Lunar-Landing-PPO / config.json
SuperSecureHuman's picture
1M trained
edee32b
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f05bf3acb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f05bf3acc20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f05bf3accb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f05bf3acd40>", "_build": "<function ActorCriticPolicy._build at 0x7f05bf3acdd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f05bf3ace60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f05bf3acef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f05bf3acf80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f05bf3b2050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f05bf3b20e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f05bf3b2170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f05bf40b090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651719875.3267655, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACDzDL4gTYU/CBVkvn7Ikr7JqTm+FwikvAAAAAAAAAAAMxvZO4FM5D1ufNi87UQXvqgS2ryghoc9AAAAAAAAAACmyrc9ZL6EP+gfrj0Z76m+XCubPfrf47sAAAAAAAAAADOfh7tc6266XMKcuvyYkrWQdwu6vra3OQAAgD8AAIA/5g8VPSkwU7qRjjQ2q0lssA7TNrpTr1+1AACAPwAAgD/NVDe+RZgcP9UejT77lpC+xduavEroizwAAAAAAAAAALOl2D0ss40/rz4xPqkGqr67dCo+IucrvQAAAAAAAAAAMxQiPY/+cboeC2i66UMcOqelITqpewO7AACAPwAAgD/Ntou9uObguV2hSrPMSGIumL9Qu7ZGtjMAAIA/AACAP0Di5j2tGhc+TMc3vsbxO76eVF697RJ6PQAAAAAAAAAAMyOvuk+3Ij3CrEi+KZtmvjYLfr3l8mo9AAAAAAAAAACaH0u9SCjwPdO+Db0SwYa+/Od8vJrWEDwAAAAAAAAAAKZmMj6X1l8/GOnUvYqWl76iYHU94/BrvQAAAAAAAAAATUHAPeSfET9vXIG9ggOXvgBIILzWvA69AAAAAAAAAABF9pa+eqqMP/XCbz3/To2+HZgNvjXTcT0AAAAAAAAAABNVNT5eXwI/uLwUvibWYr7nYRg9QgWfPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILpCg+HHNcECUhpRSlIwBbJRNaQGMAXSUR0CRUx5tFa0QdX2UKGgGaAloD0MIaRzqd2Gyb0CUhpRSlGgVTWsBaBZHQJFTg+bExZd1fZQoaAZoCWgPQwi9j6M5MoxtQJSGlFKUaBVNbAFoFkdAkVRZ5u63AnV9lChoBmgJaA9DCInRcwtdEnFAlIaUUpRoFU1QAWgWR0CRVMbQC0WudX2UKGgGaAloD0MI1v7O9ujab0CUhpRSlGgVTaQBaBZHQJFVyfnOjZd1fZQoaAZoCWgPQwjhCb3+JJ5tQJSGlFKUaBVNXgFoFkdAkVZYg3cYZXV9lChoBmgJaA9DCFdgyOoWc3FAlIaUUpRoFU2EAWgWR0CRbwHqNZNgdX2UKGgGaAloD0MI6GfqdUv3ckCUhpRSlGgVTUcBaBZHQJFvalANXo11fZQoaAZoCWgPQwipZ0Eo7/c1QJSGlFKUaBVNFwFoFkdAkW+TiwSrYHV9lChoBmgJaA9DCBlVhnH3wXBAlIaUUpRoFU1MAWgWR0CRcLb8FY+0dX2UKGgGaAloD0MICK2HLxOxckCUhpRSlGgVTWEBaBZHQJFwxU0elsR1fZQoaAZoCWgPQwgjgnFwaddyQJSGlFKUaBVNUAFoFkdAkXE02tMfzXV9lChoBmgJaA9DCGZLVkW46G1AlIaUUpRoFU1zAWgWR0CRcd1Oj7AMdX2UKGgGaAloD0MIfnIUIEqbcECUhpRSlGgVTUwBaBZHQJFyEhvBJqZ1fZQoaAZoCWgPQwh/LhoyXhByQJSGlFKUaBVNWgFoFkdAkXKBzBAOa3V9lChoBmgJaA9DCJgycEBLDG5AlIaUUpRoFU3EAWgWR0CRcywwCbMHdX2UKGgGaAloD0MI8parHxsobECUhpRSlGgVTVQBaBZHQJF0SLYPGyZ1fZQoaAZoCWgPQwjPS8XGvGFxQJSGlFKUaBVNcgFoFkdAkXS33L3bmHV9lChoBmgJaA9DCL5p+uyASHJAlIaUUpRoFU1CAWgWR0CRdNob4rSWdX2UKGgGaAloD0MI5xpmaPxkcECUhpRSlGgVTV0BaBZHQJF1JlMAWBV1fZQoaAZoCWgPQwhFYoIaPo5uQJSGlFKUaBVNPgFoFkdAkXXbQXyiEnV9lChoBmgJaA9DCM5Q3PEmNXBAlIaUUpRoFU1yAWgWR0CRdqhcqvvCdX2UKGgGaAloD0MI/I7hsR83bkCUhpRSlGgVTTIBaBZHQJF3KSNfgJl1fZQoaAZoCWgPQwihSWJJuWRrQJSGlFKUaBVNPwFoFkdAkXek1VHWjHV9lChoBmgJaA9DCG+df7vsbm5AlIaUUpRoFU13AWgWR0CReJU0vXbudX2UKGgGaAloD0MIvLGgMOgRcUCUhpRSlGgVTU8BaBZHQJF6l+z+m3x1fZQoaAZoCWgPQwiY273cJ7lwQJSGlFKUaBVNJQFoFkdAkXrr61stTXV9lChoBmgJaA9DCIHLY81IqXJAlIaUUpRoFU1UAWgWR0CRewf029+PdX2UKGgGaAloD0MIumbyzfZOcECUhpRSlGgVTUUBaBZHQJF7Iy8BdUt1fZQoaAZoCWgPQwgtl43OeYlwQJSGlFKUaBVNdgFoFkdAkXsh0dRzinV9lChoBmgJaA9DCKkvSzu1mHFAlIaUUpRoFU2jAWgWR0CRe99IwudxdX2UKGgGaAloD0MI0sWmlQJyckCUhpRSlGgVTcABaBZHQJF8kG/vfCR1fZQoaAZoCWgPQwhMVG8NLKhwQJSGlFKUaBVNLAFoFkdAkXy1LJ0W/XV9lChoBmgJaA9DCBU5RNycS2tAlIaUUpRoFU1CAWgWR0CRfNCfHxSYdX2UKGgGaAloD0MII/PIHwyXcECUhpRSlGgVTVwBaBZHQJF+KRuCPIZ1fZQoaAZoCWgPQwgc6+I2GoxyQJSGlFKUaBVNHQFoFkdAkX48p5NXYHV9lChoBmgJaA9DCPuSjQdbm3BAlIaUUpRoFU11AWgWR0CRfoCgsbvPdX2UKGgGaAloD0MIahX9oZmfR0CUhpRSlGgVS+1oFkdAkX71XiiqQ3V9lChoBmgJaA9DCJOrWPymR3BAlIaUUpRoFU1VAWgWR0CRgDpmEoOQdX2UKGgGaAloD0MImZoEb8h9cUCUhpRSlGgVTZYBaBZHQJGAfpcHGCJ1fZQoaAZoCWgPQwjknxnER35wQJSGlFKUaBVNjwFoFkdAkYKGNBF/hHV9lChoBmgJaA9DCCwujsrNX3FAlIaUUpRoFU0nAWgWR0CRgqenQ6ZIdX2UKGgGaAloD0MImj+mtWlfb0CUhpRSlGgVTS0BaBZHQJGDEhouf291fZQoaAZoCWgPQwjvAiUFVl1xQJSGlFKUaBVNZQFoFkdAkYTYvJzT4XV9lChoBmgJaA9DCC4B+KcU7XBAlIaUUpRoFU1lAWgWR0CRhU4X40uUdX2UKGgGaAloD0MIIxKFlrVjckCUhpRSlGgVTXUBaBZHQJGF9To+wC91fZQoaAZoCWgPQwhdixagbcRvQJSGlFKUaBVNYQFoFkdAkYZEMG5c1XV9lChoBmgJaA9DCA+0AkNWb29AlIaUUpRoFU1FAWgWR0CRhnL5hz/7dX2UKGgGaAloD0MI0VlmEYpDc0CUhpRSlGgVTQMBaBZHQJGGkhgVoHt1fZQoaAZoCWgPQwg6QZscPrNsQJSGlFKUaBVNQQFoFkdAkYhIB/7SA3V9lChoBmgJaA9DCA1slWBxOXFAlIaUUpRoFU2XAWgWR0CRiKb/Ot4idX2UKGgGaAloD0MIglX18jujcECUhpRSlGgVTT0BaBZHQJGI/LowEhd1fZQoaAZoCWgPQwhJTbuYZrBwQJSGlFKUaBVNRAFoFkdAkaKKkRBeHHV9lChoBmgJaA9DCEzeADPfXXBAlIaUUpRoFU2UAWgWR0CRouiSJTESdX2UKGgGaAloD0MIi+HqAAhWb0CUhpRSlGgVTfQBaBZHQJGjlum78Nx1fZQoaAZoCWgPQwiY2lIHOQtxQJSGlFKUaBVNdQFoFkdAkaRcOoYNzHV9lChoBmgJaA9DCNFZZhGKU29AlIaUUpRoFU1tAWgWR0CRptu6mO2idX2UKGgGaAloD0MIiNaKNodIcUCUhpRSlGgVTUQBaBZHQJGm2v5gw491fZQoaAZoCWgPQwjn4QSmE5lwQJSGlFKUaBVNQQFoFkdAkacqMefZmXV9lChoBmgJaA9DCCQNbmtLRXFAlIaUUpRoFU2HAWgWR0CRpzPe54GEdX2UKGgGaAloD0MIgGJkyVyxcECUhpRSlGgVTYgBaBZHQJGnVpfx+a11fZQoaAZoCWgPQwjwFHKlnm5vQJSGlFKUaBVNKwFoFkdAkaeWTPjXF3V9lChoBmgJaA9DCMCw/Pm2Am5AlIaUUpRoFU1RAWgWR0CRqFiKR+z/dX2UKGgGaAloD0MIVfZdEfxCcECUhpRSlGgVTW4BaBZHQJGpQuZkTYd1fZQoaAZoCWgPQwhgkV8/REJtQJSGlFKUaBVNOAFoFkdAkaneYlY2bXV9lChoBmgJaA9DCD1IT5FDBmxAlIaUUpRoFU0gAWgWR0CRq1XrMTvidX2UKGgGaAloD0MIoWZIFUUZcECUhpRSlGgVTWYBaBZHQJGrvrpqynl1fZQoaAZoCWgPQwgRyCWOPL5uQJSGlFKUaBVNnAFoFkdAkayOY+jdpXV9lChoBmgJaA9DCOF9VS4UcnBAlIaUUpRoFU09AWgWR0CRrSzlcQiBdX2UKGgGaAloD0MIyeU/pF/Sa0CUhpRSlGgVTf8BaBZHQJGtL8R+SbJ1fZQoaAZoCWgPQwj3x3vVSqtvQJSGlFKUaBVNbQFoFkdAka3ZXEIgNnV9lChoBmgJaA9DCOli00ohlm5AlIaUUpRoFU1IAWgWR0CRrh1g6U7kdX2UKGgGaAloD0MIH6D7cqa5cECUhpRSlGgVTRsBaBZHQJGu3iNsFdN1fZQoaAZoCWgPQwh4DI/97MlwQJSGlFKUaBVNIAFoFkdAka8BeXzDoHV9lChoBmgJaA9DCDmdZKvLZW1AlIaUUpRoFU1DAWgWR0CRsCLBsQ/YdX2UKGgGaAloD0MIv2A3bNsccECUhpRSlGgVTTcBaBZHQJGwMv6CUX51fZQoaAZoCWgPQwiy9Qzh2IlwQJSGlFKUaBVNUwFoFkdAkbCHWJ79h3V9lChoBmgJaA9DCDSdnQyOUnBAlIaUUpRoFU1BAWgWR0CRsRq6OHWSdX2UKGgGaAloD0MItp4hHPOacECUhpRSlGgVTYABaBZHQJGxsXSBshx1fZQoaAZoCWgPQwgiOZm4Vc1uQJSGlFKUaBVNZAFoFkdAkbLiA2AG0XV9lChoBmgJaA9DCIBJKlOMgnBAlIaUUpRoFU10AWgWR0CRtFgGr0aqdX2UKGgGaAloD0MIxOv6BbsFckCUhpRSlGgVTVIBaBZHQJG0uLKmsNl1fZQoaAZoCWgPQwifxyjPvGRwQJSGlFKUaBVNHwFoFkdAkbUm2LHdXXV9lChoBmgJaA9DCKM883JYxnBAlIaUUpRoFU1EAWgWR0CRtb1D0DlpdX2UKGgGaAloD0MIGEFjJhGWcECUhpRSlGgVTWsBaBZHQJG2KoGY8dR1fZQoaAZoCWgPQwgNxR1vcnRvQJSGlFKUaBVNLwFoFkdAkbavjfek6HV9lChoBmgJaA9DCKsGYW435HBAlIaUUpRoFU1GAWgWR0CRt5bvPToddX2UKGgGaAloD0MIca32sNc3ckCUhpRSlGgVTXwBaBZHQJG4GnbZezF1fZQoaAZoCWgPQwiXAPxTqlNtQJSGlFKUaBVNHgFoFkdAkbi0fPomonV9lChoBmgJaA9DCDZYOEnzDnBAlIaUUpRoFU0uAWgWR0CRuVIfr8iwdX2UKGgGaAloD0MIHvruVhZFcECUhpRSlGgVTW4BaBZHQJG50FTvRZ51fZQoaAZoCWgPQwhNMnIWdrpuQJSGlFKUaBVNUgFoFkdAkbrVs+FDfHV9lChoBmgJaA9DCIlDNpCuZmtAlIaUUpRoFU2gAWgWR0CRuy98qnWKdX2UKGgGaAloD0MIeCgK9Akjb0CUhpRSlGgVTWYBaBZHQJG8P6O5rgx1fZQoaAZoCWgPQwhmMbH5OK9wQJSGlFKUaBVNVwFoFkdAkbyOUhV2inV9lChoBmgJaA9DCInS3uCLUW1AlIaUUpRoFU1bAWgWR0CRvhqtozvadX2UKGgGaAloD0MIP6vMlNZVcECUhpRSlGgVTR0BaBZHQJG+GlANXo11fZQoaAZoCWgPQwgfSUkPQ3dwQJSGlFKUaBVNSwFoFkdAkb8mza9K3HV9lChoBmgJaA9DCNV46Saxw2xAlIaUUpRoFU07AWgWR0CRv4W3jMmndX2UKGgGaAloD0MIoPzdOypFckCUhpRSlGgVTTUBaBZHQJG/rFdcB2h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxcL2hvbWUvdmVub20vbWluaWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFwvaG9tZS92ZW5vbS9taW5pY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}