|
|
--- |
|
|
license: apache-2.0 |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- fp8 |
|
|
- quantized |
|
|
- llm-compressor |
|
|
- compressed-tensors |
|
|
- red hat |
|
|
base_model: |
|
|
- Qwen/Qwen3-30B-A3B |
|
|
--- |
|
|
|
|
|
|
|
|
# Qwen3-30B-A3B-FP8-block |
|
|
|
|
|
## Model Overview |
|
|
- **Model Architecture:** Qwen3MoeForCausalLM |
|
|
- **Input:** Text |
|
|
- **Output:** Text |
|
|
- **Model Optimizations:** |
|
|
- **Weight quantization:** FP8 |
|
|
- **Activation quantization:** FP8 |
|
|
- **Release Date:** |
|
|
- **Version:** 1.0 |
|
|
- **Model Developers:**: Red Hat |
|
|
|
|
|
Quantized version of [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B). |
|
|
|
|
|
### Model Optimizations |
|
|
|
|
|
This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) to FP8 data type. |
|
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
|
Only the weights and activations of the linear operators within transformers blocks of the language model are quantized. |
|
|
|
|
|
## Deployment |
|
|
|
|
|
### Use with vLLM |
|
|
|
|
|
1. Initialize vLLM server: |
|
|
``` |
|
|
vllm serve RedHatAI/Qwen3-30B-A3B-FP8-BLOCK --tensor_parallel_size 4 |
|
|
``` |
|
|
|
|
|
2. Send requests to the server: |
|
|
|
|
|
```python |
|
|
from openai import OpenAI |
|
|
|
|
|
# Modify OpenAI's API key and API base to use vLLM's API server. |
|
|
openai_api_key = "EMPTY" |
|
|
openai_api_base = "http://<your-server-host>:8000/v1" |
|
|
|
|
|
client = OpenAI( |
|
|
api_key=openai_api_key, |
|
|
base_url=openai_api_base, |
|
|
) |
|
|
|
|
|
model = "RedHatAI/Qwen3-30B-A3B-FP8-BLOCK" |
|
|
|
|
|
messages = [ |
|
|
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, |
|
|
] |
|
|
|
|
|
outputs = client.chat.completions.create( |
|
|
model=model, |
|
|
messages=messages, |
|
|
) |
|
|
|
|
|
generated_text = outputs.choices[0].message.content |
|
|
print(generated_text) |
|
|
``` |
|
|
|
|
|
## Creation |
|
|
|
|
|
This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below. |
|
|
|
|
|
<details> |
|
|
<summary>Creation details</summary> |
|
|
|
|
|
```python |
|
|
from transformers import AutoProcessor, Qwen3MoeForCausalLM |
|
|
|
|
|
from llmcompressor import oneshot |
|
|
from llmcompressor.modeling import replace_modules_for_calibration |
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
|
|
|
|
MODEL_ID = "Qwen/Qwen3-30B-A3B" |
|
|
|
|
|
# Load model. |
|
|
model = Qwen3ForCausalLM.from_pretrained(MODEL_ID, dtype="auto") |
|
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
|
model = replace_modules_for_calibration(model) |
|
|
|
|
|
# Configure the quantization algorithm and scheme. |
|
|
# In this case, we: |
|
|
# * quantize the weights to fp8 with per-block quantization |
|
|
# * quantize the activations to fp8 with dynamic token activations |
|
|
recipe = QuantizationModifier( |
|
|
targets="Linear", |
|
|
scheme="FP8_BLOCK", |
|
|
ignore=["lm_head"], |
|
|
) |
|
|
|
|
|
# Apply quantization. |
|
|
oneshot(model=model, recipe=recipe) |
|
|
|
|
|
# Save to disk in compressed-tensors format. |
|
|
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block" |
|
|
model.save_pretrained(SAVE_DIR) |
|
|
processor.save_pretrained(SAVE_DIR) |
|
|
``` |
|
|
</details> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
|
|
|
The model was evaluated on the OpenLLM leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). |
|
|
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations. |
|
|
|
|
|
<details> |
|
|
<summary>Evaluation details</summary> |
|
|
|
|
|
**Openllm V1** |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-FP8-BLOCK",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=2,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \ |
|
|
--tasks openllm \ |
|
|
--write_out \ |
|
|
--batch_size auto \ |
|
|
--show_config |
|
|
``` |
|
|
|
|
|
|
|
|
**Openllm V2** |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-FP8-BLOCK",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=2,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \ |
|
|
--tasks leaderboard \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--write_out \ |
|
|
--batch_size auto \ |
|
|
--show_config |
|
|
``` |
|
|
|
|
|
|
|
|
**Coding Benchmarks** |
|
|
|
|
|
``` |
|
|
evalplus.evaluate --model "RedHatAI/Qwen3-30B-A3B-FP8-BLOCK" \ |
|
|
--dataset "humaneval" \ |
|
|
--backend vllm \ |
|
|
--tp 2 \ |
|
|
--greedy |
|
|
|
|
|
evalplus.evaluate --model "RedHatAI/Qwen3-30B-A3B-FP8-BLOCK" \ |
|
|
--dataset "mbpp" \ |
|
|
--backend vllm \ |
|
|
--tp 2 \ |
|
|
--greedy |
|
|
|
|
|
``` |
|
|
|
|
|
</details> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### Accuracy |
|
|
<table> |
|
|
<thead> |
|
|
<tr> |
|
|
<th>Category</th> |
|
|
<th>Metric</th> |
|
|
<th>Qwen/Qwen3-30B-A3B</th> |
|
|
<th>RedHatAI/Qwen3-30B-A3B-FP8-BLOCK</th> |
|
|
<th>Recovery (%)</th> |
|
|
</tr> |
|
|
</thead> |
|
|
<tbody> |
|
|
<!-- OpenLLM Leaderboard V1 --> |
|
|
<tr> |
|
|
<td rowspan="7"><b>OpenLLM V1</b></td> |
|
|
<td>ARC-Challenge (Acc-Norm, 25-shot)</td> |
|
|
<td>69.28</td> |
|
|
<td>69.88</td> |
|
|
<td>100.86</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>GSM8K (Strict-Match, 5-shot)</td> |
|
|
<td>89.99</td> |
|
|
<td>89.16</td> |
|
|
<td>99.07</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>HellaSwag (Acc-Norm, 10-shot)</td> |
|
|
<td>77.64</td> |
|
|
<td>77.41</td> |
|
|
<td>99.71</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MMLU (Acc, 5-shot)</td> |
|
|
<td>79.50</td> |
|
|
<td>79.37</td> |
|
|
<td>99.84</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>TruthfulQA (MC2, 0-shot)</td> |
|
|
<td>53.20</td> |
|
|
<td>53.93</td> |
|
|
<td>101.38</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Winogrande (Acc, 5-shot)</td> |
|
|
<td>72.30</td> |
|
|
<td>72.69</td> |
|
|
<td>100.55</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average Score</b></td> |
|
|
<td><b>73.65</b></td> |
|
|
<td><b>73.74</b></td> |
|
|
<td><b>100.12</b></td> |
|
|
</tr> |
|
|
<!-- OpenLLM Leaderboard V2 --> |
|
|
<tr> |
|
|
<td rowspan="7"><b>OpenLLM V2</b></td> |
|
|
<td>IFEval (Inst Level Strict Acc, 0-shot)</td> |
|
|
<td>48.68</td> |
|
|
<td>47.84</td> |
|
|
<td>98.28</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>BBH (Acc-Norm, 3-shot)</td> |
|
|
<td>32.46</td> |
|
|
<td>32.06</td> |
|
|
<td>98.77</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>Math-Hard (Exact-Match, 4-shot)</td> |
|
|
<td>18.81</td> |
|
|
<td>18.96</td> |
|
|
<td>100.80</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>GPQA (Acc-Norm, 0-shot)</td> |
|
|
<td>24.16</td> |
|
|
<td>24.75</td> |
|
|
<td>102.43</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MUSR (Acc-Norm, 0-shot)</td> |
|
|
<td>38.62</td> |
|
|
<td>40.48</td> |
|
|
<td>104.79</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td>MMLU-Pro (Acc, 5-shot)</td> |
|
|
<td>23.15</td> |
|
|
<td>25.66</td> |
|
|
<td>110.80</td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><b>Average Score</b></td> |
|
|
<td><b>30.98</b></td> |
|
|
<td><b>31.62</b></td> |
|
|
<td><b>102.07</b></td> |
|
|
</tr> |
|
|
</tbody> |
|
|
</table> |