Upload folder using huggingface_hub
Browse files- added_tokens.json +6 -0
- config.json +29 -0
- generation_config.json +14 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_10.pth +3 -0
- rng_state_11.pth +3 -0
- rng_state_12.pth +3 -0
- rng_state_13.pth +3 -0
- rng_state_14.pth +3 -0
- rng_state_15.pth +3 -0
- rng_state_16.pth +3 -0
- rng_state_17.pth +3 -0
- rng_state_18.pth +3 -0
- rng_state_19.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_20.pth +3 -0
- rng_state_21.pth +3 -0
- rng_state_22.pth +3 -0
- rng_state_23.pth +3 -0
- rng_state_24.pth +3 -0
- rng_state_25.pth +3 -0
- rng_state_26.pth +3 -0
- rng_state_27.pth +3 -0
- rng_state_28.pth +3 -0
- rng_state_29.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_30.pth +3 -0
- rng_state_31.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- rng_state_8.pth +3 -0
- rng_state_9.pth +3 -0
- special_tokens_map.json +28 -0
- tokenizer_config.json +69 -0
- trainer_state.json +1389 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +587 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<pad>": 151646,
|
| 3 |
+
"<|endoftext|>": 151643,
|
| 4 |
+
"<|im_end|>": 151645,
|
| 5 |
+
"<|im_start|>": 151644
|
| 6 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/apdcephfs/share_300000800/user/ruotianma/self-correction/saved_models/pre_sft_models/Qwen2-7B-Instruct_sft_qwen2_7B_0123_new_veri_4.5k_20250123_025733/checkpoint-264",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 128245,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 3584,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 18944,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"max_window_layers": 28,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 28,
|
| 17 |
+
"num_hidden_layers": 28,
|
| 18 |
+
"num_key_value_heads": 4,
|
| 19 |
+
"pad_token_id": 151646,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_theta": 1000000.0,
|
| 22 |
+
"sliding_window": null,
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.39.3",
|
| 26 |
+
"use_cache": false,
|
| 27 |
+
"use_sliding_window": false,
|
| 28 |
+
"vocab_size": 151647
|
| 29 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.05,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.39.3"
|
| 14 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step152
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ea3d8de4c328cf4e25ef100b43b1c87c76ed03183df80d952700553dff15678
|
| 3 |
+
size 4874671720
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de9fbede83895e5cb720b56849d0911b6d40e03373387aabd17a81ecacdf051c
|
| 3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0522ff876e2a55110c0430dcaa256b2443a4b9588c80b808109f82918fe04f3c
|
| 3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:010dc5343dc0cb94401382153575231c4d4a592a2c716e394de8c9241976dadf
|
| 3 |
+
size 1087005824
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15225254912
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 345 |
+
}
|
| 346 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:460947adbbb267a1b4cf3d93aa5766a289cdc8f60876efe3c1b4f177d7f321dd
|
| 3 |
+
size 15984
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5993976e762f12e155b544790780086d8e52904534e8576ede356e2c6642b070
|
| 3 |
+
size 15984
|
rng_state_10.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f4212887973431f08ed375f9bfa366b7d01a965f573bfb82ee05394b7156a6a
|
| 3 |
+
size 15997
|
rng_state_11.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d5a26310439da234901a58091c2ddf51dd30f49b113858d6e263b434ea4cc24
|
| 3 |
+
size 15997
|
rng_state_12.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c4c69d69a8131c7f7a6cb00d3d5d90549176cbc87f2381e5252694b40acfe21
|
| 3 |
+
size 15997
|
rng_state_13.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e69838ef5f3823a2404592bccdfe5a8c5be816f1011dbf5ae510d1169e27ea9e
|
| 3 |
+
size 15997
|
rng_state_14.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:266cfbe571a85dd7b8e794be43c738dbb694e3b541d62009450a7ebcfe35b843
|
| 3 |
+
size 15997
|
rng_state_15.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74c8ec836fd02311db69aed820b895adca7be05a4da774cdbd6b772bc17e303f
|
| 3 |
+
size 15997
|
rng_state_16.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5bba6034e2a5da3d7ac0b923f1be61d7ae11376a9d274a4fb922488e33633c25
|
| 3 |
+
size 15997
|
rng_state_17.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96869f2101e2e2f6bafec3d64b5f73b2e55dd3262bfb3b4aaefe0469dd4e9f54
|
| 3 |
+
size 15997
|
rng_state_18.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c1b20cf4a64e4e4240abb5e9e64ac86bf77aeb6f66f7be622542a442c46a949
|
| 3 |
+
size 15997
|
rng_state_19.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ea6d99ffe421740269c5ecaa4e3ce2e610c29f27a394eb9c2daea14030c3186
|
| 3 |
+
size 15997
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c99c0a6a60b2b7235bf06e5ce692d74a7c029aaa273e162330933aa22cc911ff
|
| 3 |
+
size 15984
|
rng_state_20.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:800bb5171e269bb609bdec588de21ccb58c1a7b76dcb82eb96e0ec74681092ec
|
| 3 |
+
size 15997
|
rng_state_21.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6eee96f029f426cc97858b6a4543a66bca0c86e87a89744625cc620d8b10f74
|
| 3 |
+
size 15997
|
rng_state_22.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c3039346607c18a918b5c0ba396b8f1ebae8a93acd773f108401f854de98e807
|
| 3 |
+
size 15997
|
rng_state_23.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d986b3b5952c69d50cc0980ac599d5967a4b6c7d56f0e7f1c0924a92ae2b3d6
|
| 3 |
+
size 15997
|
rng_state_24.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b8b4307d97259b833d72ecb078fde3b5c2daf633f483a1e49fd968d128481a6
|
| 3 |
+
size 15997
|
rng_state_25.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:27b1c49cdcbcc1d8bef61abb38e37d5aecb79b91262294faa2819f6dcba492ef
|
| 3 |
+
size 15997
|
rng_state_26.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0b45c1590bf62bb88f41bc2d86b577146994d922e1e4a45510d3f2ac669b5520
|
| 3 |
+
size 15997
|
rng_state_27.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b63346ed51e57cc1e7ac0b03ce7fcfa13c3f2c0aea493a276456e7a28f12fc5
|
| 3 |
+
size 15997
|
rng_state_28.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14efa258de61b387512281e5b904c67b5ac8ed1bc2dd401f3a2d7240900fb54f
|
| 3 |
+
size 15997
|
rng_state_29.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c5ba7e1c86808ac3dc3e68c02d00e557b189daf5f54f7e3e07d8b1aa373cd35f
|
| 3 |
+
size 15997
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8131dfd4c66e2b15906309767b2bf919ad566648beb23f2471e229476bb256a2
|
| 3 |
+
size 15984
|
rng_state_30.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b37d8d83b2db7759bb912b0af6fe5a8c4fc962ebf7a5f729c5e4ba09ff70f166
|
| 3 |
+
size 15997
|
rng_state_31.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2127b537f71b64205f9043aa588a62bdc0f8bc18f9d847b2028c2b9537d6a3d2
|
| 3 |
+
size 15997
|
rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:600ed298ec689e55dd450e81e47b6ffa9cfc46adb7563f8abad7e605f27c52f5
|
| 3 |
+
size 15984
|
rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:23385f3e3154112166020322163ff3961f72957f9c1b0ab5c8b090e31ffda686
|
| 3 |
+
size 15984
|
rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99e7ea329139919e8cbf230a7725b7bec620164a594aa40cb06960064a777aff
|
| 3 |
+
size 15984
|
rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99d6ca3d66e35a4cb741af9332f2902dbda9a62a290be5b3c696752380f5eac2
|
| 3 |
+
size 15984
|
rng_state_8.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0f09b79bb157770680cbe8faf2e1b4d7160b91d9f1ea40b5da526be28958fba
|
| 3 |
+
size 15984
|
rng_state_9.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b212d8d9a712eeb90e2af9eaa86a7becc5750b16792987677a6afc433034ca9
|
| 3 |
+
size 15984
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>"
|
| 5 |
+
],
|
| 6 |
+
"bos_token": {
|
| 7 |
+
"content": "<s>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"content": "<|im_end|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
},
|
| 20 |
+
"pad_token": "<pad>",
|
| 21 |
+
"unk_token": {
|
| 22 |
+
"content": "<unk>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false
|
| 27 |
+
}
|
| 28 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"128244": {
|
| 5 |
+
"content": "<unk>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"128245": {
|
| 13 |
+
"content": "<s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"151643": {
|
| 21 |
+
"content": "<|endoftext|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"151644": {
|
| 29 |
+
"content": "<|im_start|>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"151645": {
|
| 37 |
+
"content": "<|im_end|>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"151646": {
|
| 45 |
+
"content": "<pad>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"additional_special_tokens": [
|
| 54 |
+
"<|im_start|>",
|
| 55 |
+
"<|im_end|>"
|
| 56 |
+
],
|
| 57 |
+
"bos_token": "<s>",
|
| 58 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 59 |
+
"clean_up_tokenization_spaces": false,
|
| 60 |
+
"eos_token": "<|im_end|>",
|
| 61 |
+
"errors": "replace",
|
| 62 |
+
"model_max_length": 6000,
|
| 63 |
+
"pad_token": "<pad>",
|
| 64 |
+
"padding_side": "left",
|
| 65 |
+
"split_special_tokens": false,
|
| 66 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 67 |
+
"truncation_side": "left",
|
| 68 |
+
"unk_token": "<unk>"
|
| 69 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.3536425767049586,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 152,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.01,
|
| 13 |
+
"importance_ratio": 1.0001533031463623,
|
| 14 |
+
"kl_div_avg": 0.0022537275217473507,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss_func": "stage2",
|
| 17 |
+
"step": 1,
|
| 18 |
+
"total_loss": 0.20475485920906067
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"epoch": 0.01,
|
| 22 |
+
"importance_ratio": 1.0000330209732056,
|
| 23 |
+
"kl_div_avg": 0.0011816158657893538,
|
| 24 |
+
"learning_rate": 2.153382790366965e-07,
|
| 25 |
+
"loss_func": "stage2",
|
| 26 |
+
"step": 2,
|
| 27 |
+
"total_loss": 0.17304854094982147
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.01,
|
| 31 |
+
"importance_ratio": 0.9998020529747009,
|
| 32 |
+
"kl_div_avg": 0.0012814232613891363,
|
| 33 |
+
"learning_rate": 3.4130309724299266e-07,
|
| 34 |
+
"loss_func": "stage2",
|
| 35 |
+
"step": 3,
|
| 36 |
+
"total_loss": 0.39294394850730896
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"epoch": 0.01,
|
| 40 |
+
"importance_ratio": 1.0002059936523438,
|
| 41 |
+
"kl_div_avg": 0.001280196476727724,
|
| 42 |
+
"learning_rate": 4.30676558073393e-07,
|
| 43 |
+
"loss_func": "stage2",
|
| 44 |
+
"step": 4,
|
| 45 |
+
"total_loss": 0.2844714820384979
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.02,
|
| 49 |
+
"importance_ratio": 1.0000617504119873,
|
| 50 |
+
"kl_div_avg": 0.0033944130409508944,
|
| 51 |
+
"learning_rate": 5e-07,
|
| 52 |
+
"loss_func": "stage2",
|
| 53 |
+
"step": 5,
|
| 54 |
+
"total_loss": 0.38719698786735535
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"epoch": 0.02,
|
| 58 |
+
"importance_ratio": 1.0002291202545166,
|
| 59 |
+
"kl_div_avg": 0.0006711427122354507,
|
| 60 |
+
"learning_rate": 5e-07,
|
| 61 |
+
"loss_func": "stage2",
|
| 62 |
+
"step": 6,
|
| 63 |
+
"total_loss": -0.7354744672775269
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0.02,
|
| 67 |
+
"importance_ratio": 1.0001697540283203,
|
| 68 |
+
"kl_div_avg": 0.0009293262264691293,
|
| 69 |
+
"learning_rate": 4.997668997668998e-07,
|
| 70 |
+
"loss_func": "stage2",
|
| 71 |
+
"step": 7,
|
| 72 |
+
"total_loss": 0.10072920471429825
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.02,
|
| 76 |
+
"importance_ratio": 1.0003812313079834,
|
| 77 |
+
"kl_div_avg": 0.0006424246821552515,
|
| 78 |
+
"learning_rate": 4.995337995337996e-07,
|
| 79 |
+
"loss_func": "stage2",
|
| 80 |
+
"step": 8,
|
| 81 |
+
"total_loss": -0.7356305122375488
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.03,
|
| 85 |
+
"importance_ratio": 1.0002334117889404,
|
| 86 |
+
"kl_div_avg": 0.001079258043318987,
|
| 87 |
+
"learning_rate": 4.993006993006993e-07,
|
| 88 |
+
"loss_func": "stage2",
|
| 89 |
+
"step": 9,
|
| 90 |
+
"total_loss": 0.1572389006614685
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"epoch": 0.03,
|
| 94 |
+
"importance_ratio": 0.9999626874923706,
|
| 95 |
+
"kl_div_avg": 0.0012779454700648785,
|
| 96 |
+
"learning_rate": 4.990675990675991e-07,
|
| 97 |
+
"loss_func": "stage2",
|
| 98 |
+
"step": 10,
|
| 99 |
+
"total_loss": -0.2823958396911621
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"epoch": 0.03,
|
| 103 |
+
"importance_ratio": 0.9999264478683472,
|
| 104 |
+
"kl_div_avg": 0.0010424605570733547,
|
| 105 |
+
"learning_rate": 4.988344988344988e-07,
|
| 106 |
+
"loss_func": "stage2",
|
| 107 |
+
"step": 11,
|
| 108 |
+
"total_loss": -0.4896008372306824
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.03,
|
| 112 |
+
"importance_ratio": 0.9999059438705444,
|
| 113 |
+
"kl_div_avg": 0.0011010458692908287,
|
| 114 |
+
"learning_rate": 4.986013986013987e-07,
|
| 115 |
+
"loss_func": "stage2",
|
| 116 |
+
"step": 12,
|
| 117 |
+
"total_loss": 0.4140966832637787
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"epoch": 0.04,
|
| 121 |
+
"importance_ratio": 0.9999853372573853,
|
| 122 |
+
"kl_div_avg": 0.0014636358246207237,
|
| 123 |
+
"learning_rate": 4.983682983682983e-07,
|
| 124 |
+
"loss_func": "stage2",
|
| 125 |
+
"step": 13,
|
| 126 |
+
"total_loss": 0.4479982852935791
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"epoch": 0.04,
|
| 130 |
+
"importance_ratio": 1.0001029968261719,
|
| 131 |
+
"kl_div_avg": 0.0010808318620547652,
|
| 132 |
+
"learning_rate": 4.981351981351981e-07,
|
| 133 |
+
"loss_func": "stage2",
|
| 134 |
+
"step": 14,
|
| 135 |
+
"total_loss": -0.8298860192298889
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.04,
|
| 139 |
+
"importance_ratio": 1.0000591278076172,
|
| 140 |
+
"kl_div_avg": 0.0012179139303043485,
|
| 141 |
+
"learning_rate": 4.979020979020978e-07,
|
| 142 |
+
"loss_func": "stage2",
|
| 143 |
+
"step": 15,
|
| 144 |
+
"total_loss": -0.8044635057449341
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"epoch": 0.04,
|
| 148 |
+
"importance_ratio": 1.0000298023223877,
|
| 149 |
+
"kl_div_avg": 0.004863352049142122,
|
| 150 |
+
"learning_rate": 4.976689976689976e-07,
|
| 151 |
+
"loss_func": "stage2",
|
| 152 |
+
"step": 16,
|
| 153 |
+
"total_loss": 0.24484601616859436
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.05,
|
| 157 |
+
"importance_ratio": 1.0002245903015137,
|
| 158 |
+
"kl_div_avg": 0.0017589405179023743,
|
| 159 |
+
"learning_rate": 4.974358974358974e-07,
|
| 160 |
+
"loss_func": "stage2",
|
| 161 |
+
"step": 17,
|
| 162 |
+
"total_loss": -0.0013702064752578735
|
| 163 |
+
},
|
| 164 |
+
{
|
| 165 |
+
"epoch": 0.05,
|
| 166 |
+
"importance_ratio": 0.9999561309814453,
|
| 167 |
+
"kl_div_avg": 0.0018663634546101093,
|
| 168 |
+
"learning_rate": 4.972027972027972e-07,
|
| 169 |
+
"loss_func": "stage2",
|
| 170 |
+
"step": 18,
|
| 171 |
+
"total_loss": -0.10264579951763153
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.05,
|
| 175 |
+
"importance_ratio": 0.9998416900634766,
|
| 176 |
+
"kl_div_avg": 0.0018756331410259008,
|
| 177 |
+
"learning_rate": 4.969696969696969e-07,
|
| 178 |
+
"loss_func": "stage2",
|
| 179 |
+
"step": 19,
|
| 180 |
+
"total_loss": 0.48283857107162476
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"epoch": 0.05,
|
| 184 |
+
"importance_ratio": 0.999815821647644,
|
| 185 |
+
"kl_div_avg": 0.0019035658333450556,
|
| 186 |
+
"learning_rate": 4.967365967365967e-07,
|
| 187 |
+
"loss_func": "stage2",
|
| 188 |
+
"step": 20,
|
| 189 |
+
"total_loss": -0.1848379671573639
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"epoch": 0.06,
|
| 193 |
+
"importance_ratio": 0.999942421913147,
|
| 194 |
+
"kl_div_avg": 0.009937961585819721,
|
| 195 |
+
"learning_rate": 4.965034965034965e-07,
|
| 196 |
+
"loss_func": "stage2",
|
| 197 |
+
"step": 21,
|
| 198 |
+
"total_loss": 0.14985397458076477
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.06,
|
| 202 |
+
"importance_ratio": 0.9997897148132324,
|
| 203 |
+
"kl_div_avg": 0.00241913297213614,
|
| 204 |
+
"learning_rate": 4.962703962703962e-07,
|
| 205 |
+
"loss_func": "stage2",
|
| 206 |
+
"step": 22,
|
| 207 |
+
"total_loss": -0.29083502292633057
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.06,
|
| 211 |
+
"importance_ratio": 0.9998656511306763,
|
| 212 |
+
"kl_div_avg": 0.00263982149772346,
|
| 213 |
+
"learning_rate": 4.96037296037296e-07,
|
| 214 |
+
"loss_func": "stage2",
|
| 215 |
+
"step": 23,
|
| 216 |
+
"total_loss": -0.02688920497894287
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"epoch": 0.06,
|
| 220 |
+
"importance_ratio": 1.0000394582748413,
|
| 221 |
+
"kl_div_avg": 0.0032202559523284435,
|
| 222 |
+
"learning_rate": 4.958041958041958e-07,
|
| 223 |
+
"loss_func": "stage2",
|
| 224 |
+
"step": 24,
|
| 225 |
+
"total_loss": 0.5130484104156494
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"epoch": 0.07,
|
| 229 |
+
"importance_ratio": 1.0000278949737549,
|
| 230 |
+
"kl_div_avg": 0.00243174796923995,
|
| 231 |
+
"learning_rate": 4.955710955710956e-07,
|
| 232 |
+
"loss_func": "stage2",
|
| 233 |
+
"step": 25,
|
| 234 |
+
"total_loss": 0.309948205947876
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.07,
|
| 238 |
+
"importance_ratio": 0.9999406337738037,
|
| 239 |
+
"kl_div_avg": 0.003059545997530222,
|
| 240 |
+
"learning_rate": 4.953379953379953e-07,
|
| 241 |
+
"loss_func": "stage2",
|
| 242 |
+
"step": 26,
|
| 243 |
+
"total_loss": 0.11305176466703415
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"epoch": 0.07,
|
| 247 |
+
"importance_ratio": 0.9999201893806458,
|
| 248 |
+
"kl_div_avg": 0.003822761122137308,
|
| 249 |
+
"learning_rate": 4.951048951048951e-07,
|
| 250 |
+
"loss_func": "stage2",
|
| 251 |
+
"step": 27,
|
| 252 |
+
"total_loss": 0.38959354162216187
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"epoch": 0.07,
|
| 256 |
+
"importance_ratio": 0.9994360208511353,
|
| 257 |
+
"kl_div_avg": 0.0033927513286471367,
|
| 258 |
+
"learning_rate": 4.948717948717949e-07,
|
| 259 |
+
"loss_func": "stage2",
|
| 260 |
+
"step": 28,
|
| 261 |
+
"total_loss": 0.4653158485889435
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.07,
|
| 265 |
+
"importance_ratio": 0.9999792575836182,
|
| 266 |
+
"kl_div_avg": 0.0032504587434232235,
|
| 267 |
+
"learning_rate": 4.946386946386946e-07,
|
| 268 |
+
"loss_func": "stage2",
|
| 269 |
+
"step": 29,
|
| 270 |
+
"total_loss": 0.4534304141998291
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"epoch": 0.07,
|
| 274 |
+
"importance_ratio": 1.0000840425491333,
|
| 275 |
+
"kl_div_avg": 0.002915366552770138,
|
| 276 |
+
"learning_rate": 4.944055944055944e-07,
|
| 277 |
+
"loss_func": "stage2",
|
| 278 |
+
"step": 30,
|
| 279 |
+
"total_loss": 0.46045419573783875
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"epoch": 0.07,
|
| 283 |
+
"importance_ratio": 0.9996820688247681,
|
| 284 |
+
"kl_div_avg": 0.0030386601574718952,
|
| 285 |
+
"learning_rate": 4.941724941724942e-07,
|
| 286 |
+
"loss_func": "stage2",
|
| 287 |
+
"step": 31,
|
| 288 |
+
"total_loss": -0.8699095845222473
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"epoch": 0.07,
|
| 292 |
+
"importance_ratio": 0.9997460842132568,
|
| 293 |
+
"kl_div_avg": 0.0037004691548645496,
|
| 294 |
+
"learning_rate": 4.93939393939394e-07,
|
| 295 |
+
"loss_func": "stage2",
|
| 296 |
+
"step": 32,
|
| 297 |
+
"total_loss": -0.23050172626972198
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.08,
|
| 301 |
+
"importance_ratio": 0.9999768137931824,
|
| 302 |
+
"kl_div_avg": 0.0046552978456020355,
|
| 303 |
+
"learning_rate": 4.937062937062936e-07,
|
| 304 |
+
"loss_func": "stage2",
|
| 305 |
+
"step": 33,
|
| 306 |
+
"total_loss": 0.3776797950267792
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"epoch": 0.08,
|
| 310 |
+
"importance_ratio": 0.9999284148216248,
|
| 311 |
+
"kl_div_avg": 0.004839582834392786,
|
| 312 |
+
"learning_rate": 4.934731934731934e-07,
|
| 313 |
+
"loss_func": "stage2",
|
| 314 |
+
"step": 34,
|
| 315 |
+
"total_loss": 0.5804722309112549
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"epoch": 0.08,
|
| 319 |
+
"importance_ratio": 0.999695897102356,
|
| 320 |
+
"kl_div_avg": 0.004378842655569315,
|
| 321 |
+
"learning_rate": 4.932400932400932e-07,
|
| 322 |
+
"loss_func": "stage2",
|
| 323 |
+
"step": 35,
|
| 324 |
+
"total_loss": 0.5690972805023193
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.08,
|
| 328 |
+
"importance_ratio": 0.9998815059661865,
|
| 329 |
+
"kl_div_avg": 0.0047516971826553345,
|
| 330 |
+
"learning_rate": 4.93006993006993e-07,
|
| 331 |
+
"loss_func": "stage2",
|
| 332 |
+
"step": 36,
|
| 333 |
+
"total_loss": 0.2298603653907776
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"epoch": 0.09,
|
| 337 |
+
"importance_ratio": 0.9997518062591553,
|
| 338 |
+
"kl_div_avg": 0.004270514938980341,
|
| 339 |
+
"learning_rate": 4.927738927738927e-07,
|
| 340 |
+
"loss_func": "stage2",
|
| 341 |
+
"step": 37,
|
| 342 |
+
"total_loss": -0.20016932487487793
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"epoch": 0.09,
|
| 346 |
+
"importance_ratio": 1.000083088874817,
|
| 347 |
+
"kl_div_avg": 0.004711843561381102,
|
| 348 |
+
"learning_rate": 4.925407925407925e-07,
|
| 349 |
+
"loss_func": "stage2",
|
| 350 |
+
"step": 38,
|
| 351 |
+
"total_loss": 0.25743457674980164
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"epoch": 0.09,
|
| 355 |
+
"importance_ratio": 0.9999402761459351,
|
| 356 |
+
"kl_div_avg": 0.004922826308757067,
|
| 357 |
+
"learning_rate": 4.923076923076923e-07,
|
| 358 |
+
"loss_func": "stage2",
|
| 359 |
+
"step": 39,
|
| 360 |
+
"total_loss": -0.15881219506263733
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.09,
|
| 364 |
+
"importance_ratio": 0.999858021736145,
|
| 365 |
+
"kl_div_avg": 0.0039229318499565125,
|
| 366 |
+
"learning_rate": 4.92074592074592e-07,
|
| 367 |
+
"loss_func": "stage2",
|
| 368 |
+
"step": 40,
|
| 369 |
+
"total_loss": -0.23230578005313873
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"epoch": 0.1,
|
| 373 |
+
"importance_ratio": 0.999944806098938,
|
| 374 |
+
"kl_div_avg": 0.00766429677605629,
|
| 375 |
+
"learning_rate": 4.918414918414918e-07,
|
| 376 |
+
"loss_func": "stage2",
|
| 377 |
+
"step": 41,
|
| 378 |
+
"total_loss": -0.03111131489276886
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"epoch": 0.1,
|
| 382 |
+
"importance_ratio": 1.000047206878662,
|
| 383 |
+
"kl_div_avg": 0.005274048075079918,
|
| 384 |
+
"learning_rate": 4.916083916083916e-07,
|
| 385 |
+
"loss_func": "stage2",
|
| 386 |
+
"step": 42,
|
| 387 |
+
"total_loss": -0.033877044916152954
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.1,
|
| 391 |
+
"importance_ratio": 1.0002098083496094,
|
| 392 |
+
"kl_div_avg": 0.006382378749549389,
|
| 393 |
+
"learning_rate": 4.913752913752914e-07,
|
| 394 |
+
"loss_func": "stage2",
|
| 395 |
+
"step": 43,
|
| 396 |
+
"total_loss": 0.10409477353096008
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"epoch": 0.1,
|
| 400 |
+
"importance_ratio": 0.9998437166213989,
|
| 401 |
+
"kl_div_avg": 0.006663881242275238,
|
| 402 |
+
"learning_rate": 4.911421911421911e-07,
|
| 403 |
+
"loss_func": "stage2",
|
| 404 |
+
"step": 44,
|
| 405 |
+
"total_loss": -0.9234535694122314
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"epoch": 0.11,
|
| 409 |
+
"importance_ratio": 0.9999840259552002,
|
| 410 |
+
"kl_div_avg": 0.004546988755464554,
|
| 411 |
+
"learning_rate": 4.909090909090909e-07,
|
| 412 |
+
"loss_func": "stage2",
|
| 413 |
+
"step": 45,
|
| 414 |
+
"total_loss": 0.022589027881622314
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"epoch": 0.11,
|
| 418 |
+
"importance_ratio": 1.0002349615097046,
|
| 419 |
+
"kl_div_avg": 0.0048853568732738495,
|
| 420 |
+
"learning_rate": 4.906759906759906e-07,
|
| 421 |
+
"loss_func": "stage2",
|
| 422 |
+
"step": 46,
|
| 423 |
+
"total_loss": 0.7868871688842773
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.11,
|
| 427 |
+
"importance_ratio": 1.0003743171691895,
|
| 428 |
+
"kl_div_avg": 0.005253675393760204,
|
| 429 |
+
"learning_rate": 4.904428904428905e-07,
|
| 430 |
+
"loss_func": "stage2",
|
| 431 |
+
"step": 47,
|
| 432 |
+
"total_loss": 0.7918493747711182
|
| 433 |
+
},
|
| 434 |
+
{
|
| 435 |
+
"epoch": 0.11,
|
| 436 |
+
"importance_ratio": 1.0001533031463623,
|
| 437 |
+
"kl_div_avg": 0.005680109839886427,
|
| 438 |
+
"learning_rate": 4.902097902097902e-07,
|
| 439 |
+
"loss_func": "stage2",
|
| 440 |
+
"step": 48,
|
| 441 |
+
"total_loss": -0.10262584686279297
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"epoch": 0.12,
|
| 445 |
+
"importance_ratio": 0.999789834022522,
|
| 446 |
+
"kl_div_avg": 0.006105936132371426,
|
| 447 |
+
"learning_rate": 4.8997668997669e-07,
|
| 448 |
+
"loss_func": "stage2",
|
| 449 |
+
"step": 49,
|
| 450 |
+
"total_loss": -0.8303477168083191
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.12,
|
| 454 |
+
"importance_ratio": 0.9999826550483704,
|
| 455 |
+
"kl_div_avg": 0.005722599104046822,
|
| 456 |
+
"learning_rate": 4.897435897435897e-07,
|
| 457 |
+
"loss_func": "stage2",
|
| 458 |
+
"step": 50,
|
| 459 |
+
"total_loss": -0.8298835754394531
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"epoch": 0.12,
|
| 463 |
+
"importance_ratio": 1.0003968477249146,
|
| 464 |
+
"kl_div_avg": 0.005780387669801712,
|
| 465 |
+
"learning_rate": 4.895104895104895e-07,
|
| 466 |
+
"loss_func": "stage2",
|
| 467 |
+
"step": 51,
|
| 468 |
+
"total_loss": -0.8298872709274292
|
| 469 |
+
},
|
| 470 |
+
{
|
| 471 |
+
"epoch": 0.12,
|
| 472 |
+
"importance_ratio": 1.001389741897583,
|
| 473 |
+
"kl_div_avg": 0.00528342742472887,
|
| 474 |
+
"learning_rate": 4.892773892773893e-07,
|
| 475 |
+
"loss_func": "stage2",
|
| 476 |
+
"step": 52,
|
| 477 |
+
"total_loss": -0.8320926427841187
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"epoch": 0.13,
|
| 481 |
+
"importance_ratio": 1.0000613927841187,
|
| 482 |
+
"kl_div_avg": 0.005511891096830368,
|
| 483 |
+
"learning_rate": 4.890442890442891e-07,
|
| 484 |
+
"loss_func": "stage2",
|
| 485 |
+
"step": 53,
|
| 486 |
+
"total_loss": -0.8287703990936279
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.13,
|
| 490 |
+
"importance_ratio": 1.000309705734253,
|
| 491 |
+
"kl_div_avg": 0.00582331046462059,
|
| 492 |
+
"learning_rate": 4.888111888111888e-07,
|
| 493 |
+
"loss_func": "stage2",
|
| 494 |
+
"step": 54,
|
| 495 |
+
"total_loss": -0.007962286472320557
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"epoch": 0.13,
|
| 499 |
+
"importance_ratio": 1.000248670578003,
|
| 500 |
+
"kl_div_avg": 0.005605565384030342,
|
| 501 |
+
"learning_rate": 4.885780885780885e-07,
|
| 502 |
+
"loss_func": "stage2",
|
| 503 |
+
"step": 55,
|
| 504 |
+
"total_loss": 0.30858537554740906
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"epoch": 0.13,
|
| 508 |
+
"importance_ratio": 1.0001593828201294,
|
| 509 |
+
"kl_div_avg": 0.006694035604596138,
|
| 510 |
+
"learning_rate": 4.883449883449883e-07,
|
| 511 |
+
"loss_func": "stage2",
|
| 512 |
+
"step": 56,
|
| 513 |
+
"total_loss": 0.2841358482837677
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.14,
|
| 517 |
+
"importance_ratio": 0.9998378753662109,
|
| 518 |
+
"kl_div_avg": 0.0054409438744187355,
|
| 519 |
+
"learning_rate": 4.88111888111888e-07,
|
| 520 |
+
"loss_func": "stage2",
|
| 521 |
+
"step": 57,
|
| 522 |
+
"total_loss": 0.4940628409385681
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"epoch": 0.14,
|
| 526 |
+
"importance_ratio": 1.0000338554382324,
|
| 527 |
+
"kl_div_avg": 0.00452791154384613,
|
| 528 |
+
"learning_rate": 4.878787878787878e-07,
|
| 529 |
+
"loss_func": "stage2",
|
| 530 |
+
"step": 58,
|
| 531 |
+
"total_loss": 0.25203195214271545
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"epoch": 0.14,
|
| 535 |
+
"importance_ratio": 1.0000851154327393,
|
| 536 |
+
"kl_div_avg": 0.008046677336096764,
|
| 537 |
+
"learning_rate": 4.876456876456876e-07,
|
| 538 |
+
"loss_func": "stage2",
|
| 539 |
+
"step": 59,
|
| 540 |
+
"total_loss": 0.8340111970901489
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"epoch": 0.14,
|
| 544 |
+
"importance_ratio": 1.0000518560409546,
|
| 545 |
+
"kl_div_avg": 0.0053115119226276875,
|
| 546 |
+
"learning_rate": 4.874125874125874e-07,
|
| 547 |
+
"loss_func": "stage2",
|
| 548 |
+
"step": 60,
|
| 549 |
+
"total_loss": -0.4959676265716553
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.15,
|
| 553 |
+
"importance_ratio": 1.0000547170639038,
|
| 554 |
+
"kl_div_avg": 0.009003904648125172,
|
| 555 |
+
"learning_rate": 4.871794871794871e-07,
|
| 556 |
+
"loss_func": "stage2",
|
| 557 |
+
"step": 61,
|
| 558 |
+
"total_loss": -0.7978946566581726
|
| 559 |
+
},
|
| 560 |
+
{
|
| 561 |
+
"epoch": 0.15,
|
| 562 |
+
"importance_ratio": 1.000227689743042,
|
| 563 |
+
"kl_div_avg": 0.007788301911205053,
|
| 564 |
+
"learning_rate": 4.869463869463869e-07,
|
| 565 |
+
"loss_func": "stage2",
|
| 566 |
+
"step": 62,
|
| 567 |
+
"total_loss": -0.801626443862915
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"epoch": 0.15,
|
| 571 |
+
"importance_ratio": 1.0001925230026245,
|
| 572 |
+
"kl_div_avg": 0.009508013725280762,
|
| 573 |
+
"learning_rate": 4.867132867132867e-07,
|
| 574 |
+
"loss_func": "stage2",
|
| 575 |
+
"step": 63,
|
| 576 |
+
"total_loss": -0.8087908029556274
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.15,
|
| 580 |
+
"importance_ratio": 1.0004205703735352,
|
| 581 |
+
"kl_div_avg": 0.00948132760822773,
|
| 582 |
+
"learning_rate": 4.864801864801865e-07,
|
| 583 |
+
"loss_func": "stage2",
|
| 584 |
+
"step": 64,
|
| 585 |
+
"total_loss": -0.7977355718612671
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"epoch": 0.16,
|
| 589 |
+
"importance_ratio": 0.9995088577270508,
|
| 590 |
+
"kl_div_avg": 0.013071361929178238,
|
| 591 |
+
"learning_rate": 4.862470862470862e-07,
|
| 592 |
+
"loss_func": "stage2",
|
| 593 |
+
"step": 65,
|
| 594 |
+
"total_loss": -0.7926455736160278
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"epoch": 0.16,
|
| 598 |
+
"importance_ratio": 1.0000696182250977,
|
| 599 |
+
"kl_div_avg": 0.008261503651738167,
|
| 600 |
+
"learning_rate": 4.86013986013986e-07,
|
| 601 |
+
"loss_func": "stage2",
|
| 602 |
+
"step": 66,
|
| 603 |
+
"total_loss": 0.8929388523101807
|
| 604 |
+
},
|
| 605 |
+
{
|
| 606 |
+
"epoch": 0.16,
|
| 607 |
+
"importance_ratio": 0.9999169111251831,
|
| 608 |
+
"kl_div_avg": 0.0072638243436813354,
|
| 609 |
+
"learning_rate": 4.857808857808858e-07,
|
| 610 |
+
"loss_func": "stage2",
|
| 611 |
+
"step": 67,
|
| 612 |
+
"total_loss": 0.7651723623275757
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.16,
|
| 616 |
+
"importance_ratio": 1.0006506443023682,
|
| 617 |
+
"kl_div_avg": 0.014501883648335934,
|
| 618 |
+
"learning_rate": 4.855477855477855e-07,
|
| 619 |
+
"loss_func": "stage2",
|
| 620 |
+
"step": 68,
|
| 621 |
+
"total_loss": -0.7893998622894287
|
| 622 |
+
},
|
| 623 |
+
{
|
| 624 |
+
"epoch": 0.17,
|
| 625 |
+
"importance_ratio": 1.0001804828643799,
|
| 626 |
+
"kl_div_avg": 0.014889956451952457,
|
| 627 |
+
"learning_rate": 4.853146853146853e-07,
|
| 628 |
+
"loss_func": "stage2",
|
| 629 |
+
"step": 69,
|
| 630 |
+
"total_loss": -0.28294438123703003
|
| 631 |
+
},
|
| 632 |
+
{
|
| 633 |
+
"epoch": 0.17,
|
| 634 |
+
"importance_ratio": 1.0003015995025635,
|
| 635 |
+
"kl_div_avg": 0.012897053733468056,
|
| 636 |
+
"learning_rate": 4.850815850815851e-07,
|
| 637 |
+
"loss_func": "stage2",
|
| 638 |
+
"step": 70,
|
| 639 |
+
"total_loss": -0.29949530959129333
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.17,
|
| 643 |
+
"importance_ratio": 0.9999880194664001,
|
| 644 |
+
"kl_div_avg": 0.011545092798769474,
|
| 645 |
+
"learning_rate": 4.848484848484849e-07,
|
| 646 |
+
"loss_func": "stage2",
|
| 647 |
+
"step": 71,
|
| 648 |
+
"total_loss": -0.07207685708999634
|
| 649 |
+
},
|
| 650 |
+
{
|
| 651 |
+
"epoch": 0.17,
|
| 652 |
+
"importance_ratio": 1.0000548362731934,
|
| 653 |
+
"kl_div_avg": 0.011798446998000145,
|
| 654 |
+
"learning_rate": 4.846153846153846e-07,
|
| 655 |
+
"loss_func": "stage2",
|
| 656 |
+
"step": 72,
|
| 657 |
+
"total_loss": -0.030968129634857178
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"epoch": 0.18,
|
| 661 |
+
"importance_ratio": 0.9998947381973267,
|
| 662 |
+
"kl_div_avg": 0.014826457016170025,
|
| 663 |
+
"learning_rate": 4.843822843822844e-07,
|
| 664 |
+
"loss_func": "stage2",
|
| 665 |
+
"step": 73,
|
| 666 |
+
"total_loss": -0.04581499099731445
|
| 667 |
+
},
|
| 668 |
+
{
|
| 669 |
+
"epoch": 0.18,
|
| 670 |
+
"importance_ratio": 0.9999833106994629,
|
| 671 |
+
"kl_div_avg": 0.01308258343487978,
|
| 672 |
+
"learning_rate": 4.841491841491842e-07,
|
| 673 |
+
"loss_func": "stage2",
|
| 674 |
+
"step": 74,
|
| 675 |
+
"total_loss": -0.2057284414768219
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.18,
|
| 679 |
+
"importance_ratio": 1.000425100326538,
|
| 680 |
+
"kl_div_avg": 0.014183840714395046,
|
| 681 |
+
"learning_rate": 4.839160839160839e-07,
|
| 682 |
+
"loss_func": "stage2",
|
| 683 |
+
"step": 75,
|
| 684 |
+
"total_loss": 0.6338366866111755
|
| 685 |
+
},
|
| 686 |
+
{
|
| 687 |
+
"epoch": 0.18,
|
| 688 |
+
"importance_ratio": 1.0001928806304932,
|
| 689 |
+
"kl_div_avg": 0.013401240110397339,
|
| 690 |
+
"learning_rate": 4.836829836829837e-07,
|
| 691 |
+
"loss_func": "stage2",
|
| 692 |
+
"step": 76,
|
| 693 |
+
"total_loss": 0.2874578833580017
|
| 694 |
+
},
|
| 695 |
+
{
|
| 696 |
+
"epoch": 0.19,
|
| 697 |
+
"importance_ratio": 0.9999673366546631,
|
| 698 |
+
"kl_div_avg": 0.012778308242559433,
|
| 699 |
+
"learning_rate": 4.834498834498834e-07,
|
| 700 |
+
"loss_func": "stage2",
|
| 701 |
+
"step": 77,
|
| 702 |
+
"total_loss": 0.8181835412979126
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 0.19,
|
| 706 |
+
"importance_ratio": 0.9999823570251465,
|
| 707 |
+
"kl_div_avg": 0.014732200652360916,
|
| 708 |
+
"learning_rate": 4.832167832167832e-07,
|
| 709 |
+
"loss_func": "stage2",
|
| 710 |
+
"step": 78,
|
| 711 |
+
"total_loss": 0.818813681602478
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 0.19,
|
| 715 |
+
"importance_ratio": 1.0003037452697754,
|
| 716 |
+
"kl_div_avg": 0.014829716645181179,
|
| 717 |
+
"learning_rate": 4.829836829836829e-07,
|
| 718 |
+
"loss_func": "stage2",
|
| 719 |
+
"step": 79,
|
| 720 |
+
"total_loss": 0.0298653244972229
|
| 721 |
+
},
|
| 722 |
+
{
|
| 723 |
+
"epoch": 0.19,
|
| 724 |
+
"importance_ratio": 1.0003316402435303,
|
| 725 |
+
"kl_div_avg": 0.01861473172903061,
|
| 726 |
+
"learning_rate": 4.827505827505827e-07,
|
| 727 |
+
"loss_func": "stage2",
|
| 728 |
+
"step": 80,
|
| 729 |
+
"total_loss": 0.47803181409835815
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"epoch": 0.2,
|
| 733 |
+
"importance_ratio": 1.0000956058502197,
|
| 734 |
+
"kl_div_avg": 0.013490747660398483,
|
| 735 |
+
"learning_rate": 4.825174825174824e-07,
|
| 736 |
+
"loss_func": "stage2",
|
| 737 |
+
"step": 81,
|
| 738 |
+
"total_loss": 0.43567734956741333
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.2,
|
| 742 |
+
"importance_ratio": 1.0001178979873657,
|
| 743 |
+
"kl_div_avg": 0.014975698664784431,
|
| 744 |
+
"learning_rate": 4.822843822843823e-07,
|
| 745 |
+
"loss_func": "stage2",
|
| 746 |
+
"step": 82,
|
| 747 |
+
"total_loss": -0.27731338143348694
|
| 748 |
+
},
|
| 749 |
+
{
|
| 750 |
+
"epoch": 0.2,
|
| 751 |
+
"importance_ratio": 0.9999943971633911,
|
| 752 |
+
"kl_div_avg": 0.012739075347781181,
|
| 753 |
+
"learning_rate": 4.82051282051282e-07,
|
| 754 |
+
"loss_func": "stage2",
|
| 755 |
+
"step": 83,
|
| 756 |
+
"total_loss": 0.14717233180999756
|
| 757 |
+
},
|
| 758 |
+
{
|
| 759 |
+
"epoch": 0.2,
|
| 760 |
+
"importance_ratio": 1.000013828277588,
|
| 761 |
+
"kl_div_avg": 0.015260843560099602,
|
| 762 |
+
"learning_rate": 4.818181818181818e-07,
|
| 763 |
+
"loss_func": "stage2",
|
| 764 |
+
"step": 84,
|
| 765 |
+
"total_loss": -0.876125693321228
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.2,
|
| 769 |
+
"importance_ratio": 0.9999637603759766,
|
| 770 |
+
"kl_div_avg": 0.009859403595328331,
|
| 771 |
+
"learning_rate": 4.815850815850815e-07,
|
| 772 |
+
"loss_func": "stage2",
|
| 773 |
+
"step": 85,
|
| 774 |
+
"total_loss": -0.007574997842311859
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"epoch": 0.2,
|
| 778 |
+
"importance_ratio": 0.9998883008956909,
|
| 779 |
+
"kl_div_avg": 0.012243506498634815,
|
| 780 |
+
"learning_rate": 4.813519813519813e-07,
|
| 781 |
+
"loss_func": "stage2",
|
| 782 |
+
"step": 86,
|
| 783 |
+
"total_loss": -0.8214981555938721
|
| 784 |
+
},
|
| 785 |
+
{
|
| 786 |
+
"epoch": 0.2,
|
| 787 |
+
"importance_ratio": 0.9997843503952026,
|
| 788 |
+
"kl_div_avg": 0.009431181475520134,
|
| 789 |
+
"learning_rate": 4.811188811188811e-07,
|
| 790 |
+
"loss_func": "stage2",
|
| 791 |
+
"step": 87,
|
| 792 |
+
"total_loss": 0.09674309194087982
|
| 793 |
+
},
|
| 794 |
+
{
|
| 795 |
+
"epoch": 0.2,
|
| 796 |
+
"importance_ratio": 0.9998980760574341,
|
| 797 |
+
"kl_div_avg": 0.012359343469142914,
|
| 798 |
+
"learning_rate": 4.808857808857809e-07,
|
| 799 |
+
"loss_func": "stage2",
|
| 800 |
+
"step": 88,
|
| 801 |
+
"total_loss": 0.13037657737731934
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.21,
|
| 805 |
+
"importance_ratio": 0.9999622702598572,
|
| 806 |
+
"kl_div_avg": 0.019689181819558144,
|
| 807 |
+
"learning_rate": 4.806526806526806e-07,
|
| 808 |
+
"loss_func": "stage2",
|
| 809 |
+
"step": 89,
|
| 810 |
+
"total_loss": -0.053394585847854614
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"epoch": 0.21,
|
| 814 |
+
"importance_ratio": 1.0000618696212769,
|
| 815 |
+
"kl_div_avg": 0.013591418042778969,
|
| 816 |
+
"learning_rate": 4.804195804195804e-07,
|
| 817 |
+
"loss_func": "stage2",
|
| 818 |
+
"step": 90,
|
| 819 |
+
"total_loss": 0.7699258327484131
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"epoch": 0.21,
|
| 823 |
+
"importance_ratio": 1.000166893005371,
|
| 824 |
+
"kl_div_avg": 0.016464080661535263,
|
| 825 |
+
"learning_rate": 4.801864801864802e-07,
|
| 826 |
+
"loss_func": "stage2",
|
| 827 |
+
"step": 91,
|
| 828 |
+
"total_loss": 0.16640010476112366
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 0.21,
|
| 832 |
+
"importance_ratio": 0.9997192621231079,
|
| 833 |
+
"kl_div_avg": 0.02152731642127037,
|
| 834 |
+
"learning_rate": 4.799533799533799e-07,
|
| 835 |
+
"loss_func": "stage2",
|
| 836 |
+
"step": 92,
|
| 837 |
+
"total_loss": -0.17338214814662933
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 0.22,
|
| 841 |
+
"importance_ratio": 1.000048279762268,
|
| 842 |
+
"kl_div_avg": 0.01632719114422798,
|
| 843 |
+
"learning_rate": 4.797202797202797e-07,
|
| 844 |
+
"loss_func": "stage2",
|
| 845 |
+
"step": 93,
|
| 846 |
+
"total_loss": -0.311355322599411
|
| 847 |
+
},
|
| 848 |
+
{
|
| 849 |
+
"epoch": 0.22,
|
| 850 |
+
"importance_ratio": 1.000006914138794,
|
| 851 |
+
"kl_div_avg": 0.02427072264254093,
|
| 852 |
+
"learning_rate": 4.794871794871795e-07,
|
| 853 |
+
"loss_func": "stage2",
|
| 854 |
+
"step": 94,
|
| 855 |
+
"total_loss": 0.6689386963844299
|
| 856 |
+
},
|
| 857 |
+
{
|
| 858 |
+
"epoch": 0.22,
|
| 859 |
+
"importance_ratio": 1.0001646280288696,
|
| 860 |
+
"kl_div_avg": 0.020599162206053734,
|
| 861 |
+
"learning_rate": 4.792540792540793e-07,
|
| 862 |
+
"loss_func": "stage2",
|
| 863 |
+
"step": 95,
|
| 864 |
+
"total_loss": -0.27341556549072266
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.22,
|
| 868 |
+
"importance_ratio": 1.0005509853363037,
|
| 869 |
+
"kl_div_avg": 0.01824137195944786,
|
| 870 |
+
"learning_rate": 4.79020979020979e-07,
|
| 871 |
+
"loss_func": "stage2",
|
| 872 |
+
"step": 96,
|
| 873 |
+
"total_loss": -0.7693477869033813
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"epoch": 0.23,
|
| 877 |
+
"importance_ratio": 1.0000276565551758,
|
| 878 |
+
"kl_div_avg": 0.019494881853461266,
|
| 879 |
+
"learning_rate": 4.787878787878788e-07,
|
| 880 |
+
"loss_func": "stage2",
|
| 881 |
+
"step": 97,
|
| 882 |
+
"total_loss": 0.5362880229949951
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"epoch": 0.23,
|
| 886 |
+
"importance_ratio": 1.0001310110092163,
|
| 887 |
+
"kl_div_avg": 0.018007826060056686,
|
| 888 |
+
"learning_rate": 4.785547785547786e-07,
|
| 889 |
+
"loss_func": "stage2",
|
| 890 |
+
"step": 98,
|
| 891 |
+
"total_loss": 0.13775774836540222
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.23,
|
| 895 |
+
"importance_ratio": 1.0001639127731323,
|
| 896 |
+
"kl_div_avg": 0.018012849614024162,
|
| 897 |
+
"learning_rate": 4.783216783216783e-07,
|
| 898 |
+
"loss_func": "stage2",
|
| 899 |
+
"step": 99,
|
| 900 |
+
"total_loss": 0.43274223804473877
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"epoch": 0.23,
|
| 904 |
+
"importance_ratio": 1.0001168251037598,
|
| 905 |
+
"kl_div_avg": 0.016401609405875206,
|
| 906 |
+
"learning_rate": 4.78088578088578e-07,
|
| 907 |
+
"loss_func": "stage2",
|
| 908 |
+
"step": 100,
|
| 909 |
+
"total_loss": 0.024271167814731598
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"epoch": 0.24,
|
| 913 |
+
"importance_ratio": 0.9998679161071777,
|
| 914 |
+
"kl_div_avg": 0.018232179805636406,
|
| 915 |
+
"learning_rate": 4.778554778554778e-07,
|
| 916 |
+
"loss_func": "stage2",
|
| 917 |
+
"step": 101,
|
| 918 |
+
"total_loss": -0.13439278304576874
|
| 919 |
+
},
|
| 920 |
+
{
|
| 921 |
+
"epoch": 0.24,
|
| 922 |
+
"importance_ratio": 0.9999688267707825,
|
| 923 |
+
"kl_div_avg": 0.01988252066075802,
|
| 924 |
+
"learning_rate": 4.776223776223776e-07,
|
| 925 |
+
"loss_func": "stage2",
|
| 926 |
+
"step": 102,
|
| 927 |
+
"total_loss": -0.5875260233879089
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.24,
|
| 931 |
+
"importance_ratio": 1.000270128250122,
|
| 932 |
+
"kl_div_avg": 0.024290431290864944,
|
| 933 |
+
"learning_rate": 4.773892773892773e-07,
|
| 934 |
+
"loss_func": "stage2",
|
| 935 |
+
"step": 103,
|
| 936 |
+
"total_loss": 0.43479496240615845
|
| 937 |
+
},
|
| 938 |
+
{
|
| 939 |
+
"epoch": 0.24,
|
| 940 |
+
"importance_ratio": 1.0000674724578857,
|
| 941 |
+
"kl_div_avg": 0.017674673348665237,
|
| 942 |
+
"learning_rate": 4.771561771561771e-07,
|
| 943 |
+
"loss_func": "stage2",
|
| 944 |
+
"step": 104,
|
| 945 |
+
"total_loss": -0.30525317788124084
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"epoch": 0.25,
|
| 949 |
+
"importance_ratio": 0.9998775720596313,
|
| 950 |
+
"kl_div_avg": 0.015626681968569756,
|
| 951 |
+
"learning_rate": 4.769230769230769e-07,
|
| 952 |
+
"loss_func": "stage2",
|
| 953 |
+
"step": 105,
|
| 954 |
+
"total_loss": -0.4420226514339447
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 0.25,
|
| 958 |
+
"importance_ratio": 1.000077247619629,
|
| 959 |
+
"kl_div_avg": 0.011648900806903839,
|
| 960 |
+
"learning_rate": 4.7668997668997666e-07,
|
| 961 |
+
"loss_func": "stage2",
|
| 962 |
+
"step": 106,
|
| 963 |
+
"total_loss": -0.7798103094100952
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 0.25,
|
| 967 |
+
"importance_ratio": 0.9998931884765625,
|
| 968 |
+
"kl_div_avg": 0.02424587681889534,
|
| 969 |
+
"learning_rate": 4.7645687645687646e-07,
|
| 970 |
+
"loss_func": "stage2",
|
| 971 |
+
"step": 107,
|
| 972 |
+
"total_loss": 0.3463074564933777
|
| 973 |
+
},
|
| 974 |
+
{
|
| 975 |
+
"epoch": 0.25,
|
| 976 |
+
"importance_ratio": 1.0001239776611328,
|
| 977 |
+
"kl_div_avg": 0.019622065126895905,
|
| 978 |
+
"learning_rate": 4.762237762237762e-07,
|
| 979 |
+
"loss_func": "stage2",
|
| 980 |
+
"step": 108,
|
| 981 |
+
"total_loss": -0.7446590662002563
|
| 982 |
+
},
|
| 983 |
+
{
|
| 984 |
+
"epoch": 0.26,
|
| 985 |
+
"importance_ratio": 1.0000584125518799,
|
| 986 |
+
"kl_div_avg": 0.02028917521238327,
|
| 987 |
+
"learning_rate": 4.75990675990676e-07,
|
| 988 |
+
"loss_func": "stage2",
|
| 989 |
+
"step": 109,
|
| 990 |
+
"total_loss": -0.269249826669693
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.26,
|
| 994 |
+
"importance_ratio": 0.9998422861099243,
|
| 995 |
+
"kl_div_avg": 0.022249866276979446,
|
| 996 |
+
"learning_rate": 4.7575757575757574e-07,
|
| 997 |
+
"loss_func": "stage2",
|
| 998 |
+
"step": 110,
|
| 999 |
+
"total_loss": -0.6871204376220703
|
| 1000 |
+
},
|
| 1001 |
+
{
|
| 1002 |
+
"epoch": 0.26,
|
| 1003 |
+
"importance_ratio": 1.0001263618469238,
|
| 1004 |
+
"kl_div_avg": 0.01973864436149597,
|
| 1005 |
+
"learning_rate": 4.755244755244755e-07,
|
| 1006 |
+
"loss_func": "stage2",
|
| 1007 |
+
"step": 111,
|
| 1008 |
+
"total_loss": -0.6550001502037048
|
| 1009 |
+
},
|
| 1010 |
+
{
|
| 1011 |
+
"epoch": 0.26,
|
| 1012 |
+
"importance_ratio": 0.9996439218521118,
|
| 1013 |
+
"kl_div_avg": 0.02077101171016693,
|
| 1014 |
+
"learning_rate": 4.7529137529137523e-07,
|
| 1015 |
+
"loss_func": "stage2",
|
| 1016 |
+
"step": 112,
|
| 1017 |
+
"total_loss": 0.042905211448669434
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.27,
|
| 1021 |
+
"importance_ratio": 1.000232219696045,
|
| 1022 |
+
"kl_div_avg": 0.036871857941150665,
|
| 1023 |
+
"learning_rate": 4.750582750582751e-07,
|
| 1024 |
+
"loss_func": "stage2",
|
| 1025 |
+
"step": 113,
|
| 1026 |
+
"total_loss": -0.6672766804695129
|
| 1027 |
+
},
|
| 1028 |
+
{
|
| 1029 |
+
"epoch": 0.27,
|
| 1030 |
+
"importance_ratio": 0.9999071359634399,
|
| 1031 |
+
"kl_div_avg": 0.023731358349323273,
|
| 1032 |
+
"learning_rate": 4.748251748251748e-07,
|
| 1033 |
+
"loss_func": "stage2",
|
| 1034 |
+
"step": 114,
|
| 1035 |
+
"total_loss": 0.22221048176288605
|
| 1036 |
+
},
|
| 1037 |
+
{
|
| 1038 |
+
"epoch": 0.27,
|
| 1039 |
+
"importance_ratio": 0.9998910427093506,
|
| 1040 |
+
"kl_div_avg": 0.02947179228067398,
|
| 1041 |
+
"learning_rate": 4.7459207459207457e-07,
|
| 1042 |
+
"loss_func": "stage2",
|
| 1043 |
+
"step": 115,
|
| 1044 |
+
"total_loss": 0.05969160795211792
|
| 1045 |
+
},
|
| 1046 |
+
{
|
| 1047 |
+
"epoch": 0.27,
|
| 1048 |
+
"importance_ratio": 0.9999151825904846,
|
| 1049 |
+
"kl_div_avg": 0.028714872896671295,
|
| 1050 |
+
"learning_rate": 4.743589743589743e-07,
|
| 1051 |
+
"loss_func": "stage2",
|
| 1052 |
+
"step": 116,
|
| 1053 |
+
"total_loss": 0.023228317499160767
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.28,
|
| 1057 |
+
"importance_ratio": 0.9999186992645264,
|
| 1058 |
+
"kl_div_avg": 0.022106900811195374,
|
| 1059 |
+
"learning_rate": 4.741258741258741e-07,
|
| 1060 |
+
"loss_func": "stage2",
|
| 1061 |
+
"step": 117,
|
| 1062 |
+
"total_loss": -0.4819675087928772
|
| 1063 |
+
},
|
| 1064 |
+
{
|
| 1065 |
+
"epoch": 0.28,
|
| 1066 |
+
"importance_ratio": 0.9995689392089844,
|
| 1067 |
+
"kl_div_avg": 0.03649330139160156,
|
| 1068 |
+
"learning_rate": 4.7389277389277386e-07,
|
| 1069 |
+
"loss_func": "stage2",
|
| 1070 |
+
"step": 118,
|
| 1071 |
+
"total_loss": 0.3108961582183838
|
| 1072 |
+
},
|
| 1073 |
+
{
|
| 1074 |
+
"epoch": 0.28,
|
| 1075 |
+
"importance_ratio": 0.9996166825294495,
|
| 1076 |
+
"kl_div_avg": 0.03707721084356308,
|
| 1077 |
+
"learning_rate": 4.7365967365967365e-07,
|
| 1078 |
+
"loss_func": "stage2",
|
| 1079 |
+
"step": 119,
|
| 1080 |
+
"total_loss": 0.3411310315132141
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.28,
|
| 1084 |
+
"importance_ratio": 0.9993818998336792,
|
| 1085 |
+
"kl_div_avg": 0.02660643495619297,
|
| 1086 |
+
"learning_rate": 4.734265734265734e-07,
|
| 1087 |
+
"loss_func": "stage2",
|
| 1088 |
+
"step": 120,
|
| 1089 |
+
"total_loss": -0.1782078891992569
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"epoch": 0.29,
|
| 1093 |
+
"importance_ratio": 1.0000483989715576,
|
| 1094 |
+
"kl_div_avg": 0.020809054374694824,
|
| 1095 |
+
"learning_rate": 4.731934731934732e-07,
|
| 1096 |
+
"loss_func": "stage2",
|
| 1097 |
+
"step": 121,
|
| 1098 |
+
"total_loss": 0.2691134810447693
|
| 1099 |
+
},
|
| 1100 |
+
{
|
| 1101 |
+
"epoch": 0.29,
|
| 1102 |
+
"importance_ratio": 0.9999549388885498,
|
| 1103 |
+
"kl_div_avg": 0.018363434821367264,
|
| 1104 |
+
"learning_rate": 4.7296037296037294e-07,
|
| 1105 |
+
"loss_func": "stage2",
|
| 1106 |
+
"step": 122,
|
| 1107 |
+
"total_loss": -0.11637084186077118
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
"epoch": 0.29,
|
| 1111 |
+
"importance_ratio": 1.0000113248825073,
|
| 1112 |
+
"kl_div_avg": 0.01843072474002838,
|
| 1113 |
+
"learning_rate": 4.727272727272727e-07,
|
| 1114 |
+
"loss_func": "stage2",
|
| 1115 |
+
"step": 123,
|
| 1116 |
+
"total_loss": 0.41335129737854004
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.29,
|
| 1120 |
+
"importance_ratio": 0.9993541836738586,
|
| 1121 |
+
"kl_div_avg": 0.023193594068288803,
|
| 1122 |
+
"learning_rate": 4.724941724941724e-07,
|
| 1123 |
+
"loss_func": "stage2",
|
| 1124 |
+
"step": 124,
|
| 1125 |
+
"total_loss": 0.3763417601585388
|
| 1126 |
+
},
|
| 1127 |
+
{
|
| 1128 |
+
"epoch": 0.3,
|
| 1129 |
+
"importance_ratio": 1.0000863075256348,
|
| 1130 |
+
"kl_div_avg": 0.02424781210720539,
|
| 1131 |
+
"learning_rate": 4.722610722610723e-07,
|
| 1132 |
+
"loss_func": "stage2",
|
| 1133 |
+
"step": 125,
|
| 1134 |
+
"total_loss": 0.8012444972991943
|
| 1135 |
+
},
|
| 1136 |
+
{
|
| 1137 |
+
"epoch": 0.3,
|
| 1138 |
+
"importance_ratio": 0.9997611045837402,
|
| 1139 |
+
"kl_div_avg": 0.019796304404735565,
|
| 1140 |
+
"learning_rate": 4.72027972027972e-07,
|
| 1141 |
+
"loss_func": "stage2",
|
| 1142 |
+
"step": 126,
|
| 1143 |
+
"total_loss": 0.2471800446510315
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.3,
|
| 1147 |
+
"importance_ratio": 0.9994201064109802,
|
| 1148 |
+
"kl_div_avg": 0.03692193701863289,
|
| 1149 |
+
"learning_rate": 4.7179487179487176e-07,
|
| 1150 |
+
"loss_func": "stage2",
|
| 1151 |
+
"step": 127,
|
| 1152 |
+
"total_loss": 0.6575199961662292
|
| 1153 |
+
},
|
| 1154 |
+
{
|
| 1155 |
+
"epoch": 0.3,
|
| 1156 |
+
"importance_ratio": 0.9993878602981567,
|
| 1157 |
+
"kl_div_avg": 0.024065542966127396,
|
| 1158 |
+
"learning_rate": 4.715617715617715e-07,
|
| 1159 |
+
"loss_func": "stage2",
|
| 1160 |
+
"step": 128,
|
| 1161 |
+
"total_loss": 0.39468204975128174
|
| 1162 |
+
},
|
| 1163 |
+
{
|
| 1164 |
+
"epoch": 0.31,
|
| 1165 |
+
"importance_ratio": 1.0001311302185059,
|
| 1166 |
+
"kl_div_avg": 0.024539019912481308,
|
| 1167 |
+
"learning_rate": 4.713286713286713e-07,
|
| 1168 |
+
"loss_func": "stage2",
|
| 1169 |
+
"step": 129,
|
| 1170 |
+
"total_loss": 0.1832764893770218
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"epoch": 0.31,
|
| 1174 |
+
"importance_ratio": 0.9998582005500793,
|
| 1175 |
+
"kl_div_avg": 0.024634480476379395,
|
| 1176 |
+
"learning_rate": 4.710955710955711e-07,
|
| 1177 |
+
"loss_func": "stage2",
|
| 1178 |
+
"step": 130,
|
| 1179 |
+
"total_loss": 0.1833437830209732
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.31,
|
| 1183 |
+
"importance_ratio": 0.9997899532318115,
|
| 1184 |
+
"kl_div_avg": 0.024798087775707245,
|
| 1185 |
+
"learning_rate": 4.7086247086247085e-07,
|
| 1186 |
+
"loss_func": "stage2",
|
| 1187 |
+
"step": 131,
|
| 1188 |
+
"total_loss": -0.029144808650016785
|
| 1189 |
+
},
|
| 1190 |
+
{
|
| 1191 |
+
"epoch": 0.31,
|
| 1192 |
+
"importance_ratio": 0.9991902112960815,
|
| 1193 |
+
"kl_div_avg": 0.022448930889368057,
|
| 1194 |
+
"learning_rate": 4.706293706293706e-07,
|
| 1195 |
+
"loss_func": "stage2",
|
| 1196 |
+
"step": 132,
|
| 1197 |
+
"total_loss": 0.5746316909790039
|
| 1198 |
+
},
|
| 1199 |
+
{
|
| 1200 |
+
"epoch": 0.32,
|
| 1201 |
+
"importance_ratio": 0.9999872446060181,
|
| 1202 |
+
"kl_div_avg": 0.030649660155177116,
|
| 1203 |
+
"learning_rate": 4.703962703962704e-07,
|
| 1204 |
+
"loss_func": "stage2",
|
| 1205 |
+
"step": 133,
|
| 1206 |
+
"total_loss": -0.27921533584594727
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 0.32,
|
| 1210 |
+
"importance_ratio": 0.9999322891235352,
|
| 1211 |
+
"kl_div_avg": 0.028502434492111206,
|
| 1212 |
+
"learning_rate": 4.7016317016317013e-07,
|
| 1213 |
+
"loss_func": "stage2",
|
| 1214 |
+
"step": 134,
|
| 1215 |
+
"total_loss": -0.18240980803966522
|
| 1216 |
+
},
|
| 1217 |
+
{
|
| 1218 |
+
"epoch": 0.32,
|
| 1219 |
+
"importance_ratio": 0.9991711378097534,
|
| 1220 |
+
"kl_div_avg": 0.034727346152067184,
|
| 1221 |
+
"learning_rate": 4.699300699300699e-07,
|
| 1222 |
+
"loss_func": "stage2",
|
| 1223 |
+
"step": 135,
|
| 1224 |
+
"total_loss": 0.20225152373313904
|
| 1225 |
+
},
|
| 1226 |
+
{
|
| 1227 |
+
"epoch": 0.32,
|
| 1228 |
+
"importance_ratio": 1.000333547592163,
|
| 1229 |
+
"kl_div_avg": 0.02375342883169651,
|
| 1230 |
+
"learning_rate": 4.696969696969697e-07,
|
| 1231 |
+
"loss_func": "stage2",
|
| 1232 |
+
"step": 136,
|
| 1233 |
+
"total_loss": 0.19642743468284607
|
| 1234 |
+
},
|
| 1235 |
+
{
|
| 1236 |
+
"epoch": 0.33,
|
| 1237 |
+
"importance_ratio": 1.0000425577163696,
|
| 1238 |
+
"kl_div_avg": 0.02941157855093479,
|
| 1239 |
+
"learning_rate": 4.6946386946386947e-07,
|
| 1240 |
+
"loss_func": "stage2",
|
| 1241 |
+
"step": 137,
|
| 1242 |
+
"total_loss": -0.2832520604133606
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.33,
|
| 1246 |
+
"importance_ratio": 0.9998887777328491,
|
| 1247 |
+
"kl_div_avg": 0.0380094014108181,
|
| 1248 |
+
"learning_rate": 4.692307692307692e-07,
|
| 1249 |
+
"loss_func": "stage2",
|
| 1250 |
+
"step": 138,
|
| 1251 |
+
"total_loss": 0.07638365030288696
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"epoch": 0.33,
|
| 1255 |
+
"importance_ratio": 1.0000771284103394,
|
| 1256 |
+
"kl_div_avg": 0.031544946134090424,
|
| 1257 |
+
"learning_rate": 4.6899766899766896e-07,
|
| 1258 |
+
"loss_func": "stage2",
|
| 1259 |
+
"step": 139,
|
| 1260 |
+
"total_loss": -0.29178526997566223
|
| 1261 |
+
},
|
| 1262 |
+
{
|
| 1263 |
+
"epoch": 0.33,
|
| 1264 |
+
"importance_ratio": 0.9999626278877258,
|
| 1265 |
+
"kl_div_avg": 0.03620228171348572,
|
| 1266 |
+
"learning_rate": 4.6876456876456875e-07,
|
| 1267 |
+
"loss_func": "stage2",
|
| 1268 |
+
"step": 140,
|
| 1269 |
+
"total_loss": 0.12343016266822815
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.34,
|
| 1273 |
+
"importance_ratio": 0.9999535083770752,
|
| 1274 |
+
"kl_div_avg": 0.026813074946403503,
|
| 1275 |
+
"learning_rate": 4.685314685314685e-07,
|
| 1276 |
+
"loss_func": "stage2",
|
| 1277 |
+
"step": 141,
|
| 1278 |
+
"total_loss": 0.024522602558135986
|
| 1279 |
+
},
|
| 1280 |
+
{
|
| 1281 |
+
"epoch": 0.34,
|
| 1282 |
+
"importance_ratio": 0.9998844265937805,
|
| 1283 |
+
"kl_div_avg": 0.031967416405677795,
|
| 1284 |
+
"learning_rate": 4.682983682983683e-07,
|
| 1285 |
+
"loss_func": "stage2",
|
| 1286 |
+
"step": 142,
|
| 1287 |
+
"total_loss": 0.6268632411956787
|
| 1288 |
+
},
|
| 1289 |
+
{
|
| 1290 |
+
"epoch": 0.34,
|
| 1291 |
+
"importance_ratio": 0.9997915029525757,
|
| 1292 |
+
"kl_div_avg": 0.024857094511389732,
|
| 1293 |
+
"learning_rate": 4.6806526806526804e-07,
|
| 1294 |
+
"loss_func": "stage2",
|
| 1295 |
+
"step": 143,
|
| 1296 |
+
"total_loss": 0.13797396421432495
|
| 1297 |
+
},
|
| 1298 |
+
{
|
| 1299 |
+
"epoch": 0.34,
|
| 1300 |
+
"importance_ratio": 0.9998888969421387,
|
| 1301 |
+
"kl_div_avg": 0.04350988566875458,
|
| 1302 |
+
"learning_rate": 4.6783216783216784e-07,
|
| 1303 |
+
"loss_func": "stage2",
|
| 1304 |
+
"step": 144,
|
| 1305 |
+
"total_loss": 0.5312750935554504
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.34,
|
| 1309 |
+
"importance_ratio": 0.9998694658279419,
|
| 1310 |
+
"kl_div_avg": 0.03627926483750343,
|
| 1311 |
+
"learning_rate": 4.675990675990676e-07,
|
| 1312 |
+
"loss_func": "stage2",
|
| 1313 |
+
"step": 145,
|
| 1314 |
+
"total_loss": 0.09028466045856476
|
| 1315 |
+
},
|
| 1316 |
+
{
|
| 1317 |
+
"epoch": 0.34,
|
| 1318 |
+
"importance_ratio": 0.9999563694000244,
|
| 1319 |
+
"kl_div_avg": 0.02497359737753868,
|
| 1320 |
+
"learning_rate": 4.673659673659673e-07,
|
| 1321 |
+
"loss_func": "stage2",
|
| 1322 |
+
"step": 146,
|
| 1323 |
+
"total_loss": 0.5303145051002502
|
| 1324 |
+
},
|
| 1325 |
+
{
|
| 1326 |
+
"epoch": 0.34,
|
| 1327 |
+
"importance_ratio": 0.9999274015426636,
|
| 1328 |
+
"kl_div_avg": 0.026778005063533783,
|
| 1329 |
+
"learning_rate": 4.6713286713286707e-07,
|
| 1330 |
+
"loss_func": "stage2",
|
| 1331 |
+
"step": 147,
|
| 1332 |
+
"total_loss": 0.1259535402059555
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 0.34,
|
| 1336 |
+
"importance_ratio": 0.9997484683990479,
|
| 1337 |
+
"kl_div_avg": 0.02970227226614952,
|
| 1338 |
+
"learning_rate": 4.668997668997669e-07,
|
| 1339 |
+
"loss_func": "stage2",
|
| 1340 |
+
"step": 148,
|
| 1341 |
+
"total_loss": 0.5203793048858643
|
| 1342 |
+
},
|
| 1343 |
+
{
|
| 1344 |
+
"epoch": 0.35,
|
| 1345 |
+
"importance_ratio": 1.0000306367874146,
|
| 1346 |
+
"kl_div_avg": 0.03883244842290878,
|
| 1347 |
+
"learning_rate": 4.6666666666666666e-07,
|
| 1348 |
+
"loss_func": "stage2",
|
| 1349 |
+
"step": 149,
|
| 1350 |
+
"total_loss": 0.5459209680557251
|
| 1351 |
+
},
|
| 1352 |
+
{
|
| 1353 |
+
"epoch": 0.35,
|
| 1354 |
+
"importance_ratio": 0.9999977946281433,
|
| 1355 |
+
"kl_div_avg": 0.010376233607530594,
|
| 1356 |
+
"learning_rate": 4.664335664335664e-07,
|
| 1357 |
+
"loss_func": "stage2",
|
| 1358 |
+
"step": 150,
|
| 1359 |
+
"total_loss": 0.5408558249473572
|
| 1360 |
+
},
|
| 1361 |
+
{
|
| 1362 |
+
"epoch": 0.35,
|
| 1363 |
+
"importance_ratio": 1.0000672340393066,
|
| 1364 |
+
"kl_div_avg": 0.020404186099767685,
|
| 1365 |
+
"learning_rate": 4.6620046620046615e-07,
|
| 1366 |
+
"loss_func": "stage2",
|
| 1367 |
+
"step": 151,
|
| 1368 |
+
"total_loss": 0.5100921392440796
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.35,
|
| 1372 |
+
"importance_ratio": 1.0013837814331055,
|
| 1373 |
+
"kl_div_avg": 0.032543182373046875,
|
| 1374 |
+
"learning_rate": 4.6596736596736595e-07,
|
| 1375 |
+
"loss_func": "stage2",
|
| 1376 |
+
"step": 152,
|
| 1377 |
+
"total_loss": -0.4812799394130707
|
| 1378 |
+
}
|
| 1379 |
+
],
|
| 1380 |
+
"logging_steps": 1.0,
|
| 1381 |
+
"max_steps": 2150,
|
| 1382 |
+
"num_input_tokens_seen": 0,
|
| 1383 |
+
"num_train_epochs": 20.0,
|
| 1384 |
+
"save_steps": 50,
|
| 1385 |
+
"total_flos": 0,
|
| 1386 |
+
"train_batch_size": 1,
|
| 1387 |
+
"trial_name": null,
|
| 1388 |
+
"trial_params": null
|
| 1389 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:964bcf303f7d37b2140c9e65650e08c3d23d3c46e92f12eb9f174784ccdb4f38
|
| 3 |
+
size 11320
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 252 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 253 |
+
|
| 254 |
+
# Reconstruction protocol:
|
| 255 |
+
#
|
| 256 |
+
# XXX: document this
|
| 257 |
+
|
| 258 |
+
if debug:
|
| 259 |
+
for i in range(world_size):
|
| 260 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 262 |
+
|
| 263 |
+
# XXX: memory usage doubles here (zero2)
|
| 264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 265 |
+
merged_single_partition_of_fp32_groups = []
|
| 266 |
+
for i in range(num_param_groups):
|
| 267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 270 |
+
avail_numel = sum(
|
| 271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 272 |
+
|
| 273 |
+
if debug:
|
| 274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 276 |
+
# not asserting if there is a mismatch due to possible padding
|
| 277 |
+
print(f"Have {avail_numel} numels to process.")
|
| 278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 279 |
+
|
| 280 |
+
# params
|
| 281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 282 |
+
# out-of-core computing solution
|
| 283 |
+
total_numel = 0
|
| 284 |
+
total_params = 0
|
| 285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 286 |
+
offset = 0
|
| 287 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 288 |
+
for name, shape in shapes.items():
|
| 289 |
+
|
| 290 |
+
unpartitioned_numel = shape.numel()
|
| 291 |
+
total_numel += unpartitioned_numel
|
| 292 |
+
total_params += 1
|
| 293 |
+
|
| 294 |
+
if debug:
|
| 295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 297 |
+
offset += unpartitioned_numel
|
| 298 |
+
|
| 299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 303 |
+
align_to = 2 * world_size
|
| 304 |
+
|
| 305 |
+
def zero2_align(x):
|
| 306 |
+
return align_to * math.ceil(x / align_to)
|
| 307 |
+
|
| 308 |
+
if debug:
|
| 309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 310 |
+
|
| 311 |
+
offset = zero2_align(offset)
|
| 312 |
+
avail_numel = zero2_align(avail_numel)
|
| 313 |
+
|
| 314 |
+
if debug:
|
| 315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 316 |
+
|
| 317 |
+
# Sanity check
|
| 318 |
+
if offset != avail_numel:
|
| 319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 320 |
+
|
| 321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 325 |
+
state_dict = OrderedDict()
|
| 326 |
+
|
| 327 |
+
# buffers
|
| 328 |
+
buffers = zero_model_states[0].buffers
|
| 329 |
+
state_dict.update(buffers)
|
| 330 |
+
if debug:
|
| 331 |
+
print(f"added {len(buffers)} buffers")
|
| 332 |
+
|
| 333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 334 |
+
|
| 335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 336 |
+
|
| 337 |
+
# recover shared parameters
|
| 338 |
+
for pair in zero_model_states[0].shared_params:
|
| 339 |
+
if pair[1] in state_dict:
|
| 340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 341 |
+
|
| 342 |
+
return state_dict
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 346 |
+
remainder = unpartitioned_numel % world_size
|
| 347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 349 |
+
return partitioned_numel, padding_numel
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 354 |
+
return
|
| 355 |
+
|
| 356 |
+
if debug:
|
| 357 |
+
for i in range(world_size):
|
| 358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 360 |
+
|
| 361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 362 |
+
wanted_params = len(frozen_param_shapes)
|
| 363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 367 |
+
|
| 368 |
+
total_params = 0
|
| 369 |
+
total_numel = 0
|
| 370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 371 |
+
total_params += 1
|
| 372 |
+
unpartitioned_numel = shape.numel()
|
| 373 |
+
total_numel += unpartitioned_numel
|
| 374 |
+
|
| 375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 377 |
+
|
| 378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 379 |
+
|
| 380 |
+
if debug:
|
| 381 |
+
print(
|
| 382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 389 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 393 |
+
|
| 394 |
+
# merge list of dicts, preserving order
|
| 395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 396 |
+
|
| 397 |
+
if debug:
|
| 398 |
+
for i in range(world_size):
|
| 399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 400 |
+
|
| 401 |
+
wanted_params = len(param_shapes)
|
| 402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 403 |
+
# not asserting if there is a mismatch due to possible padding
|
| 404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 407 |
+
|
| 408 |
+
# params
|
| 409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 410 |
+
# out-of-core computing solution
|
| 411 |
+
offset = 0
|
| 412 |
+
total_numel = 0
|
| 413 |
+
total_params = 0
|
| 414 |
+
for name, shape in param_shapes.items():
|
| 415 |
+
|
| 416 |
+
unpartitioned_numel = shape.numel()
|
| 417 |
+
total_numel += unpartitioned_numel
|
| 418 |
+
total_params += 1
|
| 419 |
+
|
| 420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 421 |
+
|
| 422 |
+
if debug:
|
| 423 |
+
print(
|
| 424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# XXX: memory usage doubles here
|
| 428 |
+
state_dict[name] = torch.cat(
|
| 429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 431 |
+
offset += partitioned_numel
|
| 432 |
+
|
| 433 |
+
offset *= world_size
|
| 434 |
+
|
| 435 |
+
# Sanity check
|
| 436 |
+
if offset != avail_numel:
|
| 437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 438 |
+
|
| 439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 443 |
+
state_dict = OrderedDict()
|
| 444 |
+
|
| 445 |
+
# buffers
|
| 446 |
+
buffers = zero_model_states[0].buffers
|
| 447 |
+
state_dict.update(buffers)
|
| 448 |
+
if debug:
|
| 449 |
+
print(f"added {len(buffers)} buffers")
|
| 450 |
+
|
| 451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 452 |
+
|
| 453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 454 |
+
|
| 455 |
+
# recover shared parameters
|
| 456 |
+
for pair in zero_model_states[0].shared_params:
|
| 457 |
+
if pair[1] in state_dict:
|
| 458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 459 |
+
|
| 460 |
+
return state_dict
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 464 |
+
"""
|
| 465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 467 |
+
via a model hub.
|
| 468 |
+
|
| 469 |
+
Args:
|
| 470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 472 |
+
|
| 473 |
+
Returns:
|
| 474 |
+
- pytorch ``state_dict``
|
| 475 |
+
|
| 476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 478 |
+
the checkpoint.
|
| 479 |
+
|
| 480 |
+
A typical usage might be ::
|
| 481 |
+
|
| 482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 483 |
+
# do the training and checkpoint saving
|
| 484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 485 |
+
model = model.cpu() # move to cpu
|
| 486 |
+
model.load_state_dict(state_dict)
|
| 487 |
+
# submit to model hub or save the model to share with others
|
| 488 |
+
|
| 489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 492 |
+
|
| 493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 494 |
+
|
| 495 |
+
"""
|
| 496 |
+
if tag is None:
|
| 497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 498 |
+
if os.path.isfile(latest_path):
|
| 499 |
+
with open(latest_path, 'r') as fd:
|
| 500 |
+
tag = fd.read().strip()
|
| 501 |
+
else:
|
| 502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 503 |
+
|
| 504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 505 |
+
|
| 506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 508 |
+
|
| 509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 513 |
+
"""
|
| 514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 516 |
+
|
| 517 |
+
Args:
|
| 518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 521 |
+
"""
|
| 522 |
+
|
| 523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 525 |
+
torch.save(state_dict, output_file)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 529 |
+
"""
|
| 530 |
+
1. Put the provided model to cpu
|
| 531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 532 |
+
3. Load it into the provided model
|
| 533 |
+
|
| 534 |
+
Args:
|
| 535 |
+
- ``model``: the model object to update
|
| 536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 538 |
+
|
| 539 |
+
Returns:
|
| 540 |
+
- ``model`: modified model
|
| 541 |
+
|
| 542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 544 |
+
conveniently placed for you in the checkpoint folder.
|
| 545 |
+
|
| 546 |
+
A typical usage might be ::
|
| 547 |
+
|
| 548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 550 |
+
# submit to model hub or save the model to share with others
|
| 551 |
+
|
| 552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 555 |
+
|
| 556 |
+
"""
|
| 557 |
+
logger.info(f"Extracting fp32 weights")
|
| 558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 559 |
+
|
| 560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 561 |
+
model = model.cpu()
|
| 562 |
+
model.load_state_dict(state_dict, strict=False)
|
| 563 |
+
|
| 564 |
+
return model
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
if __name__ == "__main__":
|
| 568 |
+
|
| 569 |
+
parser = argparse.ArgumentParser()
|
| 570 |
+
parser.add_argument("checkpoint_dir",
|
| 571 |
+
type=str,
|
| 572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 573 |
+
parser.add_argument(
|
| 574 |
+
"output_file",
|
| 575 |
+
type=str,
|
| 576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 577 |
+
parser.add_argument("-t",
|
| 578 |
+
"--tag",
|
| 579 |
+
type=str,
|
| 580 |
+
default=None,
|
| 581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 583 |
+
args = parser.parse_args()
|
| 584 |
+
|
| 585 |
+
debug = args.debug
|
| 586 |
+
|
| 587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|