Speculator Models
Collection
12 items
•
Updated
•
5
This is a speculator model designed for use with openai/gpt-oss-20b, based on the EAGLE-3 speculative decoding algorithm.
It was trained using the speculators library on a combination of the Magpie-Align/Magpie-Llama-3.1-Pro-300K-Filtered dataset and the train_sft split of the HuggingFaceH4/ultrachat_200k dataset.
This model should be used with the openai/gpt-oss-20b chat template, specifically through the /chat/completions endpoint.
vllm serve openai/gpt-oss-20b \
-tp 1 \
--speculative-config '{
"model": "RedHatAI/gpt-oss-20b-speculator.eagle3",
"num_speculative_tokens": 3,
"method": "eagle3"
}'
| Use Case | Dataset | Number of Samples |
|---|---|---|
| Coding | HumanEval | 168 |
| Math Reasoning | gsm8k | 80 |
| Text Summarization | CNN/Daily Mail | 80 |
| Use Case | k=1 | k=2 | k=3 | k=4 | k=5 | k=6 | k=7 |
|---|---|---|---|---|---|---|---|
| Coding | 1.67 | 2.06 | 2.38 | 2.41 | 2.52 | 2.78 | 2.61 |
| Math Reasoning | 1.80 | 2.38 | 2.90 | 2.89 | 1.96 | 3.48 | 3.20 |
| Text Summarization | 1.63 | 2.05 | 2.18 | 2.31 | 2.33 | 2.38 | 2.35 |
Command
GUIDELLM__PREFERRED_ROUTE="chat_completions" \
guidellm benchmark \
--target "http://localhost:8000/v1" \
--data "RedHatAI/SpeculativeDecoding" \
--rate-type sweep \
--max-seconds 600 \
--output-path "gpt-oss-20b-HumanEval.json" \
--backend-args '{"extra_body": {"chat_completions": {"temperature":0.0}}}'
</details>