Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,396 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- fp4
|
| 4 |
+
- vllm
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
- de
|
| 8 |
+
- fr
|
| 9 |
+
- it
|
| 10 |
+
- pt
|
| 11 |
+
- hi
|
| 12 |
+
- es
|
| 13 |
+
- th
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
+
license: apache-2.0
|
| 16 |
+
base_model: Qwen/Qwen3-8B
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Qwen3-8B-NVFP4
|
| 20 |
+
|
| 21 |
+
## Model Overview
|
| 22 |
+
- **Model Architecture:** Qwen/Qwen3-8B
|
| 23 |
+
- **Input:** Text
|
| 24 |
+
- **Output:** Text
|
| 25 |
+
- **Model Optimizations:**
|
| 26 |
+
- **Weight quantization:** FP4
|
| 27 |
+
- **Activation quantization:** FP4
|
| 28 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 29 |
+
- **Release Date:** 6/25/2025
|
| 30 |
+
- **Version:** 1.0
|
| 31 |
+
- **Model Developers:** RedHatAI
|
| 32 |
+
|
| 33 |
+
This model is a quantized version of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B).
|
| 34 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model.
|
| 35 |
+
|
| 36 |
+
### Model Optimizations
|
| 37 |
+
|
| 38 |
+
This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) to FP4 data type, ready for inference with vLLM>=0.9.1
|
| 39 |
+
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
|
| 40 |
+
|
| 41 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized using [LLM Compressor](https://github.com/vllm-project/llm-compressor).
|
| 42 |
+
|
| 43 |
+
## Deployment
|
| 44 |
+
|
| 45 |
+
### Use with vLLM
|
| 46 |
+
|
| 47 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
from vllm import LLM, SamplingParams
|
| 51 |
+
from transformers import AutoTokenizer
|
| 52 |
+
|
| 53 |
+
model_id = "RedHatAI/Qwen3-8B-NVFP4"
|
| 54 |
+
number_gpus = 1
|
| 55 |
+
|
| 56 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
| 57 |
+
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 59 |
+
|
| 60 |
+
messages = [
|
| 61 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 62 |
+
{"role": "user", "content": "Who are you?"},
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
| 66 |
+
|
| 67 |
+
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
|
| 68 |
+
|
| 69 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 70 |
+
|
| 71 |
+
generated_text = outputs[0].outputs[0].text
|
| 72 |
+
print(generated_text)
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
| 76 |
+
|
| 77 |
+
## Creation
|
| 78 |
+
|
| 79 |
+
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/main/examples/quantization_w4a4_fp4/llama3_example.py), as presented in the code snipet below.
|
| 80 |
+
|
| 81 |
+
<details>
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
from datasets import load_dataset
|
| 85 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 86 |
+
|
| 87 |
+
from llmcompressor import oneshot
|
| 88 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
| 89 |
+
from llmcompressor.utils import dispatch_for_generation
|
| 90 |
+
|
| 91 |
+
MODEL_ID = "Qwen/Qwen3-8B"
|
| 92 |
+
|
| 93 |
+
# Load model.
|
| 94 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto")
|
| 95 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 96 |
+
|
| 97 |
+
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
|
| 98 |
+
DATASET_SPLIT = "train_sft"
|
| 99 |
+
|
| 100 |
+
# Select number of samples. 512 samples is a good place to start.
|
| 101 |
+
# Increasing the number of samples can improve accuracy.
|
| 102 |
+
NUM_CALIBRATION_SAMPLES = 512
|
| 103 |
+
MAX_SEQUENCE_LENGTH = 2048
|
| 104 |
+
|
| 105 |
+
# Load dataset and preprocess.
|
| 106 |
+
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
|
| 107 |
+
ds = ds.shuffle(seed=42)
|
| 108 |
+
|
| 109 |
+
def preprocess(example):
|
| 110 |
+
return {
|
| 111 |
+
"text": tokenizer.apply_chat_template(
|
| 112 |
+
example["messages"],
|
| 113 |
+
tokenize=False,
|
| 114 |
+
)
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
ds = ds.map(preprocess)
|
| 118 |
+
|
| 119 |
+
# Tokenize inputs.
|
| 120 |
+
def tokenize(sample):
|
| 121 |
+
return tokenizer(
|
| 122 |
+
sample["text"],
|
| 123 |
+
padding=False,
|
| 124 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
| 125 |
+
truncation=True,
|
| 126 |
+
add_special_tokens=False,
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
| 130 |
+
|
| 131 |
+
# Configure the quantization algorithm and scheme.
|
| 132 |
+
# In this case, we:
|
| 133 |
+
# * quantize the weights to fp4 with per group 16 via ptq
|
| 134 |
+
# * calibrate a global_scale for activations, which will be used to
|
| 135 |
+
# quantize activations to fp4 on the fly
|
| 136 |
+
smoothing_strength = 0.8
|
| 137 |
+
recipe = [
|
| 138 |
+
SmoothQuantModifier(smoothing_strength=smoothing_strength),
|
| 139 |
+
QuantizationModifier(
|
| 140 |
+
ignore=["re:.*lm_head.*"],
|
| 141 |
+
config_groups={
|
| 142 |
+
"group_0": {
|
| 143 |
+
"targets": ["Linear"],
|
| 144 |
+
"weights": {
|
| 145 |
+
"num_bits": 4,
|
| 146 |
+
"type": "float",
|
| 147 |
+
"strategy": "tensor_group",
|
| 148 |
+
"group_size": 16,
|
| 149 |
+
"symmetric": True,
|
| 150 |
+
"observer": "mse",
|
| 151 |
+
},
|
| 152 |
+
"input_activations": {
|
| 153 |
+
"num_bits": 4,
|
| 154 |
+
"type": "float",
|
| 155 |
+
"strategy": "tensor_group",
|
| 156 |
+
"group_size": 16,
|
| 157 |
+
"symmetric": True,
|
| 158 |
+
"dynamic": "local",
|
| 159 |
+
"observer": "mse",
|
| 160 |
+
},
|
| 161 |
+
}
|
| 162 |
+
},
|
| 163 |
+
)
|
| 164 |
+
]
|
| 165 |
+
|
| 166 |
+
# Save to disk in compressed-tensors format.
|
| 167 |
+
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-NVFP4"
|
| 168 |
+
|
| 169 |
+
# Apply quantization.
|
| 170 |
+
oneshot(
|
| 171 |
+
model=model,
|
| 172 |
+
dataset=ds,
|
| 173 |
+
recipe=recipe,
|
| 174 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
| 175 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
| 176 |
+
output_dir=SAVE_DIR,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
print("\n\n")
|
| 180 |
+
print("========== SAMPLE GENERATION ==============")
|
| 181 |
+
dispatch_for_generation(model)
|
| 182 |
+
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
|
| 183 |
+
output = model.generate(input_ids, max_new_tokens=100)
|
| 184 |
+
print(tokenizer.decode(output[0]))
|
| 185 |
+
print("==========================================\n\n")
|
| 186 |
+
|
| 187 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
| 188 |
+
tokenizer.save_pretrained(SAVE_DIR)
|
| 189 |
+
```
|
| 190 |
+
</details>
|
| 191 |
+
|
| 192 |
+
## Evaluation
|
| 193 |
+
|
| 194 |
+
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2 and HumanEval_64 benchmarks using [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness). The Reasoning evals were done using [ligheval](https://github.com/neuralmagic/lighteval).
|
| 195 |
+
|
| 196 |
+
### Accuracy
|
| 197 |
+
<table>
|
| 198 |
+
<thead>
|
| 199 |
+
<tr>
|
| 200 |
+
<th>Category</th>
|
| 201 |
+
<th>Metric</th>
|
| 202 |
+
<th>Qwen/Qwen3-8B</th>
|
| 203 |
+
<th>Qwen3-8B-NVFP4 (this model)</th>
|
| 204 |
+
<th>Recovery</th>
|
| 205 |
+
</tr>
|
| 206 |
+
</thead>
|
| 207 |
+
<tbody>
|
| 208 |
+
<tr>
|
| 209 |
+
<td rowspan="7"><b>OpenLLM V1</b></td>
|
| 210 |
+
<td>arc_challenge</td>
|
| 211 |
+
<td>64.76</td>
|
| 212 |
+
<td>63.91</td>
|
| 213 |
+
<td>98.69</td>
|
| 214 |
+
</tr>
|
| 215 |
+
<tr>
|
| 216 |
+
<td>gsm8k</td>
|
| 217 |
+
<td>87.26</td>
|
| 218 |
+
<td>86.73</td>
|
| 219 |
+
<td>99.39</td>
|
| 220 |
+
</tr>
|
| 221 |
+
<tr>
|
| 222 |
+
<td>hellaswag</td>
|
| 223 |
+
<td>76.68</td>
|
| 224 |
+
<td>75.34</td>
|
| 225 |
+
<td>98.25</td>
|
| 226 |
+
</tr>
|
| 227 |
+
<tr>
|
| 228 |
+
<td>mmlu</td>
|
| 229 |
+
<td>74.97</td>
|
| 230 |
+
<td>73.07</td>
|
| 231 |
+
<td>97.47</td>
|
| 232 |
+
</tr>
|
| 233 |
+
<tr>
|
| 234 |
+
<td>truthfulqa_mc2</td>
|
| 235 |
+
<td>54.42</td>
|
| 236 |
+
<td>55.07</td>
|
| 237 |
+
<td>101.19</td>
|
| 238 |
+
</tr>
|
| 239 |
+
<tr>
|
| 240 |
+
<td>winogrande</td>
|
| 241 |
+
<td>71.43</td>
|
| 242 |
+
<td>68.43</td>
|
| 243 |
+
<td>95.80</td>
|
| 244 |
+
</tr>
|
| 245 |
+
<tr>
|
| 246 |
+
<td><b>Average</b></td>
|
| 247 |
+
<td><b>71.59</b></td>
|
| 248 |
+
<td><b>70.43</b></td>
|
| 249 |
+
<td><b>98.38</b></td>
|
| 250 |
+
</tr>
|
| 251 |
+
<tr>
|
| 252 |
+
<td rowspan="7"><b>OpenLLM V2</b></td>
|
| 253 |
+
<td>BBH (3-shot)</td>
|
| 254 |
+
<td>47.46</td>
|
| 255 |
+
<td>49.33</td>
|
| 256 |
+
<td>103.94</td>
|
| 257 |
+
</tr>
|
| 258 |
+
<tr>
|
| 259 |
+
<td>MMLU-Pro (5-shot)</td>
|
| 260 |
+
<td>34.64</td>
|
| 261 |
+
<td>27.49</td>
|
| 262 |
+
<td>79.36</td>
|
| 263 |
+
</tr>
|
| 264 |
+
<tr>
|
| 265 |
+
<td>MuSR (0-shot)</td>
|
| 266 |
+
<td>40.61</td>
|
| 267 |
+
<td>42.86</td>
|
| 268 |
+
<td>105.54</td>
|
| 269 |
+
</tr>
|
| 270 |
+
<tr>
|
| 271 |
+
<td>IFEval (0-shot)</td>
|
| 272 |
+
<td>87.89</td>
|
| 273 |
+
<td>87.65</td>
|
| 274 |
+
<td>99.73</td>
|
| 275 |
+
</tr>
|
| 276 |
+
<tr>
|
| 277 |
+
<td>GPQA (0-shot)</td>
|
| 278 |
+
<td>25.17</td>
|
| 279 |
+
<td>26.34</td>
|
| 280 |
+
<td>104.65</td>
|
| 281 |
+
</tr>
|
| 282 |
+
<tr>
|
| 283 |
+
<td>Math-|v|-5 (4-shot)</td>
|
| 284 |
+
<td>53.55</td>
|
| 285 |
+
<td>50.83</td>
|
| 286 |
+
<td>94.92</td>
|
| 287 |
+
</tr>
|
| 288 |
+
<tr>
|
| 289 |
+
<td><b>Average</b></td>
|
| 290 |
+
<td><b>48.22</b></td>
|
| 291 |
+
<td><b>47.42</b></td>
|
| 292 |
+
<td><b>98.33</b></td>
|
| 293 |
+
</tr>
|
| 294 |
+
<tr>
|
| 295 |
+
<td rowspan="1"><b>Coding</b></td>
|
| 296 |
+
<td>HumanEval_64 pass@2</td>
|
| 297 |
+
<td>86.51</td>
|
| 298 |
+
<td>85.32</td>
|
| 299 |
+
<td>98.62</td>
|
| 300 |
+
</tr>
|
| 301 |
+
<tr>
|
| 302 |
+
<td rowspan="4"><b>Reasoning</b></td>
|
| 303 |
+
<td>AIME24 (0-shot)</td>
|
| 304 |
+
<td>75.86</td>
|
| 305 |
+
<td>62.07</td>
|
| 306 |
+
<td>81.82</td>
|
| 307 |
+
</tr>
|
| 308 |
+
<tr>
|
| 309 |
+
<td>AIME25 (0-shot)</td>
|
| 310 |
+
<td>65.52</td>
|
| 311 |
+
<td>62.07</td>
|
| 312 |
+
<td>94.74</td>
|
| 313 |
+
</tr>
|
| 314 |
+
<tr>
|
| 315 |
+
<td>GPQA (Diamond, 0-shot)</td>
|
| 316 |
+
<td>59.90</td>
|
| 317 |
+
<td>54.82</td>
|
| 318 |
+
<td>91.51</td>
|
| 319 |
+
</tr>
|
| 320 |
+
<tr>
|
| 321 |
+
<td><b>Average</b></td>
|
| 322 |
+
<td><b>67.09</b></td>
|
| 323 |
+
<td><b>59.65</b></td>
|
| 324 |
+
<td><b>89.36</b></td>
|
| 325 |
+
</tr>
|
| 326 |
+
</tbody>
|
| 327 |
+
</table>
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
### Reproduction
|
| 333 |
+
|
| 334 |
+
The results were obtained using the following commands:
|
| 335 |
+
|
| 336 |
+
<details>
|
| 337 |
+
|
| 338 |
+
```
|
| 339 |
+
lm_eval \
|
| 340 |
+
--model vllm \
|
| 341 |
+
--model_args pretrained="RedHatAI/Qwen3-8B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
| 342 |
+
--apply_chat_template \
|
| 343 |
+
--fewshot_as_multiturn \
|
| 344 |
+
--tasks openllm \
|
| 345 |
+
--batch_size auto
|
| 346 |
+
```
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
#### OpenLLM v2
|
| 350 |
+
```
|
| 351 |
+
lm_eval \
|
| 352 |
+
--model vllm \
|
| 353 |
+
--model_args pretrained="RedHatAI/Qwen3-8B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
| 354 |
+
--apply_chat_template \
|
| 355 |
+
--fewshot_as_multiturn \
|
| 356 |
+
--tasks leaderboard \
|
| 357 |
+
--batch_size auto
|
| 358 |
+
```
|
| 359 |
+
|
| 360 |
+
#### HumanEval_64
|
| 361 |
+
```
|
| 362 |
+
lm_eval \
|
| 363 |
+
--model vllm \
|
| 364 |
+
--model_args pretrained="RedHatAI/Qwen3-8B-NVFP4",dtype=auto,max_model_len=4096,tensor_parallel_size=2,enable_chunked_prefill=True,enforce_eager=True\
|
| 365 |
+
--apply_chat_template \
|
| 366 |
+
--fewshot_as_multiturn \
|
| 367 |
+
--tasks humaneval_64_instruct \
|
| 368 |
+
--batch_size auto
|
| 369 |
+
```
|
| 370 |
+
|
| 371 |
+
#### LightEval
|
| 372 |
+
```
|
| 373 |
+
# --- model_args.yaml ---
|
| 374 |
+
cat > model_args.yaml <<'YAML'
|
| 375 |
+
model_parameters:
|
| 376 |
+
model_name: "RedHatAI/Qwen3-8B-NVFP4"
|
| 377 |
+
dtype: auto
|
| 378 |
+
gpu_memory_utilization: 0.9
|
| 379 |
+
tensor_parallel_size: 2
|
| 380 |
+
max_model_length: 40960
|
| 381 |
+
generation_parameters:
|
| 382 |
+
seed: 42
|
| 383 |
+
temperature: 0.6
|
| 384 |
+
top_k: 20
|
| 385 |
+
top_p: 0.95
|
| 386 |
+
min_p: 0.0
|
| 387 |
+
max_new_tokens: 32768
|
| 388 |
+
YAML
|
| 389 |
+
|
| 390 |
+
lighteval vllm model_args.yaml \
|
| 391 |
+
"lighteval|aime24|0,lighteval|aime25|0,lighteval|gpqa:diamond|0" \
|
| 392 |
+
--max-samples -1 \
|
| 393 |
+
--output-dir out_dir
|
| 394 |
+
|
| 395 |
+
```
|
| 396 |
+
</details>
|