Upload tokenization_chexagent.py
Browse files- tokenization_chexagent.py +646 -0
tokenization_chexagent.py
ADDED
|
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from functools import lru_cache
|
| 3 |
+
from typing import TYPE_CHECKING
|
| 4 |
+
|
| 5 |
+
import regex as re
|
| 6 |
+
from transformers.tokenization_utils_base import TextInput
|
| 7 |
+
from transformers.utils import is_tf_available, is_torch_available, to_py_obj
|
| 8 |
+
|
| 9 |
+
if TYPE_CHECKING:
|
| 10 |
+
if is_torch_available():
|
| 11 |
+
import torch
|
| 12 |
+
if is_tf_available():
|
| 13 |
+
import tensorflow as tf
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
import random
|
| 17 |
+
from typing import Dict, List, Tuple, Union, Any, Callable, Optional
|
| 18 |
+
|
| 19 |
+
import matplotlib as mpl
|
| 20 |
+
import matplotlib.colors as mcolors
|
| 21 |
+
import matplotlib.colors as mplc
|
| 22 |
+
import matplotlib.figure as mplfigure
|
| 23 |
+
import numpy as np
|
| 24 |
+
import requests
|
| 25 |
+
import torch
|
| 26 |
+
from PIL import Image
|
| 27 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
| 28 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 29 |
+
from transformers.utils import logging
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__)
|
| 32 |
+
|
| 33 |
+
VOCAB_FILES_NAMES = {
|
| 34 |
+
"vocab_file": "vocab.json",
|
| 35 |
+
"merges_file": "merges.txt",
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 39 |
+
"vocab_file": {
|
| 40 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
|
| 41 |
+
},
|
| 42 |
+
"merges_file": {
|
| 43 |
+
"Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
|
| 44 |
+
},
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
| 48 |
+
"Salesforce/codegen-350M-mono": 2048,
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
IMG_TOKEN_SPAN = 1024
|
| 52 |
+
|
| 53 |
+
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['from'] == 'human' %}\n{{ '<|user|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'system' %}\n{{ '<|system|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'gpt' %}\n{{ '<|assistant|>\n' + message['value'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@lru_cache()
|
| 57 |
+
def bytes_to_unicode():
|
| 58 |
+
"""
|
| 59 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
| 60 |
+
characters the bpe code barfs on.
|
| 61 |
+
|
| 62 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
| 63 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
| 64 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
| 65 |
+
tables between utf-8 bytes and unicode strings.
|
| 66 |
+
"""
|
| 67 |
+
bs = (
|
| 68 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(
|
| 69 |
+
range(ord("®"), ord("ÿ") + 1))
|
| 70 |
+
)
|
| 71 |
+
cs = bs[:]
|
| 72 |
+
n = 0
|
| 73 |
+
for b in range(2 ** 8):
|
| 74 |
+
if b not in bs:
|
| 75 |
+
bs.append(b)
|
| 76 |
+
cs.append(2 ** 8 + n)
|
| 77 |
+
n += 1
|
| 78 |
+
cs = [chr(n) for n in cs]
|
| 79 |
+
return dict(zip(bs, cs))
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_pairs(word):
|
| 83 |
+
"""
|
| 84 |
+
Return set of symbol pairs in a word.
|
| 85 |
+
|
| 86 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 87 |
+
"""
|
| 88 |
+
pairs = set()
|
| 89 |
+
prev_char = word[0]
|
| 90 |
+
for char in word[1:]:
|
| 91 |
+
pairs.add((prev_char, char))
|
| 92 |
+
prev_char = char
|
| 93 |
+
return pairs
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def _list_find(
|
| 97 |
+
input_list: List[Any],
|
| 98 |
+
candidates: Tuple[Any],
|
| 99 |
+
start: int = 0,
|
| 100 |
+
):
|
| 101 |
+
for i in range(start, len(input_list)):
|
| 102 |
+
if input_list[i] in candidates:
|
| 103 |
+
return i
|
| 104 |
+
return -1
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _replace_closed_tag(
|
| 108 |
+
input_tokens: List[Any],
|
| 109 |
+
start_tags: Union[Any, Tuple[Any]],
|
| 110 |
+
end_tags: Union[Any, Tuple[Any]],
|
| 111 |
+
inclusive_replace_func: Callable,
|
| 112 |
+
exclusive_replace_func: Callable = lambda x: x,
|
| 113 |
+
):
|
| 114 |
+
if isinstance(start_tags, (str, int)):
|
| 115 |
+
start_tags = (start_tags,)
|
| 116 |
+
if isinstance(end_tags, (str, int)):
|
| 117 |
+
end_tags = (end_tags,)
|
| 118 |
+
assert len(start_tags) == len(end_tags)
|
| 119 |
+
|
| 120 |
+
output_tokens = []
|
| 121 |
+
end = 0
|
| 122 |
+
while True:
|
| 123 |
+
start = _list_find(input_tokens, start_tags, end)
|
| 124 |
+
if start == -1:
|
| 125 |
+
break
|
| 126 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end: start]))
|
| 127 |
+
tag_idx = start_tags.index(input_tokens[start])
|
| 128 |
+
end = _list_find(input_tokens, (end_tags[tag_idx],), start)
|
| 129 |
+
if end == -1:
|
| 130 |
+
raise ValueError("Unclosed image token")
|
| 131 |
+
output_tokens.extend(inclusive_replace_func(input_tokens[start: end + 1]))
|
| 132 |
+
end += 1
|
| 133 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end:]))
|
| 134 |
+
return output_tokens
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class CheXagentTokenizer(PreTrainedTokenizer):
|
| 138 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 139 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 140 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 141 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 142 |
+
|
| 143 |
+
def __init__(
|
| 144 |
+
self,
|
| 145 |
+
vocab_file,
|
| 146 |
+
merges_file,
|
| 147 |
+
errors="replace",
|
| 148 |
+
unk_token="<|endoftext|>",
|
| 149 |
+
bos_token="<|endoftext|>",
|
| 150 |
+
eos_token="<|endoftext|>",
|
| 151 |
+
pad_token=None,
|
| 152 |
+
add_prefix_space=False,
|
| 153 |
+
add_bos_token=False,
|
| 154 |
+
image_start_tag='<|img|>',
|
| 155 |
+
image_end_tag='<|/img|>',
|
| 156 |
+
image_pad_tag='<|imgpad|>',
|
| 157 |
+
ref_start_tag='<|ref|>',
|
| 158 |
+
ref_end_tag='<|/ref|>',
|
| 159 |
+
box_start_tag='<|box|>',
|
| 160 |
+
box_end_tag='<|/box|>',
|
| 161 |
+
quad_start_tag='<|quad|>',
|
| 162 |
+
quad_end_tag='<|/quad|>',
|
| 163 |
+
**kwargs,
|
| 164 |
+
):
|
| 165 |
+
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
|
| 166 |
+
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
| 167 |
+
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
| 168 |
+
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
| 169 |
+
self.add_bos_token = add_bos_token
|
| 170 |
+
|
| 171 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
| 172 |
+
self.encoder = json.load(vocab_handle)
|
| 173 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 174 |
+
self.errors = errors # how to handle errors in decoding
|
| 175 |
+
self.byte_encoder = bytes_to_unicode()
|
| 176 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 177 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
| 178 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
| 179 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
| 180 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
| 181 |
+
self.cache = {}
|
| 182 |
+
self.add_prefix_space = add_prefix_space
|
| 183 |
+
|
| 184 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
| 185 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
| 186 |
+
super().__init__(
|
| 187 |
+
errors=errors,
|
| 188 |
+
unk_token=unk_token,
|
| 189 |
+
bos_token=bos_token,
|
| 190 |
+
eos_token=eos_token,
|
| 191 |
+
pad_token=pad_token,
|
| 192 |
+
add_prefix_space=add_prefix_space,
|
| 193 |
+
add_bos_token=add_bos_token,
|
| 194 |
+
**kwargs,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
self.image_start_tag = image_start_tag
|
| 198 |
+
self.image_end_tag = image_end_tag
|
| 199 |
+
self.image_pad_tag = image_pad_tag
|
| 200 |
+
self.ref_start_tag = ref_start_tag
|
| 201 |
+
self.ref_end_tag = ref_end_tag
|
| 202 |
+
self.box_start_tag = box_start_tag
|
| 203 |
+
self.box_end_tag = box_end_tag
|
| 204 |
+
self.quad_start_tag = quad_start_tag
|
| 205 |
+
self.quad_end_tag = quad_end_tag
|
| 206 |
+
self.IMAGE_ST = (
|
| 207 |
+
image_start_tag, image_end_tag, image_pad_tag,
|
| 208 |
+
ref_start_tag, ref_end_tag, box_start_tag, box_end_tag,
|
| 209 |
+
quad_start_tag, quad_end_tag,
|
| 210 |
+
)
|
| 211 |
+
for special_token in self.IMAGE_ST:
|
| 212 |
+
if special_token not in self.get_vocab():
|
| 213 |
+
self.add_special_tokens({"additional_special_tokens": [special_token]})
|
| 214 |
+
for coordinate in range(10):
|
| 215 |
+
if f"<{coordinate}>" not in self.get_vocab():
|
| 216 |
+
self.add_special_tokens({"additional_special_tokens": [f"<|coord_{coordinate}|>"]})
|
| 217 |
+
if len(self) % 64 != 0:
|
| 218 |
+
for extra in range(((len(self) // 64) + 1) * 64 - len(self)):
|
| 219 |
+
if f"<extra_{extra}>" not in self.get_vocab():
|
| 220 |
+
self.add_special_tokens({"additional_special_tokens": [f"<|extra_{extra}|>"]})
|
| 221 |
+
self.img_start_id = self.convert_tokens_to_ids(self.image_start_tag)
|
| 222 |
+
self.img_end_id = self.convert_tokens_to_ids(self.image_end_tag)
|
| 223 |
+
self.img_pad_id = self.convert_tokens_to_ids(self.image_pad_tag)
|
| 224 |
+
self.ref_start_id = self.convert_tokens_to_ids(self.ref_start_tag)
|
| 225 |
+
self.ref_end_id = self.convert_tokens_to_ids(self.ref_end_tag)
|
| 226 |
+
self.box_start_id = self.convert_tokens_to_ids(self.box_start_tag)
|
| 227 |
+
self.box_end_id = self.convert_tokens_to_ids(self.box_end_tag)
|
| 228 |
+
self.quad_start_id = self.convert_tokens_to_ids(self.quad_start_tag)
|
| 229 |
+
self.quad_end_id = self.convert_tokens_to_ids(self.quad_end_tag)
|
| 230 |
+
self.chat_template = DEFAULT_CHAT_TEMPLATE
|
| 231 |
+
|
| 232 |
+
@property
|
| 233 |
+
def vocab_size(self):
|
| 234 |
+
return len(self.encoder)
|
| 235 |
+
|
| 236 |
+
def get_vocab(self):
|
| 237 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
| 238 |
+
|
| 239 |
+
def bpe(self, token):
|
| 240 |
+
if token in self.cache:
|
| 241 |
+
return self.cache[token]
|
| 242 |
+
word = tuple(token)
|
| 243 |
+
pairs = get_pairs(word)
|
| 244 |
+
|
| 245 |
+
if not pairs:
|
| 246 |
+
return token
|
| 247 |
+
|
| 248 |
+
while True:
|
| 249 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
| 250 |
+
if bigram not in self.bpe_ranks:
|
| 251 |
+
break
|
| 252 |
+
first, second = bigram
|
| 253 |
+
new_word = []
|
| 254 |
+
i = 0
|
| 255 |
+
while i < len(word):
|
| 256 |
+
try:
|
| 257 |
+
j = word.index(first, i)
|
| 258 |
+
except ValueError:
|
| 259 |
+
new_word.extend(word[i:])
|
| 260 |
+
break
|
| 261 |
+
else:
|
| 262 |
+
new_word.extend(word[i:j])
|
| 263 |
+
i = j
|
| 264 |
+
|
| 265 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
| 266 |
+
new_word.append(first + second)
|
| 267 |
+
i += 2
|
| 268 |
+
else:
|
| 269 |
+
new_word.append(word[i])
|
| 270 |
+
i += 1
|
| 271 |
+
new_word = tuple(new_word)
|
| 272 |
+
word = new_word
|
| 273 |
+
if len(word) == 1:
|
| 274 |
+
break
|
| 275 |
+
else:
|
| 276 |
+
pairs = get_pairs(word)
|
| 277 |
+
word = " ".join(word)
|
| 278 |
+
self.cache[token] = word
|
| 279 |
+
return word
|
| 280 |
+
|
| 281 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 282 |
+
if self.add_bos_token:
|
| 283 |
+
bos_token_ids = [self.bos_token_id]
|
| 284 |
+
else:
|
| 285 |
+
bos_token_ids = []
|
| 286 |
+
|
| 287 |
+
output = bos_token_ids + token_ids_0
|
| 288 |
+
|
| 289 |
+
if token_ids_1 is None:
|
| 290 |
+
return output
|
| 291 |
+
|
| 292 |
+
return output + bos_token_ids + token_ids_1
|
| 293 |
+
|
| 294 |
+
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
|
| 295 |
+
def _encode_imgurl(img_tokens):
|
| 296 |
+
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
| 297 |
+
img_tokens = img_tokens[1:-1]
|
| 298 |
+
img_url = ''.join(img_tokens)
|
| 299 |
+
out_img_tokens = list(img_url)
|
| 300 |
+
if len(out_img_tokens) > IMG_TOKEN_SPAN:
|
| 301 |
+
raise ValueError("The content in {}..{} is too long".format(self.image_start_tag, self.image_end_tag))
|
| 302 |
+
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
|
| 303 |
+
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
| 304 |
+
return out_img_tokens
|
| 305 |
+
|
| 306 |
+
tokens = super().tokenize(text, **kwargs)
|
| 307 |
+
tokens = _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
| 308 |
+
return tokens
|
| 309 |
+
|
| 310 |
+
def _tokenize(self, text):
|
| 311 |
+
"""Tokenize a string."""
|
| 312 |
+
|
| 313 |
+
bpe_tokens = []
|
| 314 |
+
for token in re.findall(self.pat, text):
|
| 315 |
+
token = "".join(
|
| 316 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
| 317 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
| 318 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
| 319 |
+
return bpe_tokens
|
| 320 |
+
|
| 321 |
+
def _convert_token_to_id(self, token):
|
| 322 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 323 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
| 324 |
+
|
| 325 |
+
def _convert_id_to_token(self, index):
|
| 326 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 327 |
+
return self.decoder.get(index)
|
| 328 |
+
|
| 329 |
+
def convert_tokens_to_string(self, tokens):
|
| 330 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 331 |
+
text = "".join(tokens)
|
| 332 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
| 333 |
+
return text
|
| 334 |
+
|
| 335 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 336 |
+
if not os.path.isdir(save_directory):
|
| 337 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 338 |
+
return
|
| 339 |
+
vocab_file = os.path.join(
|
| 340 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 341 |
+
)
|
| 342 |
+
merge_file = os.path.join(
|
| 343 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 347 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
| 348 |
+
|
| 349 |
+
index = 0
|
| 350 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
| 351 |
+
writer.write("#version: 0.2\n")
|
| 352 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
| 353 |
+
if index != token_index:
|
| 354 |
+
logger.warning(
|
| 355 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
| 356 |
+
" Please check that the tokenizer is not corrupted!"
|
| 357 |
+
)
|
| 358 |
+
index = token_index
|
| 359 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
| 360 |
+
index += 1
|
| 361 |
+
|
| 362 |
+
return vocab_file, merge_file
|
| 363 |
+
|
| 364 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
| 365 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
| 366 |
+
if is_split_into_words or add_prefix_space:
|
| 367 |
+
text = " " + text
|
| 368 |
+
return (text, kwargs)
|
| 369 |
+
|
| 370 |
+
def decode(
|
| 371 |
+
self,
|
| 372 |
+
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
|
| 373 |
+
skip_special_tokens: bool = False,
|
| 374 |
+
clean_up_tokenization_spaces: bool = None,
|
| 375 |
+
truncate_before_pattern: Optional[List[str]] = None,
|
| 376 |
+
**kwargs,
|
| 377 |
+
) -> str:
|
| 378 |
+
"""
|
| 379 |
+
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
| 380 |
+
tokens and clean up tokenization spaces.
|
| 381 |
+
|
| 382 |
+
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
|
| 383 |
+
|
| 384 |
+
Args:
|
| 385 |
+
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
| 386 |
+
List of tokenized input ids. Can be obtained using the `__call__` method.
|
| 387 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 388 |
+
Whether or not to remove special tokens in the decoding.
|
| 389 |
+
clean_up_tokenization_spaces (`bool`, *optional*):
|
| 390 |
+
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
| 391 |
+
`self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
|
| 392 |
+
truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
|
| 393 |
+
A list of regular expression strings that will be used to truncate the returned string. This can be
|
| 394 |
+
used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
|
| 395 |
+
of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
|
| 396 |
+
kwargs (additional keyword arguments, *optional*):
|
| 397 |
+
Will be passed to the underlying model specific decode method.
|
| 398 |
+
|
| 399 |
+
Returns:
|
| 400 |
+
`str`: The decoded sentence.
|
| 401 |
+
"""
|
| 402 |
+
|
| 403 |
+
token_ids = to_py_obj(token_ids)
|
| 404 |
+
|
| 405 |
+
decoded_text = self._decode(
|
| 406 |
+
token_ids=token_ids,
|
| 407 |
+
skip_special_tokens=skip_special_tokens,
|
| 408 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 409 |
+
**kwargs,
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
|
| 413 |
+
decoded_text = self.truncate(decoded_text, truncate_before_pattern)
|
| 414 |
+
|
| 415 |
+
return decoded_text
|
| 416 |
+
|
| 417 |
+
def _decode(
|
| 418 |
+
self,
|
| 419 |
+
token_ids: List[int],
|
| 420 |
+
skip_special_tokens: bool = False,
|
| 421 |
+
clean_up_tokenization_spaces: bool = None,
|
| 422 |
+
spaces_between_special_tokens: bool = True,
|
| 423 |
+
**kwargs,
|
| 424 |
+
) -> str:
|
| 425 |
+
|
| 426 |
+
def _decode_imgurl(img_token_ids):
|
| 427 |
+
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
| 428 |
+
img_token_ids = img_token_ids[1:-1]
|
| 429 |
+
img_token_ids = img_token_ids[: img_token_ids.index(self.img_pad_id)]
|
| 430 |
+
return [self.img_start_id] + img_token_ids + [self.img_end_id]
|
| 431 |
+
|
| 432 |
+
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
| 433 |
+
|
| 434 |
+
return super()._decode(
|
| 435 |
+
token_ids, skip_special_tokens, clean_up_tokenization_spaces, spaces_between_special_tokens, **kwargs
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
def truncate(self, completion, truncate_before_pattern):
|
| 439 |
+
def find_re(string, pattern, start_pos):
|
| 440 |
+
m = pattern.search(string, start_pos)
|
| 441 |
+
return m.start() if m else -1
|
| 442 |
+
|
| 443 |
+
terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
|
| 444 |
+
|
| 445 |
+
prints = list(re.finditer("^print", completion, re.MULTILINE))
|
| 446 |
+
|
| 447 |
+
if len(prints) > 1:
|
| 448 |
+
completion = completion[: prints[1].start()]
|
| 449 |
+
|
| 450 |
+
defs = list(re.finditer("^def", completion, re.MULTILINE))
|
| 451 |
+
|
| 452 |
+
if len(defs) > 1:
|
| 453 |
+
completion = completion[: defs[1].start()]
|
| 454 |
+
|
| 455 |
+
start_pos = 0
|
| 456 |
+
|
| 457 |
+
terminals_pos = [
|
| 458 |
+
pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
|
| 459 |
+
]
|
| 460 |
+
|
| 461 |
+
if len(terminals_pos) > 0:
|
| 462 |
+
return completion[: min(terminals_pos)]
|
| 463 |
+
else:
|
| 464 |
+
return completion
|
| 465 |
+
|
| 466 |
+
def from_list_format(self, list_format: List[Dict]):
|
| 467 |
+
text = ''
|
| 468 |
+
num_images = 0
|
| 469 |
+
for ele in list_format:
|
| 470 |
+
if 'image' in ele:
|
| 471 |
+
num_images += 1
|
| 472 |
+
text += f'Picture {num_images}:'
|
| 473 |
+
text += self.image_start_tag + ele['image'] + self.image_end_tag
|
| 474 |
+
text += '\n'
|
| 475 |
+
elif 'text' in ele:
|
| 476 |
+
text += ele['text']
|
| 477 |
+
elif 'box' in ele:
|
| 478 |
+
if 'ref' in ele:
|
| 479 |
+
text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
|
| 480 |
+
for box in ele['box']:
|
| 481 |
+
text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
|
| 482 |
+
else:
|
| 483 |
+
raise ValueError("Unsupport element: " + str(ele))
|
| 484 |
+
return text
|
| 485 |
+
|
| 486 |
+
def _fetch_latest_picture(self, response, history):
|
| 487 |
+
if history is None:
|
| 488 |
+
history = []
|
| 489 |
+
_history = history + [(response, None)]
|
| 490 |
+
for q, r in _history[::-1]:
|
| 491 |
+
for ele in self.to_list_format(q)[::-1]:
|
| 492 |
+
if 'image' in ele:
|
| 493 |
+
return ele['image']
|
| 494 |
+
return None
|
| 495 |
+
|
| 496 |
+
def _fetch_all_box_with_ref(self, text):
|
| 497 |
+
list_format = self.to_list_format(text)
|
| 498 |
+
output = []
|
| 499 |
+
for i, ele in enumerate(list_format):
|
| 500 |
+
if 'box' in ele:
|
| 501 |
+
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
|
| 502 |
+
assert len(bbox) == 4
|
| 503 |
+
output.append({'box': bbox})
|
| 504 |
+
if i > 0 and 'ref' in list_format[i - 1]:
|
| 505 |
+
output[-1]['ref'] = list_format[i - 1]['ref'].strip()
|
| 506 |
+
return output
|
| 507 |
+
|
| 508 |
+
def draw_bbox_on_latest_picture(
|
| 509 |
+
self,
|
| 510 |
+
response,
|
| 511 |
+
history=None,
|
| 512 |
+
) -> Optional[Image.Image]:
|
| 513 |
+
image = self._fetch_latest_picture(response, history)
|
| 514 |
+
if image is None:
|
| 515 |
+
return None
|
| 516 |
+
if image.startswith("http://") or image.startswith("https://"):
|
| 517 |
+
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
| 518 |
+
h, w = image.height, image.width
|
| 519 |
+
else:
|
| 520 |
+
image = np.asarray(Image.open(image).convert("RGB"))
|
| 521 |
+
h, w = image.shape[0], image.shape[1]
|
| 522 |
+
visualizer = Visualizer(image)
|
| 523 |
+
|
| 524 |
+
boxes = self._fetch_all_box_with_ref(response)
|
| 525 |
+
if not boxes:
|
| 526 |
+
return None
|
| 527 |
+
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
|
| 528 |
+
for box in boxes:
|
| 529 |
+
if 'ref' in box: # random new color for new refexps
|
| 530 |
+
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
|
| 531 |
+
x1, y1, x2, y2 = box['box']
|
| 532 |
+
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
|
| 533 |
+
visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
|
| 534 |
+
if 'ref' in box:
|
| 535 |
+
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
|
| 536 |
+
return visualizer.output
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
class VisImage:
|
| 540 |
+
def __init__(self, img, scale=1.0):
|
| 541 |
+
self.img = img
|
| 542 |
+
self.scale = scale
|
| 543 |
+
self.width, self.height = img.shape[1], img.shape[0]
|
| 544 |
+
self._setup_figure(img)
|
| 545 |
+
|
| 546 |
+
def _setup_figure(self, img):
|
| 547 |
+
fig = mplfigure.Figure(frameon=False)
|
| 548 |
+
self.dpi = fig.get_dpi()
|
| 549 |
+
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation
|
| 550 |
+
# (https://github.com/matplotlib/matplotlib/issues/15363)
|
| 551 |
+
fig.set_size_inches(
|
| 552 |
+
(self.width * self.scale + 1e-2) / self.dpi,
|
| 553 |
+
(self.height * self.scale + 1e-2) / self.dpi,
|
| 554 |
+
)
|
| 555 |
+
self.canvas = FigureCanvasAgg(fig)
|
| 556 |
+
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
|
| 557 |
+
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
| 558 |
+
ax.axis("off")
|
| 559 |
+
self.fig = fig
|
| 560 |
+
self.ax = ax
|
| 561 |
+
self.reset_image(img)
|
| 562 |
+
|
| 563 |
+
def reset_image(self, img):
|
| 564 |
+
img = img.astype("uint8")
|
| 565 |
+
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
|
| 566 |
+
|
| 567 |
+
def save(self, filepath):
|
| 568 |
+
self.fig.savefig(filepath)
|
| 569 |
+
|
| 570 |
+
def get_image(self):
|
| 571 |
+
canvas = self.canvas
|
| 572 |
+
s, (width, height) = canvas.print_to_buffer()
|
| 573 |
+
|
| 574 |
+
buffer = np.frombuffer(s, dtype="uint8")
|
| 575 |
+
|
| 576 |
+
img_rgba = buffer.reshape(height, width, 4)
|
| 577 |
+
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
| 578 |
+
return rgb.astype("uint8")
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
class Visualizer:
|
| 582 |
+
def __init__(self, img_rgb, metadata=None, scale=1.0):
|
| 583 |
+
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
| 584 |
+
self.output = VisImage(self.img, scale=scale)
|
| 585 |
+
self.cpu_device = torch.device("cpu")
|
| 586 |
+
|
| 587 |
+
# too small texts are useless, therefore clamp to 14
|
| 588 |
+
self._default_font_size = max(
|
| 589 |
+
np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
def draw_text(
|
| 593 |
+
self,
|
| 594 |
+
text,
|
| 595 |
+
position,
|
| 596 |
+
*,
|
| 597 |
+
font_size=None,
|
| 598 |
+
color="g",
|
| 599 |
+
horizontal_alignment="center",
|
| 600 |
+
rotation=0,
|
| 601 |
+
):
|
| 602 |
+
if not font_size:
|
| 603 |
+
font_size = self._default_font_size
|
| 604 |
+
|
| 605 |
+
# since the text background is dark, we don't want the text to be dark
|
| 606 |
+
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
| 607 |
+
color[np.argmax(color)] = max(0.8, np.max(color))
|
| 608 |
+
|
| 609 |
+
x, y = position
|
| 610 |
+
self.output.ax.text(
|
| 611 |
+
x,
|
| 612 |
+
y,
|
| 613 |
+
text,
|
| 614 |
+
size=font_size * self.output.scale,
|
| 615 |
+
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
| 616 |
+
verticalalignment="top",
|
| 617 |
+
horizontalalignment=horizontal_alignment,
|
| 618 |
+
color=color,
|
| 619 |
+
zorder=10,
|
| 620 |
+
rotation=rotation,
|
| 621 |
+
)
|
| 622 |
+
return self.output
|
| 623 |
+
|
| 624 |
+
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
|
| 625 |
+
x0, y0, x1, y1 = box_coord
|
| 626 |
+
width = x1 - x0
|
| 627 |
+
height = y1 - y0
|
| 628 |
+
|
| 629 |
+
linewidth = max(self._default_font_size / 4, 1)
|
| 630 |
+
|
| 631 |
+
self.output.ax.add_patch(
|
| 632 |
+
mpl.patches.Rectangle(
|
| 633 |
+
(x0, y0),
|
| 634 |
+
width,
|
| 635 |
+
height,
|
| 636 |
+
fill=False,
|
| 637 |
+
edgecolor=edge_color,
|
| 638 |
+
linewidth=linewidth * self.output.scale,
|
| 639 |
+
alpha=alpha,
|
| 640 |
+
linestyle=line_style,
|
| 641 |
+
)
|
| 642 |
+
)
|
| 643 |
+
return self.output
|
| 644 |
+
|
| 645 |
+
def get_output(self):
|
| 646 |
+
return self.output
|