File size: 5,987 Bytes
2c11034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
license: apache-2.0
tags:
- sam2
- segment-anything
- onnx
- webgpu
- computer-vision
- image-segmentation
library_name: onnxruntime
---
# SAM2-HIERA-BASE-PLUS - ONNX Format for WebGPU
**Powered by [Segment Anything 2 (SAM2)](https://github.com/facebookresearch/segment-anything-2) from Meta Research**
This repository contains ONNX-converted models from [facebook/sam2-hiera-base-plus](https://huggingface.co/facebook/sam2-hiera-base-plus), optimized for WebGPU deployment in browsers.
## Model Information
- **Original Model**: [facebook/sam2-hiera-base-plus](https://huggingface.co/facebook/sam2-hiera-base-plus)
- **Version**: SAM 2.0
- **Size**: 80.8M parameters
- **Description**: Base Plus variant - high quality segmentation (recommended)
- **Format**: ONNX (encoder + decoder)
- **Optimization**: Encoder optimized to .ort format for WebGPU
## Files
- `encoder.onnx` - Image encoder (ONNX format)
- `encoder.with_runtime_opt.ort` - Image encoder (optimized for WebGPU)
- `decoder.onnx` - Mask decoder (ONNX format)
- `config.json` - Model configuration
## Usage
### In Browser with ONNX Runtime Web
```javascript
import * as ort from 'onnxruntime-web/webgpu';
// Load encoder (use optimized .ort version for WebGPU)
const encoderURL = 'https://huggingface.co/SharpAI/sam2-hiera-base-plus-onnx/resolve/main/encoder.with_runtime_opt.ort';
const encoderSession = await ort.InferenceSession.create(encoderURL, {
executionProviders: ['webgpu'],
graphOptimizationLevel: 'disabled'
});
// Load decoder
const decoderURL = 'https://huggingface.co/SharpAI/sam2-hiera-base-plus-onnx/resolve/main/decoder.onnx';
const decoderSession = await ort.InferenceSession.create(decoderURL, {
executionProviders: ['webgpu']
});
// Run encoder
const imageData = preprocessImage(image); // Your preprocessing
const encoderOutputs = await encoderSession.run({ image: imageData });
// Run decoder with point
const point_coords = new ort.Tensor('float32', [x, y, 0, 0], [1, 2, 2]);
const point_labels = new ort.Tensor('float32', [1, -1], [1, 2]);
const mask_input = new ort.Tensor('float32', new Float32Array(256 * 256).fill(0), [1, 1, 256, 256]);
const has_mask_input = new ort.Tensor('float32', [0], [1]);
const decoderOutputs = await decoderSession.run({
image_embed: encoderOutputs.image_embed,
high_res_feats_0: encoderOutputs.high_res_feats_0,
high_res_feats_1: encoderOutputs.high_res_feats_1,
point_coords: point_coords,
point_labels: point_labels,
mask_input: mask_input,
has_mask_input: has_mask_input
});
// Get masks
const masks = decoderOutputs.masks; // Shape: [1, num_masks, 256, 256]
```
### In Python with ONNX Runtime
```python
import onnxruntime as ort
import numpy as np
# Load models
encoder_session = ort.InferenceSession("encoder.onnx")
decoder_session = ort.InferenceSession("decoder.onnx")
# Run encoder
encoder_outputs = encoder_session.run(None, {"image": image_tensor})
# Run decoder
decoder_outputs = decoder_session.run(None, {
"image_embed": encoder_outputs[0],
"high_res_feats_0": encoder_outputs[1],
"high_res_feats_1": encoder_outputs[2],
"point_coords": point_coords,
"point_labels": point_labels,
"mask_input": mask_input,
"has_mask_input": has_mask_input
})
masks = decoder_outputs[0]
```
## Input/Output Specifications
### Encoder
**Input:**
- `image`: Float32[1, 3, 1024, 1024] - Normalized RGB image
**Outputs:**
- `image_embed`: Float32[1, 256, 64, 64] - Image embeddings
- `high_res_feats_0`: Float32[1, 32, 256, 256] - High-res features (level 0)
- `high_res_feats_1`: Float32[1, 64, 128, 128] - High-res features (level 1)
### Decoder
**Inputs:**
- `image_embed`: Float32[1, 256, 64, 64] - From encoder
- `high_res_feats_0`: Float32[1, 32, 256, 256] - From encoder
- `high_res_feats_1`: Float32[1, 64, 128, 128] - From encoder
- `point_coords`: Float32[1, 2, 2] - Point coordinates [[x, y], [0, 0]]
- `point_labels`: Float32[1, 2] - Point labels [1, -1] (1=foreground, -1=padding)
- `mask_input`: Float32[1, 1, 256, 256] - Previous mask (zeros if none)
- `has_mask_input`: Float32[1] - Flag [0] or [1]
**Outputs:**
- `masks`: Float32[1, 3, 256, 256] - Generated masks (3 candidates)
- `iou_predictions`: Float32[1, 3] - IoU scores for each mask
- `low_res_masks`: Float32[1, 3, 256, 256] - Low-resolution masks
## Browser Requirements
- Chrome 113+ with WebGPU enabled (`chrome://flags/#enable-unsafe-webgpu`)
- Firefox Nightly with WebGPU enabled
- Safari Technology Preview with WebGPU enabled
## Performance
Typical inference times on Chrome with WebGPU:
- **Encoder**: {'2-3s' if 'tiny' in model_name else '3-5s' if 'small' in model_name else '4-6s' if 'base' in model_name else '8-10s'}
- **Decoder**: 0.1-0.5s per point
## License
This model is released under the Apache 2.0 license, following the original SAM2 model.
## Citation
```bibtex
@article{ravi2024sam2,
title={SAM 2: Segment Anything in Images and Videos},
author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph},
journal={arXiv preprint arXiv:2408.00714},
year={2024}
}
```
## Related Resources
- **Original SAM2**: [facebookresearch/segment-anything-2](https://github.com/facebookresearch/segment-anything-2)
- **WebGPU Demo**: [Aegis AI SAM2 WebGPU Demo](https://github.com/yourusername/Aegis-AI/tree/main/tools/sam2-webgpu)
- **Conversion Tool**: [SAM2 ONNX Converter](https://github.com/yourusername/Aegis-AI/tree/main/tools/sam2-converter)
## Acknowledgments
- **Meta Research** for the original SAM2 model
- **Microsoft** for ONNX Runtime
- **SamExporter** for conversion tools
---
*Converted and optimized by [Aegis AI](https://github.com/yourusername/Aegis-AI)*
|