--- datasets: - Elsafty - Chula - DSE library_name: timm license: cc-by-4.0 pipeline_tag: image-feature-extraction tags: - red-blood-cells - hematology - medical-imaging - vision-transformer - dino - dinov2 - feature-extraction - foundation-model model-index: - name: RedDino-base results: - task: type: image-classification name: RBC Shape Classification dataset: name: Elsafty type: Classification metrics: - type: Weighted F1 value: 88.1 - type: Balanced Accuracy value: 89.3 - type: Accuracy value: 88.2 - type: Weighted F1 value: 83.8 - type: Balanced Accuracy value: 78.6 - type: Accuracy value: 83.8 - type: Weighted F1 value: 85.9 - type: Balanced Accuracy value: 57.9 - type: Accuracy value: 86.0 --- # RedDino-base **RedDino** is a self-supervised Vision Transformer foundation model specifically designed for **red blood cell (RBC)** image analysis. It leverages a tailored version of the **DINOv2** framework, trained on a meticulously curated dataset of **1.25 million RBC images** from diverse acquisition modalities and sources. This model excels at extracting robust, general-purpose features for downstream hematology tasks such as **shape classification**, **morphological subtype recognition**, and **batch-effect–robust analysis**. Unlike general-purpose models pretrained on natural images, RedDino incorporates hematology-specific augmentations, architectural tweaks, and RBC-tailored data preprocessing, enabling **state-of-the-art performance** on multiple RBC benchmarks. > 🧠 Developed by [Luca Zedda](https://orcid.org/0009-0001-8488-1612), [Andrea Loddo](https://orcid.org/0000-0002-6571-3816), [Cecilia Di Ruberto](https://orcid.org/0000-0003-4641-0307), and [Carsten Marr](https://orcid.org/0000-0003-2154-4552) > 🏥 University of Cagliari & Helmholtz Munich > 📄 Preprint: [arXiv:2508.08180](https://arxiv.org/abs/2508.08180) > 💻 Code: [https://github.com/Snarci/RedDino](https://github.com/Snarci/RedDino) --- ## Model Details - **Architecture:** ViT-base, patch size 14 - **SSL framework:** DINOv2 (customized for RBC morphology) - **Pretraining dataset:** 1.25M RBC images from 18 datasets - **Embedding size:** 768 - **Applications:** RBC morphology classification, feature extraction, batch-effect–robust analysis ## Example Usage ```python from PIL import Image from torchvision import transforms import timm import torch # Load model from Hugging Face Hub model = timm.create_model("hf_hub:Snarcy/RedDino-base", pretrained=True) model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Load and preprocess image image = Image.open("path/to/rbc_image.jpg").convert("RGB") transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = transform(image).unsqueeze(0).to(device) # Extract features with torch.no_grad(): embedding = model(input_tensor) ``` ## 📝 Citation If you use this model, please cite the following paper: **RedDino: A foundation model for red blood cell analysis** Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, Carsten Marr — 2025 Preprint: arXiv:2508.08180. https://arxiv.org/abs/2508.08180 ```bibtex @misc{zedda2025reddinofoundationmodelred, title={RedDino: A foundation model for red blood cell analysis}, author={Luca Zedda and Andrea Loddo and Cecilia Di Ruberto and Carsten Marr}, year={2025}, eprint={2508.08180}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.08180}, } ```