import tensorflow as tf from pathlib import Path import numpy as np from PIL import Image model_path = 'saved_model_age_regressor' img_path = Path('data/UTKFace/53_1_1_20170110122449716.jpg.chip.jpg') print('Model path:', model_path, flush=True) print('Image path:', img_path, flush=True) m = tf.keras.models.load_model(model_path, compile=False) print('Loaded model type:', type(m), flush=True) try: m.summary() except Exception as e: print('model.summary failed:', e, flush=True) img = Image.open(img_path).convert('RGB').resize((224,224)) arr = np.array(img, dtype=np.float32)/255.0 x = np.expand_dims(arr, 0) print('Input shape:', x.shape, flush=True) pred = m.predict(x) print('Raw prediction output:', pred, 'shape:', getattr(pred, 'shape', None), flush=True) try: print('Predicted age:', float(pred.flatten()[0]), flush=True) except Exception as e: print('Error converting prediction to float:', e, flush=True)