Upload modeling_fastesm.py with huggingface_hub
Browse files- modeling_fastesm.py +77 -31
modeling_fastesm.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import os
|
|
|
|
| 4 |
from torch.nn import functional as F
|
| 5 |
from torch.utils.data import Dataset as TorchDataset
|
| 6 |
from torch.utils.data import DataLoader as DataLoader
|
|
@@ -500,79 +501,124 @@ class Pooler:
|
|
| 500 |
self.pooling_options = {
|
| 501 |
'mean': self.mean_pooling,
|
| 502 |
'max': self.max_pooling,
|
| 503 |
-
'min': self.min_pooling,
|
| 504 |
'norm': self.norm_pooling,
|
| 505 |
-
'prod': self.prod_pooling,
|
| 506 |
'median': self.median_pooling,
|
| 507 |
'std': self.std_pooling,
|
| 508 |
'var': self.var_pooling,
|
| 509 |
'cls': self.cls_pooling,
|
|
|
|
| 510 |
}
|
| 511 |
|
| 512 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
if attention_mask is None:
|
| 514 |
return emb.mean(dim=1)
|
| 515 |
else:
|
| 516 |
attention_mask = attention_mask.unsqueeze(-1)
|
| 517 |
return (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
| 518 |
|
| 519 |
-
def max_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
|
| 520 |
if attention_mask is None:
|
| 521 |
return emb.max(dim=1).values
|
| 522 |
else:
|
| 523 |
attention_mask = attention_mask.unsqueeze(-1)
|
| 524 |
return (emb * attention_mask).max(dim=1).values
|
| 525 |
-
|
| 526 |
-
def min_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
|
| 527 |
-
if attention_mask is None:
|
| 528 |
-
return emb.min(dim=1).values
|
| 529 |
-
else:
|
| 530 |
-
attention_mask = attention_mask.unsqueeze(-1)
|
| 531 |
-
return (emb * attention_mask).min(dim=1).values
|
| 532 |
|
| 533 |
-
def norm_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
|
| 534 |
if attention_mask is None:
|
| 535 |
return emb.norm(dim=1, p=2)
|
| 536 |
else:
|
| 537 |
attention_mask = attention_mask.unsqueeze(-1)
|
| 538 |
return (emb * attention_mask).norm(dim=1, p=2)
|
| 539 |
|
| 540 |
-
def
|
| 541 |
-
length = emb.shape[1]
|
| 542 |
-
if attention_mask is None:
|
| 543 |
-
return emb.prod(dim=1) / length
|
| 544 |
-
else:
|
| 545 |
-
attention_mask = attention_mask.unsqueeze(-1)
|
| 546 |
-
return ((emb * attention_mask).prod(dim=1) / attention_mask.sum(dim=1)) / length
|
| 547 |
-
|
| 548 |
-
def median_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
|
| 549 |
if attention_mask is None:
|
| 550 |
return emb.median(dim=1).values
|
| 551 |
else:
|
| 552 |
attention_mask = attention_mask.unsqueeze(-1)
|
| 553 |
return (emb * attention_mask).median(dim=1).values
|
| 554 |
|
| 555 |
-
def std_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
|
| 556 |
if attention_mask is None:
|
| 557 |
return emb.std(dim=1)
|
| 558 |
else:
|
| 559 |
-
|
| 560 |
-
|
|
|
|
| 561 |
|
| 562 |
-
def var_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
|
| 563 |
if attention_mask is None:
|
| 564 |
return emb.var(dim=1)
|
| 565 |
else:
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
return emb[:, 0, :]
|
| 571 |
|
| 572 |
-
def __call__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 573 |
final_emb = []
|
| 574 |
for pooling_type in self.pooling_types:
|
| 575 |
-
final_emb.append(self.pooling_options[pooling_type](emb, attention_mask)) # (b, d)
|
| 576 |
return torch.cat(final_emb, dim=-1) # (b, n_pooling_types * d)
|
| 577 |
|
| 578 |
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import os
|
| 4 |
+
import networkx as nx
|
| 5 |
from torch.nn import functional as F
|
| 6 |
from torch.utils.data import Dataset as TorchDataset
|
| 7 |
from torch.utils.data import DataLoader as DataLoader
|
|
|
|
| 501 |
self.pooling_options = {
|
| 502 |
'mean': self.mean_pooling,
|
| 503 |
'max': self.max_pooling,
|
|
|
|
| 504 |
'norm': self.norm_pooling,
|
|
|
|
| 505 |
'median': self.median_pooling,
|
| 506 |
'std': self.std_pooling,
|
| 507 |
'var': self.var_pooling,
|
| 508 |
'cls': self.cls_pooling,
|
| 509 |
+
'parti': self._pool_parti,
|
| 510 |
}
|
| 511 |
|
| 512 |
+
def _create_pooled_matrices_across_layers(self, attentions: torch.Tensor) -> torch.Tensor:
|
| 513 |
+
maxed_attentions = torch.max(attentions, dim=1)[0]
|
| 514 |
+
return maxed_attentions
|
| 515 |
+
|
| 516 |
+
def _page_rank(self, attention_matrix, personalization=None, nstart=None, prune_type="top_k_outdegree"):
|
| 517 |
+
# Run PageRank on the attention matrix converted to a graph.
|
| 518 |
+
# Raises exceptions if the graph doesn't match the token sequence or has no edges.
|
| 519 |
+
# Returns the PageRank scores for each token node.
|
| 520 |
+
G = self._convert_to_graph(attention_matrix)
|
| 521 |
+
if G.number_of_nodes() != attention_matrix.shape[0]:
|
| 522 |
+
raise Exception(
|
| 523 |
+
f"The number of nodes in the graph should be equal to the number of tokens in sequence! You have {G.number_of_nodes()} nodes for {attention_matrix.shape[0]} tokens.")
|
| 524 |
+
if G.number_of_edges() == 0:
|
| 525 |
+
raise Exception(f"You don't seem to have any attention edges left in the graph.")
|
| 526 |
+
|
| 527 |
+
return nx.pagerank(G, alpha=0.85, tol=1e-06, weight='weight', personalization=personalization, nstart=nstart, max_iter=100)
|
| 528 |
+
|
| 529 |
+
def _convert_to_graph(self, matrix):
|
| 530 |
+
# Convert a matrix (e.g., attention scores) to a directed graph using networkx.
|
| 531 |
+
# Each element in the matrix represents a directed edge with a weight.
|
| 532 |
+
G = nx.from_numpy_array(matrix, create_using=nx.DiGraph)
|
| 533 |
+
return G
|
| 534 |
+
|
| 535 |
+
def _calculate_importance_weights(self, dict_importance, attention_mask: Optional[torch.Tensor] = None):
|
| 536 |
+
# Remove keys where attention_mask is 0
|
| 537 |
+
if attention_mask is not None:
|
| 538 |
+
for k in list(dict_importance.keys()):
|
| 539 |
+
if attention_mask[k] == 0:
|
| 540 |
+
del dict_importance[k]
|
| 541 |
+
|
| 542 |
+
#dict_importance[0] # remove cls
|
| 543 |
+
#dict_importance[-1] # remove eos
|
| 544 |
+
total = sum(dict_importance.values())
|
| 545 |
+
return np.array([v / total for _, v in dict_importance.items()])
|
| 546 |
+
|
| 547 |
+
def _pool_parti(self, emb: torch.Tensor, attentions: torch.Tensor, attention_mask: Optional[torch.Tensor] = None): # (b, L, d) -> (b, d)
|
| 548 |
+
maxed_attentions = self._create_pooled_matrices_across_layers(attentions).numpy()
|
| 549 |
+
# emb is (b, L, d), maxed_attentions is (b, L, L)
|
| 550 |
+
emb_pooled = []
|
| 551 |
+
for e, a, mask in zip(emb, maxed_attentions, attention_mask):
|
| 552 |
+
dict_importance = self._page_rank(a)
|
| 553 |
+
importance_weights = self._calculate_importance_weights(dict_importance, mask)
|
| 554 |
+
num_tokens = int(mask.sum().item())
|
| 555 |
+
emb_pooled.append(np.average(e[:num_tokens], weights=importance_weights, axis=0))
|
| 556 |
+
pooled = torch.tensor(np.array(emb_pooled))
|
| 557 |
+
return pooled
|
| 558 |
+
|
| 559 |
+
def mean_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): # (b, L, d) -> (b, d)
|
| 560 |
if attention_mask is None:
|
| 561 |
return emb.mean(dim=1)
|
| 562 |
else:
|
| 563 |
attention_mask = attention_mask.unsqueeze(-1)
|
| 564 |
return (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
| 565 |
|
| 566 |
+
def max_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): # (b, L, d) -> (b, d)
|
| 567 |
if attention_mask is None:
|
| 568 |
return emb.max(dim=1).values
|
| 569 |
else:
|
| 570 |
attention_mask = attention_mask.unsqueeze(-1)
|
| 571 |
return (emb * attention_mask).max(dim=1).values
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
|
| 573 |
+
def norm_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): # (b, L, d) -> (b, d)
|
| 574 |
if attention_mask is None:
|
| 575 |
return emb.norm(dim=1, p=2)
|
| 576 |
else:
|
| 577 |
attention_mask = attention_mask.unsqueeze(-1)
|
| 578 |
return (emb * attention_mask).norm(dim=1, p=2)
|
| 579 |
|
| 580 |
+
def median_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): # (b, L, d) -> (b, d)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
if attention_mask is None:
|
| 582 |
return emb.median(dim=1).values
|
| 583 |
else:
|
| 584 |
attention_mask = attention_mask.unsqueeze(-1)
|
| 585 |
return (emb * attention_mask).median(dim=1).values
|
| 586 |
|
| 587 |
+
def std_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): # (b, L, d) -> (b, d)
|
| 588 |
if attention_mask is None:
|
| 589 |
return emb.std(dim=1)
|
| 590 |
else:
|
| 591 |
+
# Compute variance correctly over non-masked positions, then take sqrt
|
| 592 |
+
var = self.var_pooling(emb, attention_mask, **kwargs)
|
| 593 |
+
return torch.sqrt(var)
|
| 594 |
|
| 595 |
+
def var_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): # (b, L, d) -> (b, d)
|
| 596 |
if attention_mask is None:
|
| 597 |
return emb.var(dim=1)
|
| 598 |
else:
|
| 599 |
+
# Correctly compute variance over only non-masked positions
|
| 600 |
+
attention_mask = attention_mask.unsqueeze(-1) # (b, L, 1)
|
| 601 |
+
# Compute mean over non-masked positions
|
| 602 |
+
mean = (emb * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) # (b, d)
|
| 603 |
+
mean = mean.unsqueeze(1) # (b, 1, d)
|
| 604 |
+
# Compute squared differences from mean, only over non-masked positions
|
| 605 |
+
squared_diff = (emb - mean) ** 2 # (b, L, d)
|
| 606 |
+
# Sum squared differences over non-masked positions and divide by count
|
| 607 |
+
var = (squared_diff * attention_mask).sum(dim=1) / attention_mask.sum(dim=1) # (b, d)
|
| 608 |
+
return var
|
| 609 |
+
|
| 610 |
+
def cls_pooling(self, emb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs): # (b, L, d) -> (b, d)
|
| 611 |
return emb[:, 0, :]
|
| 612 |
|
| 613 |
+
def __call__(
|
| 614 |
+
self,
|
| 615 |
+
emb: torch.Tensor,
|
| 616 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 617 |
+
attentions: Optional[torch.Tensor] = None
|
| 618 |
+
): # [mean, max]
|
| 619 |
final_emb = []
|
| 620 |
for pooling_type in self.pooling_types:
|
| 621 |
+
final_emb.append(self.pooling_options[pooling_type](emb=emb, attention_mask=attention_mask, attentions=attentions)) # (b, d)
|
| 622 |
return torch.cat(final_emb, dim=-1) # (b, n_pooling_types * d)
|
| 623 |
|
| 624 |
|