--- license: apache-2.0 pipeline_tag: text-generation tags: - fp8 - quantized - llm-compressor - compressed-tensors - red hat - image - video - multimodal base_model: - Qwen/Qwen3-VL-235B-A22B-Instruct --- # Qwen3-VL-235B-A22B-Instruct-FP8-block ## Model Overview - **Model Architecture:** Qwen3VLMoeForConditionalGeneration - **Input:** Text/Image/Video - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Release Date:** 09/28/202510 - **Version:** 1.0 - **Model Developers:**: Red Hat Quantized version of [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct). ### Model Optimizations This model was obtained by quantizing the weights and activations of [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct) to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized. ## Deployment ### Use with vLLM 1. Initialize vLLM server: ``` vllm serve RedHatAI/Qwen3-VL-235B-A22B-Instruct-FP8-block --tensor_parallel_size 4 ``` 2. Send requests to the server: ```python from openai import OpenAI # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) model = "RedHatAI/Qwen3-VL-235B-A22B-Instruct-FP8-block" messages = [ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"}, }, {"type": "text", "text": "Describe this image."}, ], } ] outputs = client.chat.completions.create( model=model, messages=messages, ) generated_text = outputs.choices[0].message.content print(generated_text) ``` ## Creation This model was quantized using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as shown below.
Creation details ```python from transformers import AutoProcessor, Qwen3VLMoeForConditionalGeneration from llmcompressor import oneshot from llmcompressor.modeling import replace_modules_for_calibration from llmcompressor.modifiers.quantization import QuantizationModifier MODEL_ID = "Qwen/Qwen3-VL-235B-A22B-Instruct" # Load model. model = Qwen3VLMoeForConditionalGeneration.from_pretrained(MODEL_ID, torch_dtype="auto") processor = AutoProcessor.from_pretrained(MODEL_ID) model = replace_modules_for_calibration(model) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per-block quantization # * quantize the activations to fp8 with dynamic token activations recipe = QuantizationModifier( targets="Linear", scheme="FP8_BLOCK", ignore=[ "re:.*lm_head", "re:visual.*", "re:model.visual.*", "re:.*mlp.gate$", ], ) # Apply quantization. oneshot(model=model, recipe=recipe) # Save to disk in compressed-tensors format. SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block" model.save_pretrained(SAVE_DIR) processor.save_pretrained(SAVE_DIR) ```
## Evaluation The model was evaluated on the OpenLLMv1 leaderboard task, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), on reasoning tasks using [lighteval](https://github.com/huggingface/lighteval) and on vision tasks using [lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval). [vLLM](https://docs.vllm.ai/en/stable/) was used for all evaluations.
Evaluation details **lm-evaluation-harness** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Qwen3-VL-235B-A22B-Instruct-FP8-block",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=4,gpu_memory_utilization=0.8,enable_chunked_prefill=True \ --tasks openllm \ --write_out \ --batch_size auto \ --output_path output_dir \ --show_config ``` **lighteval** lighteval_model_arguments.yaml ```yaml model_parameters: model_name: RedHatAI/Qwen3-VL-235B-A22B-Instruct-FP8-block dtype: auto gpu_memory_utilization: 0.9 generation_parameters: temperature: 0.6 min_p: 0.0 top_p: 0.95 top_k: 20 max_new_tokens: 32768 ``` ``` lighteval vllm \ --model_args lighteval_model_arguments.yaml \ --tasks lighteval|aime25|0 \ ``` **lmms-eval** ``` python3 -m lmms_eval \ --model vllm \ --model_args model=RedHatAI/Qwen3-VL-235B-A22B-Instruct-FP8-dynamic,tensor_parallel_size=4,max_model_len=8192,gpu_memory_utilization=0.9 \ --tasks mmmu_val, chartqa\ --batch_size 1 ```
### Accuracy
Category Metric Qwen/Qwen3-VL-235B-A22B-Instruct RedHatAI/Qwen3-VL-235B-A22B-Instruct-FP8-block Recovery (%)
OpenLLM V1 ARC-Challenge (Acc-Norm, 25-shot) 76.54 76.19 99.6
GSM8K (Strict-Match, 5-shot) 90.30 90.07 99.8
HellaSwag (Acc-Norm, 10-shot) 87.81 87.65 99.8
MMLU (Acc, 5-shot) 87.11 87.21 100.1
TruthfulQA (MC2, 0-shot) 63.19 63.41 100.4
Winogrande (Acc, 5-shot) 81.61 82.08 100.6
Average Score 81.09 81.10 100.0
Reasoning
(generation)
AIME 2025 70.00 76.67 109.5
Multi-modal ChartQA (relaxed_overall) 90.12 89.96 99.8
MMMU (val) 63.67 63.67 100.0
OpenLLM V2 IFEval (Inst Level Strict Acc, 0-shot) 91.01 90.29 99.21
BBH (Acc-Norm, 3-shot) 73.72 73.95 100.31
Math-Hard (Exact-Match, 4-shot) 61.71 20.69 33.54
GPQA (Acc-Norm, 0-shot) 32.13 32.89 102.35
MUSR (Acc-Norm, 0-shot) 42.06 41.80 99.37
MMLU-Pro (Acc, 5-shot) 65.82 65.65 99.73
Average Score 61.07 54.21 88.77