| import base64 | |
| import io | |
| from typing import Any, Dict, List | |
| import requests | |
| import torch | |
| from PIL import Image | |
| from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| class EndpointHandler: | |
| def __init__(self, path=""): | |
| self.processor = TrOCRProcessor.from_pretrained(path) | |
| self.model = VisionEncoderDecoderModel.from_pretrained(path) | |
| self.model.to(device) | |
| def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| inputs = data.pop("inputs", data) | |
| image_input = inputs.get("image") | |
| if not image_input: | |
| return {"error": "No image provided."} | |
| try: | |
| if image_input.startswith("http"): | |
| response = requests.get(image_input, stream=True) | |
| if response.status_code == 200: | |
| image = Image.open(response.raw).convert("RGB") | |
| else: | |
| return { | |
| "error": f"Failed to fetch image. Status code: {response.status_code}" | |
| } | |
| else: | |
| image_data = base64.b64decode(image_input) | |
| image = Image.open(io.BytesIO(image_data)).convert("RGB") | |
| except Exception as e: | |
| return {"error": f"Failed to process the image. Details: {str(e)}"} | |
| pixel_values = self.processor(images=image, return_tensors="pt").pixel_values | |
| generated_ids = self.model.generate(pixel_values.to(device)) | |
| prediction = self.processor.batch_decode( | |
| generated_ids, skip_special_tokens=True | |
| ) | |
| return {"text": prediction[0]} |