Upload kimik2int4-readme.md with huggingface_hub
Browse files- kimik2int4-readme.md +372 -0
kimik2int4-readme.md
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
|
| 3 |
+
Kimi-K2-Instruct-quantized.w4a16
|
| 4 |
+
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
|
| 5 |
+
</h1>
|
| 6 |
+
|
| 7 |
+
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
|
| 8 |
+
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
|
| 9 |
+
</a>
|
| 10 |
+
|
| 11 |
+
## Model Overview
|
| 12 |
+
- **Model Architecture:** Mixture-of-Experts (MoE)
|
| 13 |
+
- **Input:** Text / Image
|
| 14 |
+
- **Output:** Text
|
| 15 |
+
- **Model Optimizations:**
|
| 16 |
+
- **Activation quantization:** None
|
| 17 |
+
- **Weight quantization:** INT4
|
| 18 |
+
- **Release Date:** 07/15/2025
|
| 19 |
+
- **Version:** 1.0
|
| 20 |
+
- **Validated on:** RHOAI 2.24, RHAIIS 3.2.1
|
| 21 |
+
- **Model Developers:** Red Hat (Neural Magic)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## 1. Model Introduction
|
| 26 |
+
|
| 27 |
+
This model was obtained by quantizing the weights of **`Kimi-K2-Instruct`** to the INT4 data type. This optimization reduces the number of bits used to represent weights from 16 (FP16/BF16) to 4, reducing GPU memory requirements (by approximately 75%). This weight quantization also reduces the model's disk size by approximately 75%.
|
| 28 |
+
|
| 29 |
+
The original `Kimi K2` is a state-of-the-art mixture-of-experts (MoE) language model with 32 billion activated parameters and 1 trillion total parameters. Trained with the Muon optimizer, Kimi K2 achieves exceptional performance across frontier knowledge, reasoning, and coding tasks while being meticulously optimized for agentic capabilities.
|
| 30 |
+
|
| 31 |
+
### Key Features
|
| 32 |
+
- INT4 Quantization: This model has been quantized to INT4, dramatically reducing memory footprint and enabling high-throughput, low-latency inference.
|
| 33 |
+
- Large-Scale Training: Pre-trained a 1T parameter MoE model on 15.5T tokens with zero training instability.
|
| 34 |
+
- MuonClip Optimizer: We apply the Muon optimizer to an unprecedented scale, and develop novel optimization techniques to resolve instabilities while scaling up.
|
| 35 |
+
- Agentic Intelligence: Specifically designed for tool use, reasoning, and autonomous problem-solving.
|
| 36 |
+
|
| 37 |
+
### Model Variants
|
| 38 |
+
- **Kimi-K2-Base**: The foundation model, a strong start for researchers and builders who want full control for fine-tuning and custom solutions.
|
| 39 |
+
- **Kimi-K2-Instruct**: The post-trained model best for drop-in, general-purpose chat and agentic experiences. It is a reflex-grade model without long thinking.
|
| 40 |
+
- **RedHatAI/Kimi-K2-Instruct-quantized.int4 (This Model)**: An INT4 quantized version of `Kimi-K2-Instruct` for efficient, high-performance inference, validated by Red Hat.
|
| 41 |
+
|
| 42 |
+
<div align="center">
|
| 43 |
+
<picture>
|
| 44 |
+
<img src="figures/banner.png" width="80%" alt="Evaluation Results">
|
| 45 |
+
</picture>
|
| 46 |
+
</div>
|
| 47 |
+
|
| 48 |
+
## 2. Model Summary
|
| 49 |
+
|
| 50 |
+
<div align="center">
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
| | |
|
| 54 |
+
|:---:|:---:|
|
| 55 |
+
| **Architecture** | Mixture-of-Experts (MoE) |
|
| 56 |
+
| **Total Parameters** | 1T |
|
| 57 |
+
| **Activated Parameters** | 32B |
|
| 58 |
+
| **Number of Layers** (Dense layer included) | 61 |
|
| 59 |
+
| **Number of Dense Layers** | 1 |
|
| 60 |
+
| **Attention Hidden Dimension** | 7168 |
|
| 61 |
+
| **MoE Hidden Dimension** (per Expert) | 2048 |
|
| 62 |
+
| **Number of Attention Heads** | 64 |
|
| 63 |
+
| **Number of Experts** | 384 |
|
| 64 |
+
| **Selected Experts per Token** | 8 |
|
| 65 |
+
| **Number of Shared Experts** | 1 |
|
| 66 |
+
| **Vocabulary Size** | 160K |
|
| 67 |
+
| **Context Length** | 128K |
|
| 68 |
+
| **Attention Mechanism** | MLA |
|
| 69 |
+
| **Activation Function** | SwiGLU |
|
| 70 |
+
</div>
|
| 71 |
+
|
| 72 |
+
## 3. Preliminary Evaluations
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
- GSM8k, 5-shot via lm-evaluation-harness
|
| 76 |
+
```
|
| 77 |
+
moonshotai/Kimi-K2-Instruct = 94.92
|
| 78 |
+
RedHatAI/Kimi-K2-Instruct-quantized.w4a16 (this model) = 94.84
|
| 79 |
+
```
|
| 80 |
+
More evals coming very soon...
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
## Deployment
|
| 84 |
+
|
| 85 |
+
This model can be deployed efficiently on vLLM, Red Hat Enterprise Linux AI, and Openshift AI, as shown in the example below.
|
| 86 |
+
|
| 87 |
+
Deploy on <strong>vLLM</strong>
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
from vllm import LLM, SamplingParams
|
| 91 |
+
from transformers import AutoTokenizer
|
| 92 |
+
|
| 93 |
+
model_id = "RedHatAI/Kimi-K2-Instruct-quantized.w4a16"
|
| 94 |
+
number_gpus = 8
|
| 95 |
+
|
| 96 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
|
| 97 |
+
|
| 98 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 99 |
+
|
| 100 |
+
prompt = "Give me a short introduction to large language model."
|
| 101 |
+
|
| 102 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
| 103 |
+
|
| 104 |
+
outputs = llm.generate(prompt, sampling_params)
|
| 105 |
+
|
| 106 |
+
generated_text = outputs[0].outputs[0].text
|
| 107 |
+
print(generated_text)
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
<details>
|
| 114 |
+
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
|
| 115 |
+
|
| 116 |
+
```bash
|
| 117 |
+
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
|
| 118 |
+
--ipc=host \
|
| 119 |
+
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
|
| 120 |
+
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
|
| 121 |
+
--name=vllm \
|
| 122 |
+
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
|
| 123 |
+
vllm serve \
|
| 124 |
+
--tensor-parallel-size 8 \
|
| 125 |
+
--max-model-len 32768 \
|
| 126 |
+
--enforce-eager --model RedHatAI/Kimi-K2-Instruct-quantized.w4a16
|
| 127 |
+
```
|
| 128 |
+
</details>
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
<details>
|
| 132 |
+
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
|
| 133 |
+
|
| 134 |
+
```python
|
| 135 |
+
# Setting up vllm server with ServingRuntime
|
| 136 |
+
# Save as: vllm-servingruntime.yaml
|
| 137 |
+
apiVersion: serving.kserve.io/v1alpha1
|
| 138 |
+
kind: ServingRuntime
|
| 139 |
+
metadata:
|
| 140 |
+
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
|
| 141 |
+
annotations:
|
| 142 |
+
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
|
| 143 |
+
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
|
| 144 |
+
labels:
|
| 145 |
+
opendatahub.io/dashboard: 'true'
|
| 146 |
+
spec:
|
| 147 |
+
annotations:
|
| 148 |
+
prometheus.io/port: '8080'
|
| 149 |
+
prometheus.io/path: '/metrics'
|
| 150 |
+
multiModel: false
|
| 151 |
+
supportedModelFormats:
|
| 152 |
+
- autoSelect: true
|
| 153 |
+
name: vLLM
|
| 154 |
+
containers:
|
| 155 |
+
- name: kserve-container
|
| 156 |
+
image: quay.io/modh/vllm:rhoai-2.24-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
|
| 157 |
+
command:
|
| 158 |
+
- python
|
| 159 |
+
- -m
|
| 160 |
+
- vllm.entrypoints.openai.api_server
|
| 161 |
+
args:
|
| 162 |
+
- "--port=8080"
|
| 163 |
+
- "--model=/mnt/models"
|
| 164 |
+
- "--served-model-name={{.Name}}"
|
| 165 |
+
env:
|
| 166 |
+
- name: HF_HOME
|
| 167 |
+
value: /tmp/hf_home
|
| 168 |
+
ports:
|
| 169 |
+
- containerPort: 8080
|
| 170 |
+
protocol: TCP
|
| 171 |
+
```
|
| 172 |
+
|
| 173 |
+
```python
|
| 174 |
+
# Attach model to vllm server. This is an NVIDIA template
|
| 175 |
+
# Save as: inferenceservice.yaml
|
| 176 |
+
apiVersion: serving.kserve.io/v1beta1
|
| 177 |
+
kind: InferenceService
|
| 178 |
+
metadata:
|
| 179 |
+
annotations:
|
| 180 |
+
openshift.io/display-name: kimi-k2-instruct-quantized-w4a16 # OPTIONAL CHANGE
|
| 181 |
+
serving.kserve.io/deploymentMode: RawDeployment
|
| 182 |
+
name: kimi-k2-instruct-quantized-w4a16 # specify model name. This value will be used to invoke the model in the payload
|
| 183 |
+
labels:
|
| 184 |
+
opendatahub.io/dashboard: 'true'
|
| 185 |
+
spec:
|
| 186 |
+
predictor:
|
| 187 |
+
maxReplicas: 1
|
| 188 |
+
minReplicas: 1
|
| 189 |
+
model:
|
| 190 |
+
modelFormat:
|
| 191 |
+
name: vLLM
|
| 192 |
+
name: ''
|
| 193 |
+
resources:
|
| 194 |
+
limits:
|
| 195 |
+
cpu: '2' # this is model specific
|
| 196 |
+
memory: 8Gi # this is model specific
|
| 197 |
+
nvidia.com/gpu: '1' # this is accelerator specific
|
| 198 |
+
requests: # same comment for this block
|
| 199 |
+
cpu: '1'
|
| 200 |
+
memory: 4Gi
|
| 201 |
+
nvidia.com/gpu: '1'
|
| 202 |
+
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
|
| 203 |
+
storageUri: oci://registry.stage.redhat.io/rhelai1/modelcar-kimi-k2-instruct-quantized-w4a16:1.5
|
| 204 |
+
tolerations:
|
| 205 |
+
- effect: NoSchedule
|
| 206 |
+
key: nvidia.com/gpu
|
| 207 |
+
operator: Exists
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
```bash
|
| 211 |
+
# make sure first to be in the project where you want to deploy the model
|
| 212 |
+
# oc project <project-name>
|
| 213 |
+
|
| 214 |
+
# apply both resources to run model
|
| 215 |
+
|
| 216 |
+
# Apply the ServingRuntime
|
| 217 |
+
oc apply -f vllm-servingruntime.yaml
|
| 218 |
+
|
| 219 |
+
# Apply the InferenceService
|
| 220 |
+
oc apply -f qwen-inferenceservice.yaml
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
```python
|
| 224 |
+
# Replace <inference-service-name> and <cluster-ingress-domain> below:
|
| 225 |
+
# - Run `oc get inferenceservice` to find your URL if unsure.
|
| 226 |
+
|
| 227 |
+
# Call the server using curl:
|
| 228 |
+
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
|
| 229 |
+
-H "Content-Type: application/json" \
|
| 230 |
+
-d '{
|
| 231 |
+
"model": "kimi-k2-instruct-quantized-w4a16",
|
| 232 |
+
"stream": true,
|
| 233 |
+
"stream_options": {
|
| 234 |
+
"include_usage": true
|
| 235 |
+
},
|
| 236 |
+
"max_tokens": 1,
|
| 237 |
+
"messages": [
|
| 238 |
+
{
|
| 239 |
+
"role": "user",
|
| 240 |
+
"content": "How can a bee fly when its wings are so small?"
|
| 241 |
+
}
|
| 242 |
+
]
|
| 243 |
+
}'
|
| 244 |
+
|
| 245 |
+
```
|
| 246 |
+
|
| 247 |
+
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
|
| 248 |
+
</details>
|
| 249 |
+
|
| 250 |
+
## Creation
|
| 251 |
+
|
| 252 |
+
We created this model using **MoE-Quant**, a library developed jointly with **ISTA** and tailored for the quantization of very large Mixture-of-Experts (MoE) models.
|
| 253 |
+
|
| 254 |
+
For more details, please refer to the [MoE-Quant repository](https://github.com/IST-DASLab/MoE-Quant).
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
---
|
| 258 |
+
|
| 259 |
+
## 5. Model Usage
|
| 260 |
+
|
| 261 |
+
### Chat Completion
|
| 262 |
+
|
| 263 |
+
Once the local inference service is up, you can interact with it through the chat endpoint:
|
| 264 |
+
|
| 265 |
+
```python
|
| 266 |
+
def simple_chat(client: OpenAI, model_name: str):
|
| 267 |
+
messages = [
|
| 268 |
+
{"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
|
| 269 |
+
{"role": "user", "content": [{"type": "text", "text": "Please give a brief self-introduction."}]},
|
| 270 |
+
]
|
| 271 |
+
response = client.chat.completions.create(
|
| 272 |
+
model=model_name,
|
| 273 |
+
messages=messages,
|
| 274 |
+
stream=False,
|
| 275 |
+
temperature=0.6,
|
| 276 |
+
max_tokens=256
|
| 277 |
+
)
|
| 278 |
+
print(response.choices[0].message.content)
|
| 279 |
+
```
|
| 280 |
+
|
| 281 |
+
> [!NOTE]
|
| 282 |
+
> The recommended temperature for Kimi-K2-Instruct.w4a16 is `temperature = 0.6`.
|
| 283 |
+
> If no special instructions are required, the system prompt above is a good default.
|
| 284 |
+
|
| 285 |
+
---
|
| 286 |
+
|
| 287 |
+
### Tool Calling
|
| 288 |
+
|
| 289 |
+
Kimi-K2-Instruct.w4a16 has strong tool-calling capabilities.
|
| 290 |
+
To enable them, you need to pass the list of available tools in each request, then the model will autonomously decide when and how to invoke them.
|
| 291 |
+
|
| 292 |
+
The following example demonstrates calling a weather tool end-to-end:
|
| 293 |
+
|
| 294 |
+
```python
|
| 295 |
+
# Your tool implementation
|
| 296 |
+
def get_weather(city: str) -> dict:
|
| 297 |
+
return {"weather": "Sunny"}
|
| 298 |
+
|
| 299 |
+
# Tool schema definition
|
| 300 |
+
tools = [{
|
| 301 |
+
"type": "function",
|
| 302 |
+
"function": {
|
| 303 |
+
"name": "get_weather",
|
| 304 |
+
"description": "Retrieve current weather information. Call this when the user asks about the weather.",
|
| 305 |
+
"parameters": {
|
| 306 |
+
"type": "object",
|
| 307 |
+
"required": ["city"],
|
| 308 |
+
"properties": {
|
| 309 |
+
"city": {
|
| 310 |
+
"type": "string",
|
| 311 |
+
"description": "Name of the city"
|
| 312 |
+
}
|
| 313 |
+
}
|
| 314 |
+
}
|
| 315 |
+
}
|
| 316 |
+
}]
|
| 317 |
+
|
| 318 |
+
# Map tool names to their implementations
|
| 319 |
+
tool_map = {
|
| 320 |
+
"get_weather": get_weather
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
def tool_call_with_client(client: OpenAI, model_name: str):
|
| 324 |
+
messages = [
|
| 325 |
+
{"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
|
| 326 |
+
{"role": "user", "content": "What's the weather like in Beijing today? Use the tool to check."}
|
| 327 |
+
]
|
| 328 |
+
finish_reason = None
|
| 329 |
+
while finish_reason is None or finish_reason == "tool_calls":
|
| 330 |
+
completion = client.chat.completions.create(
|
| 331 |
+
model=model_name,
|
| 332 |
+
messages=messages,
|
| 333 |
+
temperature=0.6,
|
| 334 |
+
tools=tools, # tool list defined above
|
| 335 |
+
tool_choice="auto"
|
| 336 |
+
)
|
| 337 |
+
choice = completion.choices[0]
|
| 338 |
+
finish_reason = choice.finish_reason
|
| 339 |
+
if finish_reason == "tool_calls":
|
| 340 |
+
messages.append(choice.message)
|
| 341 |
+
for tool_call in choice.message.tool_calls:
|
| 342 |
+
tool_call_name = tool_call.function.name
|
| 343 |
+
tool_call_arguments = json.loads(tool_call.function.arguments)
|
| 344 |
+
tool_function = tool_map[tool_call_name]
|
| 345 |
+
tool_result = tool_function(**tool_call_arguments)
|
| 346 |
+
print("tool_result:", tool_result)
|
| 347 |
+
|
| 348 |
+
messages.append({
|
| 349 |
+
"role": "tool",
|
| 350 |
+
"tool_call_id": tool_call.id,
|
| 351 |
+
"name": tool_call_name,
|
| 352 |
+
"content": json.dumps(tool_result)
|
| 353 |
+
})
|
| 354 |
+
print("-" * 100)
|
| 355 |
+
print(choice.message.content)
|
| 356 |
+
```
|
| 357 |
+
|
| 358 |
+
The `tool_call_with_client` function implements the pipeline from user query to tool execution.
|
| 359 |
+
This pipeline requires the inference engine to support Kimi-K2’s native tool-parsing logic.
|
| 360 |
+
For streaming output and manual tool-parsing, see the [Tool Calling Guide](docs/tool_call_guidance.md).
|
| 361 |
+
|
| 362 |
+
---
|
| 363 |
+
|
| 364 |
+
## 6. License
|
| 365 |
+
|
| 366 |
+
Both the code repository and the model weights are released under the [Modified MIT License](LICENSE).
|
| 367 |
+
|
| 368 |
+
---
|
| 369 |
+
|
| 370 |
+
## 7. Third Party Notices
|
| 371 |
+
|
| 372 |
+
See [THIRD PARTY NOTICES](THIRD_PARTY_NOTICES.md)
|