Eldar Kurtic
commited on
Commit
·
9064e71
1
Parent(s):
8f9fd99
add readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- fp8
|
| 4 |
+
- vllm
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
- de
|
| 8 |
+
- fr
|
| 9 |
+
- it
|
| 10 |
+
- pt
|
| 11 |
+
- hi
|
| 12 |
+
- es
|
| 13 |
+
- th
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
+
license: llama3.2
|
| 16 |
+
base_model: meta-llama/Llama-3.2-3B-Instruct
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Llama-3.2-3B-Instruct-FP8-dynamic
|
| 20 |
+
|
| 21 |
+
## Model Overview
|
| 22 |
+
- **Model Architecture:** Meta-Llama-3.2
|
| 23 |
+
- **Input:** Text
|
| 24 |
+
- **Output:** Text
|
| 25 |
+
- **Model Optimizations:**
|
| 26 |
+
- **Weight quantization:** FP8
|
| 27 |
+
- **Activation quantization:** FP8
|
| 28 |
+
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), this models is intended for assistant-like chat.
|
| 29 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 30 |
+
- **Release Date:** 9/25/2024
|
| 31 |
+
- **Version:** 1.0
|
| 32 |
+
- **License(s):** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE)
|
| 33 |
+
- **Model Developers:** Neural Magic
|
| 34 |
+
|
| 35 |
+
Quantized version of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct).
|
| 36 |
+
It achieves an average score of 50.88 on a subset of task from the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 51.70.
|
| 37 |
+
|
| 38 |
+
### Model Optimizations
|
| 39 |
+
|
| 40 |
+
This model was obtained by quantizing the weights and activations of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) to FP8 data type, ready for inference with vLLM built from source.
|
| 41 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
| 42 |
+
|
| 43 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis.
|
| 44 |
+
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization.
|
| 45 |
+
|
| 46 |
+
## Deployment
|
| 47 |
+
|
| 48 |
+
### Use with vLLM
|
| 49 |
+
|
| 50 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
from vllm import LLM, SamplingParams
|
| 54 |
+
from transformers import AutoTokenizer
|
| 55 |
+
|
| 56 |
+
model_id = "neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic"
|
| 57 |
+
|
| 58 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
| 59 |
+
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 61 |
+
|
| 62 |
+
messages = [
|
| 63 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 64 |
+
{"role": "user", "content": "Who are you?"},
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
|
| 68 |
+
|
| 69 |
+
llm = LLM(model=model_id)
|
| 70 |
+
|
| 71 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 72 |
+
|
| 73 |
+
generated_text = outputs[0].outputs[0].text
|
| 74 |
+
print(generated_text)
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
| 78 |
+
|
| 79 |
+
## Creation
|
| 80 |
+
|
| 81 |
+
This model was created by applying [LLM Compressor](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below.
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
import torch
|
| 85 |
+
|
| 86 |
+
from transformers import AutoTokenizer
|
| 87 |
+
|
| 88 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
|
| 89 |
+
from llmcompressor.transformers.compression.helpers import ( # noqa
|
| 90 |
+
calculate_offload_device_map,
|
| 91 |
+
custom_offload_device_map,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
recipe = """
|
| 95 |
+
quant_stage:
|
| 96 |
+
quant_modifiers:
|
| 97 |
+
QuantizationModifier:
|
| 98 |
+
ignore: ["lm_head"]
|
| 99 |
+
config_groups:
|
| 100 |
+
group_0:
|
| 101 |
+
weights:
|
| 102 |
+
num_bits: 8
|
| 103 |
+
type: float
|
| 104 |
+
strategy: channel
|
| 105 |
+
dynamic: false
|
| 106 |
+
symmetric: true
|
| 107 |
+
input_activations:
|
| 108 |
+
num_bits: 8
|
| 109 |
+
type: float
|
| 110 |
+
strategy: token
|
| 111 |
+
dynamic: true
|
| 112 |
+
symmetric: true
|
| 113 |
+
targets: ["Linear"]
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
model_stub = "meta-llama/Llama-3.2-3B-Instruct"
|
| 117 |
+
model_name = model_stub.split("/")[-1]
|
| 118 |
+
|
| 119 |
+
device_map = calculate_offload_device_map(
|
| 120 |
+
model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype="auto"
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
| 124 |
+
model_stub, torch_dtype="auto", device_map=device_map
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
output_dir = f"./{model_name}-FP8-dynamic"
|
| 128 |
+
|
| 129 |
+
oneshot(
|
| 130 |
+
model=model,
|
| 131 |
+
recipe=recipe,
|
| 132 |
+
output_dir=output_dir,
|
| 133 |
+
save_compressed=True,
|
| 134 |
+
tokenizer=AutoTokenizer.from_pretrained(model_stub),
|
| 135 |
+
)
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
## Evaluation
|
| 139 |
+
|
| 140 |
+
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, and Winogrande.
|
| 141 |
+
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 142 |
+
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, MMLU, and MMLU-cot that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
| 143 |
+
|
| 144 |
+
### Accuracy
|
| 145 |
+
|
| 146 |
+
#### Open LLM Leaderboard evaluation scores
|
| 147 |
+
<table>
|
| 148 |
+
<tr>
|
| 149 |
+
<td><strong>Benchmark</strong>
|
| 150 |
+
</td>
|
| 151 |
+
<td><strong>Llama-3.2-3B-Instruct </strong>
|
| 152 |
+
</td>
|
| 153 |
+
<td><strong>Llama-3.2-3B-Instruct-FP8-dynamic (this model)</strong>
|
| 154 |
+
</td>
|
| 155 |
+
<td><strong>Recovery</strong>
|
| 156 |
+
</td>
|
| 157 |
+
</tr>
|
| 158 |
+
<tr>
|
| 159 |
+
<td>MMLU-cot (0-shot)
|
| 160 |
+
</td>
|
| 161 |
+
<td>55.22
|
| 162 |
+
</td>
|
| 163 |
+
<td>55.28
|
| 164 |
+
</td>
|
| 165 |
+
<td>100.1%
|
| 166 |
+
</td>
|
| 167 |
+
</tr>
|
| 168 |
+
<tr>
|
| 169 |
+
<td>ARC Challenge (0-shot)
|
| 170 |
+
</td>
|
| 171 |
+
<td>77.39
|
| 172 |
+
</td>
|
| 173 |
+
<td>76.62
|
| 174 |
+
</td>
|
| 175 |
+
<td>99.0%
|
| 176 |
+
</td>
|
| 177 |
+
</tr>
|
| 178 |
+
<tr>
|
| 179 |
+
<td>GSM-8K-cot (8-shot, strict-match)
|
| 180 |
+
</td>
|
| 181 |
+
<td>77.56
|
| 182 |
+
</td>
|
| 183 |
+
<td>76.12
|
| 184 |
+
</td>
|
| 185 |
+
<td>98.1%
|
| 186 |
+
</td>
|
| 187 |
+
</tr>
|
| 188 |
+
<tr>
|
| 189 |
+
<td>Winogrande (5-shot)
|
| 190 |
+
</td>
|
| 191 |
+
<td>70.2
|
| 192 |
+
</td>
|
| 193 |
+
<td>69.3
|
| 194 |
+
</td>
|
| 195 |
+
<td>98.7%
|
| 196 |
+
</td>
|
| 197 |
+
</tr>
|
| 198 |
+
<tr>
|
| 199 |
+
<td><strong>Average</strong>
|
| 200 |
+
</td>
|
| 201 |
+
<td><strong>70.09</strong>
|
| 202 |
+
</td>
|
| 203 |
+
<td><strong>69.33</strong>
|
| 204 |
+
</td>
|
| 205 |
+
<td><strong>98.92%</strong>
|
| 206 |
+
</td>
|
| 207 |
+
</tr>
|
| 208 |
+
</table>
|
| 209 |
+
|
| 210 |
+
### Reproduction
|
| 211 |
+
|
| 212 |
+
The results were obtained using the following commands:
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
#### MMLU-cot
|
| 216 |
+
```
|
| 217 |
+
lm_eval \
|
| 218 |
+
--model vllm \
|
| 219 |
+
--model_args pretrained="neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1 \
|
| 220 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 221 |
+
--apply_chat_template \
|
| 222 |
+
--num_fewshot 0 \
|
| 223 |
+
--batch_size auto
|
| 224 |
+
```
|
| 225 |
+
|
| 226 |
+
#### ARC-Challenge
|
| 227 |
+
```
|
| 228 |
+
lm_eval \
|
| 229 |
+
--model vllm \
|
| 230 |
+
--model_args pretrained="neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1 \
|
| 231 |
+
--tasks arc_challenge_llama_3.1_instruct \
|
| 232 |
+
--apply_chat_template \
|
| 233 |
+
--num_fewshot 0 \
|
| 234 |
+
--batch_size auto
|
| 235 |
+
```
|
| 236 |
+
|
| 237 |
+
#### GSM-8K
|
| 238 |
+
```
|
| 239 |
+
lm_eval \
|
| 240 |
+
--model vllm \
|
| 241 |
+
--model_args pretrained="neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1 \
|
| 242 |
+
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 243 |
+
--apply_chat_template \
|
| 244 |
+
--fewshot_as_multiturn \
|
| 245 |
+
--num_fewshot 8 \
|
| 246 |
+
--batch_size auto
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
#### Winogrande
|
| 250 |
+
```
|
| 251 |
+
lm_eval \
|
| 252 |
+
--model vllm \
|
| 253 |
+
--model_args pretrained="neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1 \
|
| 254 |
+
--tasks winogrande \
|
| 255 |
+
--num_fewshot 5 \
|
| 256 |
+
--batch_size auto
|
| 257 |
+
```
|
| 258 |
+
|