Shuu12121 commited on
Commit
3dbe8f9
·
1 Parent(s): 2d6c3bc

Upload ModernBERT model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,518 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:1736236
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: Shuu12121/CodeModernBERT-Owl-1.0
10
+ widget:
11
+ - source_sentence: 'Get all categories for the item
12
+
13
+
14
+ Uses `<atom:category>`, `<category>` or `<dc:subject>`
15
+
16
+
17
+ @since Beta 3
18
+
19
+ @return SimplePie_Category[]|null List of {@see SimplePie_Category} objects'
20
+ sentences:
21
+ - "protected function user()\n {\n if ($this->wrappedObject->security)\
22
+ \ {\n return ' this user\\'s ';\n }\n\n $user = $this->wrappedObject->revisionable()->withTrashed()->first(['first_name',\
23
+ \ 'last_name']);\n\n return ' '.$user->first_name.' '.$user->last_name.'\\\
24
+ 's ';\n }"
25
+ - "public function hasArticlesHiddenFromRobots()\n {\n $app = App::getInstance();\n\
26
+ \n $sql = $app['safesql']->query(\n \"SELECT\n COUNT(article_author.article)\n\
27
+ \ FROM `article_author`\n INNER JOIN `article`\n ON article_author.article\
28
+ \ = article.id\n WHERE article_author.`author` = '%s'\n AND article.deleted\
29
+ \ = 0\n AND article_author.deleted = 0\n AND searchable = 0\",\n \
30
+ \ array(\n $this->getUser())\n );\n $result\
31
+ \ = $app['db']->get_var($sql);\n return ($result > 0 ? true: false);\n\
32
+ \ }"
33
+ - "public function get_categories()\n\t{\n\t\t$categories = array();\n\n\t\t$type\
34
+ \ = 'category';\n\t\tforeach ((array) $this->get_item_tags(SIMPLEPIE_NAMESPACE_ATOM_10,\
35
+ \ $type) as $category)\n\t\t{\n\t\t\t$term = null;\n\t\t\t$scheme = null;\n\t\t\
36
+ \t$label = null;\n\t\t\tif (isset($category['attribs']['']['term']))\n\t\t\t{\n\
37
+ \t\t\t\t$term = $this->sanitize($category['attribs']['']['term'], SIMPLEPIE_CONSTRUCT_HTML);\n\
38
+ \t\t\t}\n\t\t\tif (isset($category['attribs']['']['scheme']))\n\t\t\t{\n\t\t\t\
39
+ \t$scheme = $this->sanitize($category['attribs']['']['scheme'], SIMPLEPIE_CONSTRUCT_HTML);\n\
40
+ \t\t\t}\n\t\t\tif (isset($category['attribs']['']['label']))\n\t\t\t{\n\t\t\t\t\
41
+ $label = $this->sanitize($category['attribs']['']['label'], SIMPLEPIE_CONSTRUCT_HTML);\n\
42
+ \t\t\t}\n\t\t\t$categories[] = $this->registry->create('Category', array($term,\
43
+ \ $scheme, $label, $type));\n\t\t}\n\t\tforeach ((array) $this->get_item_tags(SIMPLEPIE_NAMESPACE_RSS_20,\
44
+ \ $type) as $category)\n\t\t{\n\t\t\t// This is really the label, but keep this\
45
+ \ as the term also for BC.\n\t\t\t// Label will also work on retrieving because\
46
+ \ that falls back to term.\n\t\t\t$term = $this->sanitize($category['data'], SIMPLEPIE_CONSTRUCT_HTML);\n\
47
+ \t\t\tif (isset($category['attribs']['']['domain']))\n\t\t\t{\n\t\t\t\t$scheme\
48
+ \ = $this->sanitize($category['attribs']['']['domain'], SIMPLEPIE_CONSTRUCT_HTML);\n\
49
+ \t\t\t}\n\t\t\telse\n\t\t\t{\n\t\t\t\t$scheme = null;\n\t\t\t}\n\t\t\t$categories[]\
50
+ \ = $this->registry->create('Category', array($term, $scheme, null, $type));\n\
51
+ \t\t}\n\n\t\t$type = 'subject';\n\t\tforeach ((array) $this->get_item_tags(SIMPLEPIE_NAMESPACE_DC_11,\
52
+ \ $type) as $category)\n\t\t{\n\t\t\t$categories[] = $this->registry->create('Category',\
53
+ \ array($this->sanitize($category['data'], SIMPLEPIE_CONSTRUCT_HTML), null, null,\
54
+ \ $type));\n\t\t}\n\t\tforeach ((array) $this->get_item_tags(SIMPLEPIE_NAMESPACE_DC_10,\
55
+ \ $type) as $category)\n\t\t{\n\t\t\t$categories[] = $this->registry->create('Category',\
56
+ \ array($this->sanitize($category['data'], SIMPLEPIE_CONSTRUCT_HTML), null, null,\
57
+ \ $type));\n\t\t}\n\n\t\tif (!empty($categories))\n\t\t{\n\t\t\treturn array_unique($categories);\n\
58
+ \t\t}\n\t\telse\n\t\t{\n\t\t\treturn null;\n\t\t}\n\t}"
59
+ - source_sentence: 'Add a single parse mode to the route middleware
60
+
61
+ @param middle
62
+
63
+ @param mode
64
+
65
+ @param settings'
66
+ sentences:
67
+ - "public static int parseUnsignedInt(String s, int radix)\n throws\
68
+ \ NumberFormatException {\n if (s == null) {\n throw new NumberFormatException(\"\
69
+ null\");\n }\n\n int len = s.length();\n if (len > 0) {\n\
70
+ \ char firstChar = s.charAt(0);\n if (firstChar == '-')\
71
+ \ {\n throw new\n NumberFormatException(String.format(\"\
72
+ Illegal leading minus sign \" +\n \
73
+ \ \"on unsigned string %s.\", s));\n } else {\n \
74
+ \ if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits\n\
75
+ \ (radix == 10 && len <= 9) ) { // Integer.MAX_VALUE in base\
76
+ \ 10 is 10 digits\n return parseInt(s, radix);\n \
77
+ \ } else {\n long ell = Long.parseLong(s, radix);\n \
78
+ \ if ((ell & 0xffff_ffff_0000_0000L) == 0) {\n \
79
+ \ return (int) ell;\n } else {\n \
80
+ \ throw new\n NumberFormatException(String.format(\"\
81
+ String value %s exceeds \" +\n \
82
+ \ \"range of unsigned int.\", s));\n }\n \
83
+ \ }\n }\n } else {\n throw NumberFormatException.forInputString(s);\n\
84
+ \ }\n }"
85
+ - "func (f *Filter) shouldNamePass(key string) bool {\n\tpass := func(f *Filter)\
86
+ \ bool {\n\t\tif f.namePass.Match(key) {\n\t\t\treturn true\n\t\t}\n\t\treturn\
87
+ \ false\n\t}\n\n\tdrop := func(f *Filter) bool {\n\t\tif f.nameDrop.Match(key)\
88
+ \ {\n\t\t\treturn false\n\t\t}\n\t\treturn true\n\t}\n\n\tif f.namePass != nil\
89
+ \ && f.nameDrop != nil {\n\t\treturn pass(f) && drop(f)\n\t} else if f.namePass\
90
+ \ != nil {\n\t\treturn pass(f)\n\t} else if f.nameDrop != nil {\n\t\treturn drop(f)\n\
91
+ \t}\n\n\treturn true\n}"
92
+ - "function addMode(middle, mode, settings) {\n if (!modes.includes(mode)) throw\
93
+ \ `Incorrect bodyparser mode ${mode}`;\n middle.push(bodyParser[mode](settings[mode]));\n\
94
+ }"
95
+ - source_sentence: Convert Bigtable's {@link RowRange} -> guava {@link Range}.
96
+ sentences:
97
+ - "public function getMemoryUsage()\n {\n $size = memory_get_usage(true);\n\
98
+ \ $unit = array('b','kb','mb','gb','tb','pb');\n \n \
99
+ \ return @round($size/pow(1024,($i=floor(log($size,1024)))),2).' '.$unit[$i];\n\
100
+ \ }"
101
+ - "protected function _beforeDispatch(DispatcherContext $context)\n {\n \
102
+ \ // Check if the user has been explicitly authenticated for this request\n\
103
+ \ if (!$this->getUser()->isAuthentic(true))\n {\n foreach($this->__authenticator_queue\
104
+ \ as $authenticator)\n {\n if($authenticator->authenticateRequest($context)\
105
+ \ === true) {\n break;\n }\n }\n\
106
+ \ }\n\n }"
107
+ - "private Range<RowKeyWrapper> rowRangeToRange(RowRange btRange) {\n final BoundType\
108
+ \ startBound;\n final ByteString startKey;\n\n switch (btRange.getStartKeyCase())\
109
+ \ {\n case START_KEY_OPEN:\n startBound = BoundType.OPEN;\n \
110
+ \ startKey = btRange.getStartKeyOpen();\n break;\n case START_KEY_CLOSED:\n\
111
+ \ startBound = BoundType.CLOSED;\n startKey = btRange.getStartKeyClosed();\n\
112
+ \ break;\n case STARTKEY_NOT_SET:\n startBound = BoundType.CLOSED;\n\
113
+ \ startKey = ByteString.EMPTY;\n break;\n default:\n \
114
+ \ throw new IllegalArgumentException(\"Unexpected start key case: \" +\n \
115
+ \ btRange.getStartKeyCase());\n }\n\n final BoundType endBound;\n\
116
+ \ final ByteString endKey;\n switch (btRange.getEndKeyCase()) {\n case\
117
+ \ END_KEY_OPEN:\n endBound = BoundType.OPEN;\n endKey = btRange.getEndKeyOpen();\n\
118
+ \ break;\n case END_KEY_CLOSED:\n endBound = BoundType.CLOSED;\n\
119
+ \ endKey = btRange.getEndKeyClosed();\n break;\n case ENDKEY_NOT_SET:\n\
120
+ \ endBound = BoundType.OPEN;\n endKey = ByteString.EMPTY;\n \
121
+ \ break;\n default:\n throw new IllegalArgumentException(\"Unexpected\
122
+ \ end key case: \" + btRange.getEndKeyCase());\n }\n\n return boundedRange(startBound,\
123
+ \ startKey, endBound, endKey);\n }"
124
+ - source_sentence: // SetConfigurationManager sets the ConfigurationManager field's
125
+ value.
126
+ sentences:
127
+ - "func (s *UpdateStackInput) SetConfigurationManager(v *StackConfigurationManager)\
128
+ \ *UpdateStackInput {\n\ts.ConfigurationManager = v\n\treturn s\n}"
129
+ - "func getAllTolerationPreferNoSchedule(tolerations []v1.Toleration) (tolerationList\
130
+ \ []v1.Toleration) {\n\tfor _, toleration := range tolerations {\n\t\t// Empty\
131
+ \ effect means all effects which includes PreferNoSchedule, so we need to collect\
132
+ \ it as well.\n\t\tif len(toleration.Effect) == 0 || toleration.Effect == v1.TaintEffectPreferNoSchedule\
133
+ \ {\n\t\t\ttolerationList = append(tolerationList, toleration)\n\t\t}\n\t}\n\t\
134
+ return\n}"
135
+ - "protected function getRelationXmlHashFromDB(array $destinationContentIds)\n \
136
+ \ {\n if (empty($destinationContentIds)) {\n return array();\n\
137
+ \ }\n\n $q = $this->db->createSelectQuery();\n $q\n \
138
+ \ ->select(\n $this->db->aliasedColumn($q, 'id', 'ezcontentobject'),\n\
139
+ \ $this->db->aliasedColumn($q, 'remote_id', 'ezcontentobject'),\n\
140
+ \ $this->db->aliasedColumn($q, 'current_version', 'ezcontentobject'),\n\
141
+ \ $this->db->aliasedColumn($q, 'contentclass_id', 'ezcontentobject'),\n\
142
+ \ $this->db->aliasedColumn($q, 'node_id', 'ezcontentobject_tree'),\n\
143
+ \ $this->db->aliasedColumn($q, 'parent_node_id', 'ezcontentobject_tree'),\n\
144
+ \ $this->db->aliasedColumn($q, 'identifier', 'ezcontentclass')\n\
145
+ \ )\n ->from($this->db->quoteTable('ezcontentobject'))\n\
146
+ \ ->leftJoin(\n $this->db->quoteTable('ezcontentobject_tree'),\n\
147
+ \ $q->expr->lAnd(\n $q->expr->eq(\n \
148
+ \ $this->db->quoteColumn('contentobject_id', 'ezcontentobject_tree'),\n\
149
+ \ $this->db->quoteColumn('id', 'ezcontentobject')\n \
150
+ \ ),\n $q->expr->eq(\n \
151
+ \ $this->db->quoteColumn('node_id', 'ezcontentobject_tree'),\n \
152
+ \ $this->db->quoteColumn('main_node_id', 'ezcontentobject_tree')\n\
153
+ \ )\n )\n )\n ->leftJoin(\n\
154
+ \ $this->db->quoteTable('ezcontentclass'),\n $q->expr->lAnd(\n\
155
+ \ $q->expr->eq(\n $this->db->quoteColumn('id',\
156
+ \ 'ezcontentclass'),\n $this->db->quoteColumn('contentclass_id',\
157
+ \ 'ezcontentobject')\n ),\n $q->expr->eq(\n\
158
+ \ $this->db->quoteColumn('version', 'ezcontentclass'),\n\
159
+ \ $q->bindValue(ContentType::STATUS_DEFINED, null, PDO::PARAM_INT)\n\
160
+ \ )\n )\n )\n ->where(\n\
161
+ \ $q->expr->in(\n $this->db->quoteColumn('id',\
162
+ \ 'ezcontentobject'),\n $destinationContentIds\n \
163
+ \ )\n );\n $stmt = $q->prepare();\n $stmt->execute();\n\
164
+ \n return $stmt->fetchAll(PDO::FETCH_ASSOC | PDO::FETCH_GROUP);\n }"
165
+ - source_sentence: '******************************************************************
166
+
167
+ View helpers
168
+
169
+ *****************************************************************
170
+
171
+
172
+
173
+ Find the view for the called method.
174
+
175
+
176
+ @param null|string $view
177
+
178
+ @param null|string $layout
179
+
180
+
181
+ @return $this'
182
+ sentences:
183
+ - "public function view($view = null, $layout = null)\n {\n if (! is_null($layout))\
184
+ \ {\n $this->layoutOptions = [\n 'default' => $layout,\n\
185
+ \ 'ajax' => $layout,\n ];\n }\n\n //\
186
+ \ Set up the default view resolution\n viewBuilder()->setUp($this->layoutOptions,\
187
+ \ $view);\n $this->setupLayout();\n }"
188
+ - "func (c *CognitoIdentityProvider) AdminDeleteUser(input *AdminDeleteUserInput)\
189
+ \ (*AdminDeleteUserOutput, error) {\n\treq, out := c.AdminDeleteUserRequest(input)\n\
190
+ \treturn out, req.Send()\n}"
191
+ - "protected function checkIfPositiveInteger(\n $fieldName,\n $canUseFlexforms,\n\
192
+ \ $sheet,\n $explanation\n ) {\n $value = $this->objectToCheck->getConfValueString($fieldName,\
193
+ \ $sheet);\n $this->checkIfPositiveIntegerValue(\n $value,\n\
194
+ \ $fieldName,\n $canUseFlexforms,\n $explanation\n\
195
+ \ );\n }"
196
+ pipeline_tag: sentence-similarity
197
+ library_name: sentence-transformers
198
+ ---
199
+
200
+ # SentenceTransformer based on Shuu12121/CodeModernBERT-Owl-1.0
201
+
202
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Owl-1.0](https://huggingface.co/Shuu12121/CodeModernBERT-Owl-1.0). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
203
+
204
+ ## Model Details
205
+
206
+ ### Model Description
207
+ - **Model Type:** Sentence Transformer
208
+ - **Base model:** [Shuu12121/CodeModernBERT-Owl-1.0](https://huggingface.co/Shuu12121/CodeModernBERT-Owl-1.0) <!-- at revision e76a6056791a4f60962d3f2ce4cc7d94bd719485 -->
209
+ - **Maximum Sequence Length:** 1024 tokens
210
+ - **Output Dimensionality:** 768 dimensions
211
+ - **Similarity Function:** Cosine Similarity
212
+ <!-- - **Training Dataset:** Unknown -->
213
+ <!-- - **Language:** Unknown -->
214
+ <!-- - **License:** Unknown -->
215
+
216
+ ### Model Sources
217
+
218
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
219
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
220
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
221
+
222
+ ### Full Model Architecture
223
+
224
+ ```
225
+ SentenceTransformer(
226
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
227
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
228
+ )
229
+ ```
230
+
231
+ ## Usage
232
+
233
+ ### Direct Usage (Sentence Transformers)
234
+
235
+ First install the Sentence Transformers library:
236
+
237
+ ```bash
238
+ pip install -U sentence-transformers
239
+ ```
240
+
241
+ Then you can load this model and run inference.
242
+ ```python
243
+ from sentence_transformers import SentenceTransformer
244
+
245
+ # Download from the 🤗 Hub
246
+ model = SentenceTransformer("sentence_transformers_model_id")
247
+ # Run inference
248
+ sentences = [
249
+ '******************************************************************\nView helpers\n*****************************************************************\n\n\nFind the view for the called method.\n\n@param null|string $view\n@param null|string $layout\n\n@return $this',
250
+ "public function view($view = null, $layout = null)\n {\n if (! is_null($layout)) {\n $this->layoutOptions = [\n 'default' => $layout,\n 'ajax' => $layout,\n ];\n }\n\n // Set up the default view resolution\n viewBuilder()->setUp($this->layoutOptions, $view);\n $this->setupLayout();\n }",
251
+ 'protected function checkIfPositiveInteger(\n $fieldName,\n $canUseFlexforms,\n $sheet,\n $explanation\n ) {\n $value = $this->objectToCheck->getConfValueString($fieldName, $sheet);\n $this->checkIfPositiveIntegerValue(\n $value,\n $fieldName,\n $canUseFlexforms,\n $explanation\n );\n }',
252
+ ]
253
+ embeddings = model.encode(sentences)
254
+ print(embeddings.shape)
255
+ # [3, 768]
256
+
257
+ # Get the similarity scores for the embeddings
258
+ similarities = model.similarity(embeddings, embeddings)
259
+ print(similarities.shape)
260
+ # [3, 3]
261
+ ```
262
+
263
+ <!--
264
+ ### Direct Usage (Transformers)
265
+
266
+ <details><summary>Click to see the direct usage in Transformers</summary>
267
+
268
+ </details>
269
+ -->
270
+
271
+ <!--
272
+ ### Downstream Usage (Sentence Transformers)
273
+
274
+ You can finetune this model on your own dataset.
275
+
276
+ <details><summary>Click to expand</summary>
277
+
278
+ </details>
279
+ -->
280
+
281
+ <!--
282
+ ### Out-of-Scope Use
283
+
284
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
285
+ -->
286
+
287
+ <!--
288
+ ## Bias, Risks and Limitations
289
+
290
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
291
+ -->
292
+
293
+ <!--
294
+ ### Recommendations
295
+
296
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
297
+ -->
298
+
299
+ ## Training Details
300
+
301
+ ### Training Dataset
302
+
303
+ #### Unnamed Dataset
304
+
305
+ * Size: 1,736,236 training samples
306
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
307
+ * Approximate statistics based on the first 1000 samples:
308
+ | | sentence_0 | sentence_1 | label |
309
+ |:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------|
310
+ | type | string | string | float |
311
+ | details | <ul><li>min: 3 tokens</li><li>mean: 48.85 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 171.5 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
312
+ * Samples:
313
+ | sentence_0 | sentence_1 | label |
314
+ |:--------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
315
+ | <code>// convDataValidationOperatior get excel data validation operator.</code> | <code>func convDataValidationOperatior(o DataValidationOperator) string {<br> typeMap := map[DataValidationOperator]string{<br> DataValidationOperatorBetween: "between",<br> DataValidationOperatorEqual: "equal",<br> DataValidationOperatorGreaterThan: "greaterThan",<br> DataValidationOperatorGreaterThanOrEqual: "greaterThanOrEqual",<br> DataValidationOperatorLessThan: "lessThan",<br> DataValidationOperatorLessThanOrEqual: "lessThanOrEqual",<br> DataValidationOperatorNotBetween: "notBetween",<br> DataValidationOperatorNotEqual: "notEqual",<br> }<br><br> return typeMap[o]<br><br>}</code> | <code>1.0</code> |
316
+ | <code>// Convert_v1_PodSecurityPolicyReview_To_security_PodSecurityPolicyReview is an autogenerated conversion function.</code> | <code>func Convert_v1_PodSecurityPolicyReview_To_security_PodSecurityPolicyReview(in *v1.PodSecurityPolicyReview, out *security.PodSecurityPolicyReview, s conversion.Scope) error {<br> return autoConvert_v1_PodSecurityPolicyReview_To_security_PodSecurityPolicyReview(in, out, s)<br>}</code> | <code>1.0</code> |
317
+ | <code>// Of note, removeSegments() keeps the ordering of the results stable.</code> | <code>func removeSegments(segments []Segment, toRemove []Segment) []Segment {<br> rv := make([]Segment, 0, len(segments)-len(toRemove))<br>OUTER:<br> for _, segment := range segments {<br> for _, r := range toRemove {<br> if segment == r {<br> continue OUTER<br> }<br> }<br> rv = append(rv, segment)<br> }<br> return rv<br>}</code> | <code>1.0</code> |
318
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
319
+ ```json
320
+ {
321
+ "scale": 20.0,
322
+ "similarity_fct": "cos_sim"
323
+ }
324
+ ```
325
+
326
+ ### Training Hyperparameters
327
+ #### Non-Default Hyperparameters
328
+
329
+ - `per_device_train_batch_size`: 256
330
+ - `per_device_eval_batch_size`: 256
331
+ - `num_train_epochs`: 5
332
+ - `fp16`: True
333
+ - `multi_dataset_batch_sampler`: round_robin
334
+
335
+ #### All Hyperparameters
336
+ <details><summary>Click to expand</summary>
337
+
338
+ - `overwrite_output_dir`: False
339
+ - `do_predict`: False
340
+ - `eval_strategy`: no
341
+ - `prediction_loss_only`: True
342
+ - `per_device_train_batch_size`: 256
343
+ - `per_device_eval_batch_size`: 256
344
+ - `per_gpu_train_batch_size`: None
345
+ - `per_gpu_eval_batch_size`: None
346
+ - `gradient_accumulation_steps`: 1
347
+ - `eval_accumulation_steps`: None
348
+ - `torch_empty_cache_steps`: None
349
+ - `learning_rate`: 5e-05
350
+ - `weight_decay`: 0.0
351
+ - `adam_beta1`: 0.9
352
+ - `adam_beta2`: 0.999
353
+ - `adam_epsilon`: 1e-08
354
+ - `max_grad_norm`: 1
355
+ - `num_train_epochs`: 5
356
+ - `max_steps`: -1
357
+ - `lr_scheduler_type`: linear
358
+ - `lr_scheduler_kwargs`: {}
359
+ - `warmup_ratio`: 0.0
360
+ - `warmup_steps`: 0
361
+ - `log_level`: passive
362
+ - `log_level_replica`: warning
363
+ - `log_on_each_node`: True
364
+ - `logging_nan_inf_filter`: True
365
+ - `save_safetensors`: True
366
+ - `save_on_each_node`: False
367
+ - `save_only_model`: False
368
+ - `restore_callback_states_from_checkpoint`: False
369
+ - `no_cuda`: False
370
+ - `use_cpu`: False
371
+ - `use_mps_device`: False
372
+ - `seed`: 42
373
+ - `data_seed`: None
374
+ - `jit_mode_eval`: False
375
+ - `use_ipex`: False
376
+ - `bf16`: False
377
+ - `fp16`: True
378
+ - `fp16_opt_level`: O1
379
+ - `half_precision_backend`: auto
380
+ - `bf16_full_eval`: False
381
+ - `fp16_full_eval`: False
382
+ - `tf32`: None
383
+ - `local_rank`: 0
384
+ - `ddp_backend`: None
385
+ - `tpu_num_cores`: None
386
+ - `tpu_metrics_debug`: False
387
+ - `debug`: []
388
+ - `dataloader_drop_last`: False
389
+ - `dataloader_num_workers`: 0
390
+ - `dataloader_prefetch_factor`: None
391
+ - `past_index`: -1
392
+ - `disable_tqdm`: False
393
+ - `remove_unused_columns`: True
394
+ - `label_names`: None
395
+ - `load_best_model_at_end`: False
396
+ - `ignore_data_skip`: False
397
+ - `fsdp`: []
398
+ - `fsdp_min_num_params`: 0
399
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
400
+ - `tp_size`: 0
401
+ - `fsdp_transformer_layer_cls_to_wrap`: None
402
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
403
+ - `deepspeed`: None
404
+ - `label_smoothing_factor`: 0.0
405
+ - `optim`: adamw_torch
406
+ - `optim_args`: None
407
+ - `adafactor`: False
408
+ - `group_by_length`: False
409
+ - `length_column_name`: length
410
+ - `ddp_find_unused_parameters`: None
411
+ - `ddp_bucket_cap_mb`: None
412
+ - `ddp_broadcast_buffers`: False
413
+ - `dataloader_pin_memory`: True
414
+ - `dataloader_persistent_workers`: False
415
+ - `skip_memory_metrics`: True
416
+ - `use_legacy_prediction_loop`: False
417
+ - `push_to_hub`: False
418
+ - `resume_from_checkpoint`: None
419
+ - `hub_model_id`: None
420
+ - `hub_strategy`: every_save
421
+ - `hub_private_repo`: None
422
+ - `hub_always_push`: False
423
+ - `gradient_checkpointing`: False
424
+ - `gradient_checkpointing_kwargs`: None
425
+ - `include_inputs_for_metrics`: False
426
+ - `include_for_metrics`: []
427
+ - `eval_do_concat_batches`: True
428
+ - `fp16_backend`: auto
429
+ - `push_to_hub_model_id`: None
430
+ - `push_to_hub_organization`: None
431
+ - `mp_parameters`:
432
+ - `auto_find_batch_size`: False
433
+ - `full_determinism`: False
434
+ - `torchdynamo`: None
435
+ - `ray_scope`: last
436
+ - `ddp_timeout`: 1800
437
+ - `torch_compile`: False
438
+ - `torch_compile_backend`: None
439
+ - `torch_compile_mode`: None
440
+ - `include_tokens_per_second`: False
441
+ - `include_num_input_tokens_seen`: False
442
+ - `neftune_noise_alpha`: None
443
+ - `optim_target_modules`: None
444
+ - `batch_eval_metrics`: False
445
+ - `eval_on_start`: False
446
+ - `use_liger_kernel`: False
447
+ - `eval_use_gather_object`: False
448
+ - `average_tokens_across_devices`: False
449
+ - `prompts`: None
450
+ - `batch_sampler`: batch_sampler
451
+ - `multi_dataset_batch_sampler`: round_robin
452
+
453
+ </details>
454
+
455
+ ### Training Logs
456
+ | Epoch | Step | Training Loss |
457
+ |:------:|:----:|:-------------:|
458
+ | 0.0737 | 500 | 0.8902 |
459
+ | 0.1474 | 1000 | 0.1132 |
460
+ | 0.2211 | 1500 | 0.1046 |
461
+ | 0.2949 | 2000 | 0.0988 |
462
+
463
+
464
+ ### Framework Versions
465
+ - Python: 3.11.12
466
+ - Sentence Transformers: 3.4.1
467
+ - Transformers: 4.51.3
468
+ - PyTorch: 2.6.0+cu124
469
+ - Accelerate: 1.6.0
470
+ - Datasets: 3.5.1
471
+ - Tokenizers: 0.21.1
472
+
473
+ ## Citation
474
+
475
+ ### BibTeX
476
+
477
+ #### Sentence Transformers
478
+ ```bibtex
479
+ @inproceedings{reimers-2019-sentence-bert,
480
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
481
+ author = "Reimers, Nils and Gurevych, Iryna",
482
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
483
+ month = "11",
484
+ year = "2019",
485
+ publisher = "Association for Computational Linguistics",
486
+ url = "https://arxiv.org/abs/1908.10084",
487
+ }
488
+ ```
489
+
490
+ #### MultipleNegativesRankingLoss
491
+ ```bibtex
492
+ @misc{henderson2017efficient,
493
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
494
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
495
+ year={2017},
496
+ eprint={1705.00652},
497
+ archivePrefix={arXiv},
498
+ primaryClass={cs.CL}
499
+ }
500
+ ```
501
+
502
+ <!--
503
+ ## Glossary
504
+
505
+ *Clearly define terms in order to be accessible across audiences.*
506
+ -->
507
+
508
+ <!--
509
+ ## Model Card Authors
510
+
511
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
512
+ -->
513
+
514
+ <!--
515
+ ## Model Card Contact
516
+
517
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
518
+ -->
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 50001,
3
+ "<mask>": 50003,
4
+ "<s>": 50000,
5
+ "<unk>": 50002
6
+ }
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "bos_token_id": 50000,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "cls",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50001,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "hidden_activation": "gelu",
21
+ "hidden_dropout_prob": 0.1,
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 3072,
26
+ "local_attention": 128,
27
+ "local_attention_rope_theta": 10000,
28
+ "local_attention_window": 128,
29
+ "local_rope_theta": 10000.0,
30
+ "max_position_embeddings": 8192,
31
+ "mlp_bias": false,
32
+ "mlp_dropout": 0.0,
33
+ "model_type": "modernbert",
34
+ "norm_bias": false,
35
+ "norm_eps": 1e-05,
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 12,
38
+ "pad_token_id": 0,
39
+ "repad_logits_with_grad": false,
40
+ "rope_theta": 160000,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.51.3",
46
+ "type_vocab_size": 2,
47
+ "vocab_size": 50004
48
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "[PAD]",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "[UNK]",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "[CLS]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "[SEP]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "[MASK]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "50000": {
45
+ "content": "<s>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "50001": {
53
+ "content": "</s>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "50002": {
61
+ "content": "<unk>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "50003": {
69
+ "content": "<mask>",
70
+ "lstrip": true,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ }
76
+ },
77
+ "bos_token": "<s>",
78
+ "clean_up_tokenization_spaces": false,
79
+ "cls_token": "<s>",
80
+ "eos_token": "</s>",
81
+ "errors": "replace",
82
+ "extra_special_tokens": {},
83
+ "mask_token": "<mask>",
84
+ "max_length": null,
85
+ "model_max_length": 1000000000000000019884624838656,
86
+ "pad_to_multiple_of": null,
87
+ "pad_token": "[PAD]",
88
+ "pad_token_type_id": 0,
89
+ "padding_side": "right",
90
+ "sep_token": "</s>",
91
+ "stride": 0,
92
+ "tokenizer_class": "RobertaTokenizer",
93
+ "trim_offsets": true,
94
+ "truncation_side": "right",
95
+ "truncation_strategy": "longest_first",
96
+ "unk_token": "<unk>"
97
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff