Facial Expression Recognition for Mental Health Detection
Model Description
This model is a Swin Transformer fine-tuned for facial expression recognition (FER) with applications in mental health detection. It can classify facial expressions into 7 categories and provide depression risk analysis based on emotional patterns.
Model Architecture
- Base Model: Swin Transformer (swin_base_patch4_window7_224)
- Custom Classifier:
- Linear layer (backbone features β 512)
- ReLU activation
- Dropout (p=0.6)
- Linear layer (512 β 7 classes)
Emotion Classes
The model predicts 7 facial expressions:
- Angry π
- Disgust π€’
- Fear π¨
- Happy π
- Neutral π
- Sad π’
- Surprise π²
Training Details
Dataset
- Name: FER2013 (Facial Expression Recognition 2013)
- Size: ~35,000 grayscale images (48x48 pixels)
- Split: Train/Validation/Test
Training Configuration
- Optimizer: AdamW
- Learning Rate: 1e-4 with cosine annealing
- Batch Size: 32
- Epochs: 5
- Image Size: 224x224
- Data Augmentation: Random horizontal flip, rotation, color jitter
- Loss Function: Cross-Entropy Loss
Usage
Installation
pip install torch torchvision timm huggingface_hub
Load Model
import torch
import timm
from huggingface_hub import hf_hub_download
class CustomSwinTransformer(torch.nn.Module):
def __init__(self, pretrained=True, num_classes=7):
super(CustomSwinTransformer, self).__init__()
self.backbone = timm.create_model('swin_base_patch4_window7_224',
pretrained=pretrained, num_classes=0)
self.classifier = torch.nn.Sequential(
torch.nn.Linear(self.backbone.num_features, 512),
torch.nn.ReLU(),
torch.nn.Dropout(p=0.6),
torch.nn.Linear(512, num_classes)
)
def forward(self, x):
x = self.backbone(x)
return self.classifier(x)
# Download and load model
model_path = hf_hub_download(repo_id="SEARO1/FER_model", filename="best_model.pth")
model = CustomSwinTransformer(pretrained=False, num_classes=7)
model.load_state_dict(torch.load(model_path, map_location='cpu'), strict=False)
model.eval()
Inference Example
from torchvision import transforms
from PIL import Image
# Prepare image
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = Image.open("face.jpg").convert("RGB")
input_tensor = transform(image).unsqueeze(0)
# Predict
with torch.no_grad():
output = model(input_tensor)
probabilities = torch.nn.functional.softmax(output, dim=1)
predicted_class = torch.argmax(probabilities, dim=1)
emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise']
print(f"Predicted Emotion: {emotions[predicted_class.item()]}")
print(f"Confidence: {probabilities[0][predicted_class].item()*100:.2f}%")
Mental Health Application
This model can be used for depression risk analysis by analyzing emotional patterns:
Depression Risk Calculation
def analyze_depression_risk(emotion_probs):
sad_score = emotion_probs[5] # Sad
fear_score = emotion_probs[2] # Fear
angry_score = emotion_probs[0] # Angry
happy_score = emotion_probs[3] # Happy
negative_emotions = (sad_score * 0.4 + fear_score * 0.3 + angry_score * 0.3)
positive_emotions = happy_score
depression_risk = (negative_emotions * 100) - (positive_emotions * 20)
depression_risk = max(0, min(100, depression_risk))
if depression_risk < 30:
return "Low Risk"
elif depression_risk < 60:
return "Moderate Risk"
else:
return "High Risk"
β οΈ Important: This is an educational tool and should NOT replace professional medical advice or diagnosis.
Performance
The model achieves competitive performance on the FER2013 dataset. See the training logs for detailed metrics.
Limitations
- Trained on FER2013 dataset which may not represent all demographics equally
- Performance may vary with different lighting conditions, angles, and image quality
- Should not be used as the sole basis for mental health diagnosis
- Requires frontal face images for best results
Citation
If you use this model, please cite:
@misc{fer-mental-health-2024,
author = {Your Name},
title = {Facial Expression Recognition for Mental Health Detection},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/SEARO1/FER_model}}
}
License
MIT License - See LICENSE file for details
Contact
For questions or issues, please open an issue on the model repository.
Developed for educational and research purposes in mental health technology.
- Downloads last month
- 6