krishnateja95's picture
Create README.md
6a2ea1f verified
|
raw
history blame
6.66 kB
---
license: apache-2.0
pipeline_tag: text-generation
tags:
- fp8
- quantized
- llm-compressor
- compressed-tensors
- red hat
base_model:
- Qwen/Qwen3-30B-A3B
---
# Qwen3-30B-A3B-FP8-block
## Model Overview
- **Model Architecture:** Qwen3MoeForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Release Date:**
- **Version:** 1.0
- **Model Developers:**: Red Hat
Quantized version of [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B).
### Model Optimizations
This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) to FP8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
## Deployment
### Use with vLLM
1. Initialize vLLM server:
```
vllm serve RedHatAI/Qwen3-30B-A3B-FP8-BLOCK --tensor_parallel_size 4
```
2. Send requests to the server:
```python
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "RedHatAI/Qwen3-30B-A3B-FP8-BLOCK"
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
```
## Creation
This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below.
<details>
<summary>Creation details</summary>
```python
from transformers import AutoProcessor, Qwen3MoeForCausalLM
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = "Qwen/Qwen3-30B-A3B"
# Load model.
model = Qwen3ForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
# Configure the quantization algorithm and scheme.
# In this case, we:
# * quantize the weights to fp8 with per-block quantization
# * quantize the activations to fp8 with dynamic token activations
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_BLOCK",
ignore=["lm_head"],
)
# Apply quantization.
oneshot(model=model, recipe=recipe)
# Save to disk in compressed-tensors format.
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
```
</details>
## Evaluation
The model was evaluated on the OpenLLM leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
[vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
<details>
<summary>Evaluation details</summary>
**Openllm V1**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-FP8-BLOCK",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=2,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
```
**Openllm V2**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-FP8-BLOCK",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=2,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
```
**Coding Benchmarks**
```
evalplus.evaluate --model "RedHatAI/Qwen3-30B-A3B-FP8-BLOCK" \
--dataset "humaneval" \
--backend vllm \
--tp 2 \
--greedy
evalplus.evaluate --model "RedHatAI/Qwen3-30B-A3B-FP8-BLOCK" \
--dataset "mbpp" \
--backend vllm \
--tp 2 \
--greedy
```
</details>
### Accuracy
<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>Qwen/Qwen3-30B-A3B</th>
<th>RedHatAI/Qwen3-30B-A3B-FP8-BLOCK</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<!-- OpenLLM Leaderboard V1 -->
<tr>
<td rowspan="7"><b>OpenLLM V1</b></td>
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
<td>69.28</td>
<td>69.88</td>
<td>100.86</td>
</tr>
<tr>
<td>GSM8K (Strict-Match, 5-shot)</td>
<td>89.99</td>
<td>89.16</td>
<td>99.07</td>
</tr>
<tr>
<td>HellaSwag (Acc-Norm, 10-shot)</td>
<td>77.64</td>
<td>77.41</td>
<td>99.71</td>
</tr>
<tr>
<td>MMLU (Acc, 5-shot)</td>
<td>79.50</td>
<td>79.37</td>
<td>99.84</td>
</tr>
<tr>
<td>TruthfulQA (MC2, 0-shot)</td>
<td>53.20</td>
<td>53.93</td>
<td>101.38</td>
</tr>
<tr>
<td>Winogrande (Acc, 5-shot)</td>
<td>72.30</td>
<td>72.69</td>
<td>100.55</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>73.65</b></td>
<td><b>73.74</b></td>
<td><b>100.12</b></td>
</tr>
<!-- OpenLLM Leaderboard V2 -->
<tr>
<td rowspan="7"><b>OpenLLM V2</b></td>
<td>IFEval (Inst Level Strict Acc, 0-shot)</td>
<td>48.68</td>
<td>47.84</td>
<td>98.28</td>
</tr>
<tr>
<td>BBH (Acc-Norm, 3-shot)</td>
<td>32.46</td>
<td>32.06</td>
<td>98.77</td>
</tr>
<tr>
<td>Math-Hard (Exact-Match, 4-shot)</td>
<td>18.81</td>
<td>18.96</td>
<td>100.80</td>
</tr>
<tr>
<td>GPQA (Acc-Norm, 0-shot)</td>
<td>24.16</td>
<td>24.75</td>
<td>102.43</td>
</tr>
<tr>
<td>MUSR (Acc-Norm, 0-shot)</td>
<td>38.62</td>
<td>40.48</td>
<td>104.79</td>
</tr>
<tr>
<td>MMLU-Pro (Acc, 5-shot)</td>
<td>23.15</td>
<td>25.66</td>
<td>110.80</td>
</tr>
<tr>
<td><b>Average Score</b></td>
<td><b>30.98</b></td>
<td><b>31.62</b></td>
<td><b>102.07</b></td>
</tr>
</tbody>
</table>