
+
all_params[k] = v
|
| 453 |
+
elif "_2" in k:
|
| 454 |
+
name = k.split("_2")[0] + k.split("_2")[1]
|
| 455 |
+
v = pretrained_dict[name]
|
| 456 |
+
all_params[k] = v
|
| 457 |
+
assert len(all_params.keys()) == len(self.resnet_depth.state_dict().keys())
|
| 458 |
+
self.resnet_depth.load_state_dict(all_params)
|
ResNet.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
| 6 |
+
"""3x3 convolution with padding"""
|
| 7 |
+
return nn.Conv2d(
|
| 8 |
+
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class BasicBlock(nn.Module):
|
| 13 |
+
expansion = 1
|
| 14 |
+
|
| 15 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 16 |
+
super(BasicBlock, self).__init__()
|
| 17 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
| 18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 19 |
+
self.relu = nn.ReLU(inplace=True)
|
| 20 |
+
self.conv2 = conv3x3(planes, planes)
|
| 21 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 22 |
+
self.downsample = downsample
|
| 23 |
+
self.stride = stride
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
residual = x
|
| 27 |
+
|
| 28 |
+
out = self.conv1(x)
|
| 29 |
+
out = self.bn1(out)
|
| 30 |
+
out = self.relu(out)
|
| 31 |
+
|
| 32 |
+
out = self.conv2(out)
|
| 33 |
+
out = self.bn2(out)
|
| 34 |
+
|
| 35 |
+
if self.downsample is not None:
|
| 36 |
+
residual = self.downsample(x)
|
| 37 |
+
|
| 38 |
+
out += residual
|
| 39 |
+
out = self.relu(out)
|
| 40 |
+
|
| 41 |
+
return out
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class Bottleneck(nn.Module):
|
| 45 |
+
expansion = 4
|
| 46 |
+
|
| 47 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 48 |
+
super(Bottleneck, self).__init__()
|
| 49 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
| 50 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 51 |
+
self.conv2 = nn.Conv2d(
|
| 52 |
+
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
|
| 53 |
+
)
|
| 54 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 55 |
+
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
| 56 |
+
self.bn3 = nn.BatchNorm2d(planes * 4)
|
| 57 |
+
self.relu = nn.ReLU(inplace=True)
|
| 58 |
+
self.downsample = downsample
|
| 59 |
+
self.stride = stride
|
| 60 |
+
|
| 61 |
+
def forward(self, x):
|
| 62 |
+
residual = x
|
| 63 |
+
|
| 64 |
+
out = self.conv1(x)
|
| 65 |
+
out = self.bn1(out)
|
| 66 |
+
out = self.relu(out)
|
| 67 |
+
|
| 68 |
+
out = self.conv2(out)
|
| 69 |
+
out = self.bn2(out)
|
| 70 |
+
out = self.relu(out)
|
| 71 |
+
|
| 72 |
+
out = self.conv3(out)
|
| 73 |
+
out = self.bn3(out)
|
| 74 |
+
|
| 75 |
+
if self.downsample is not None:
|
| 76 |
+
residual = self.downsample(x)
|
| 77 |
+
|
| 78 |
+
out += residual
|
| 79 |
+
out = self.relu(out)
|
| 80 |
+
|
| 81 |
+
return out
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class ResNet50(nn.Module):
|
| 85 |
+
def __init__(self, mode="rgb"):
|
| 86 |
+
self.inplanes = 64
|
| 87 |
+
super(ResNet50, self).__init__()
|
| 88 |
+
if mode == "rgb":
|
| 89 |
+
self.conv1 = nn.Conv2d(
|
| 90 |
+
3, 64, kernel_size=7, stride=2, padding=3, bias=False
|
| 91 |
+
)
|
| 92 |
+
elif mode == "rgbd":
|
| 93 |
+
self.conv1 = nn.Conv2d(
|
| 94 |
+
1, 64, kernel_size=7, stride=2, padding=3, bias=False
|
| 95 |
+
)
|
| 96 |
+
elif mode == "share":
|
| 97 |
+
self.conv1 = nn.Conv2d(
|
| 98 |
+
3, 64, kernel_size=7, stride=2, padding=3, bias=False
|
| 99 |
+
)
|
| 100 |
+
self.conv1_d = nn.Conv2d(
|
| 101 |
+
1, 64, kernel_size=7, stride=2, padding=3, bias=False
|
| 102 |
+
)
|
| 103 |
+
else:
|
| 104 |
+
raise
|
| 105 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 106 |
+
self.relu = nn.ReLU(inplace=True)
|
| 107 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 108 |
+
self.layer1 = self._make_layer(Bottleneck, 64, 3)
|
| 109 |
+
self.layer2 = self._make_layer(Bottleneck, 128, 4, stride=2)
|
| 110 |
+
self.layer3_1 = self._make_layer(Bottleneck, 256, 6, stride=2)
|
| 111 |
+
self.layer4_1 = self._make_layer(Bottleneck, 512, 3, stride=2)
|
| 112 |
+
|
| 113 |
+
self.inplanes = 512
|
| 114 |
+
|
| 115 |
+
for m in self.modules():
|
| 116 |
+
if isinstance(m, nn.Conv2d):
|
| 117 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 118 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / n))
|
| 119 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 120 |
+
m.weight.data.fill_(1)
|
| 121 |
+
m.bias.data.zero_()
|
| 122 |
+
|
| 123 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
| 124 |
+
downsample = None
|
| 125 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 126 |
+
downsample = nn.Sequential(
|
| 127 |
+
nn.Conv2d(
|
| 128 |
+
self.inplanes,
|
| 129 |
+
planes * block.expansion,
|
| 130 |
+
kernel_size=1,
|
| 131 |
+
stride=stride,
|
| 132 |
+
bias=False,
|
| 133 |
+
),
|
| 134 |
+
nn.BatchNorm2d(planes * block.expansion),
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
layers = []
|
| 138 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
| 139 |
+
self.inplanes = planes * block.expansion
|
| 140 |
+
for i in range(1, blocks):
|
| 141 |
+
layers.append(block(self.inplanes, planes))
|
| 142 |
+
|
| 143 |
+
return nn.Sequential(*layers)
|
| 144 |
+
|
| 145 |
+
def forward(self, x):
|
| 146 |
+
x = self.conv1(x)
|
| 147 |
+
x = self.bn1(x)
|
| 148 |
+
x = self.relu(x)
|
| 149 |
+
x = self.maxpool(x)
|
| 150 |
+
|
| 151 |
+
x = self.layer1(x)
|
| 152 |
+
x = self.layer2(x)
|
| 153 |
+
x1 = self.layer3_1(x)
|
| 154 |
+
x1 = self.layer4_1(x1)
|
| 155 |
+
|
| 156 |
+
return x1, x1
|
modeling_bbsnet.py
CHANGED
|
@@ -3,9 +3,8 @@ from typing import Dict, Optional
|
|
| 3 |
from torch import Tensor, nn
|
| 4 |
from transformers import PreTrainedModel
|
| 5 |
|
| 6 |
-
from models.BBSNet_model import BBSNet
|
| 7 |
-
|
| 8 |
from .configuration_bbsnet import BBSNetConfig
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
class BBSNetModel(PreTrainedModel):
|
|
|
|
| 3 |
from torch import Tensor, nn
|
| 4 |
from transformers import PreTrainedModel
|
| 5 |
|
|
|
|
|
|
|
| 6 |
from .configuration_bbsnet import BBSNetConfig
|
| 7 |
+
from .BBSNet_model import BBSNet
|
| 8 |
|
| 9 |
|
| 10 |
class BBSNetModel(PreTrainedModel):
|