--- tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:24588 - loss:BinaryCrossEntropyLoss base_model: Alibaba-NLP/gte-multilingual-reranker-base pipeline_tag: text-ranking library_name: sentence-transformers metrics: - pearson - spearman model-index: - name: CrossEncoder based on Alibaba-NLP/gte-multilingual-reranker-base results: - task: type: cross-encoder-correlation name: Cross Encoder Correlation dataset: name: validation type: validation metrics: - type: pearson value: 0.875500492479389 name: Pearson - type: spearman value: 0.8709281334702662 name: Spearman --- # CrossEncoder based on Alibaba-NLP/gte-multilingual-reranker-base This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base) - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("cross_encoder_model_id") # Get scores for pairs of texts pairs = [ ['What is the average rent price in Canada?', 'Title: "How many hours do Americans sleep at night (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov'], ['for the topic digital foortprint and identity use "\t " to give a description on if there was an provided teaching materials for this activity.', 'Title: "Different ways Americans define gender for someone who says they are transgender (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov'], ['Which U.S. cities or counties have the highest rates of aggravated assault involving a deadly weapon per 100,000 residents?', 'Title: "U.S. Bank Overview, CITY Overview"\nCollections: Companies\nDatasets: InstrumentClosePrice1Day\nChart Type: timeseries:eav_v3\nCanonical forms: "U.S. Bancorp"="closing_price", "Club De Futbol Intercity Sad"="closing_price"'], ['Black identity topics', 'Title: "Different ways Americans define gender for someone who says they are transgender (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov'], ['Which company in the Interactive Media and Services category has the highest market capitalization?', 'Title: "DigiPlus Interactive. Capital Expenditure (Quarterly)"\nCollections: Companies\nDatasets: StandardIncomeStatement\nChart Type: timeseries:eav_v3\nCanonical forms: "Capital Expenditure"="capital_expenditure"\nSources: S&P Global'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'What is the average rent price in Canada?', [ 'Title: "How many hours do Americans sleep at night (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov', 'Title: "Different ways Americans define gender for someone who says they are transgender (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov', 'Title: "U.S. Bank Overview, CITY Overview"\nCollections: Companies\nDatasets: InstrumentClosePrice1Day\nChart Type: timeseries:eav_v3\nCanonical forms: "U.S. Bancorp"="closing_price", "Club De Futbol Intercity Sad"="closing_price"', 'Title: "Different ways Americans define gender for someone who says they are transgender (United States)"\nCollections: YouGov Trackers\nDatasets: YouGovTrackerValueV2\nChart Type: survey:timeseries\nSources: YouGov', 'Title: "DigiPlus Interactive. Capital Expenditure (Quarterly)"\nCollections: Companies\nDatasets: StandardIncomeStatement\nChart Type: timeseries:eav_v3\nCanonical forms: "Capital Expenditure"="capital_expenditure"\nSources: S&P Global', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` ## Evaluation ### Metrics #### Cross Encoder Correlation * Dataset: `validation` * Evaluated with [CrossEncoderCorrelationEvaluator](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderCorrelationEvaluator) | Metric | Value | |:-------------|:-----------| | pearson | 0.8755 | | **spearman** | **0.8709** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 24,588 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| | What is the average rent price in Canada? | Title: "How many hours do Americans sleep at night (United States)"
Collections: YouGov Trackers
Datasets: YouGovTrackerValueV2
Chart Type: survey:timeseries
Sources: YouGov
| 0.0 | | for the topic digital foortprint and identity use " " to give a description on if there was an provided teaching materials for this activity. | Title: "Different ways Americans define gender for someone who says they are transgender (United States)"
Collections: YouGov Trackers
Datasets: YouGovTrackerValueV2
Chart Type: survey:timeseries
Sources: YouGov
| 0.25 | | Which U.S. cities or counties have the highest rates of aggravated assault involving a deadly weapon per 100,000 residents? | Title: "U.S. Bank Overview, CITY Overview"
Collections: Companies
Datasets: InstrumentClosePrice1Day
Chart Type: timeseries:eav_v3
Canonical forms: "U.S. Bancorp"="closing_price", "Club De Futbol Intercity Sad"="closing_price"
| 0.0 | * Loss: [BinaryCrossEntropyLoss](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 5 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `parallelism_config`: None - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `project`: huggingface - `trackio_space_id`: trackio - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: no - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: True - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {}
### Training Logs | Epoch | Step | Training Loss | validation_spearman | |:------:|:----:|:-------------:|:-------------------:| | 0.1300 | 100 | - | 0.7581 | | 0.2601 | 200 | - | 0.7928 | | 0.3901 | 300 | - | 0.8105 | | 0.5202 | 400 | - | 0.8252 | | 0.6502 | 500 | 0.4726 | 0.8306 | | 0.7802 | 600 | - | 0.8338 | | 0.9103 | 700 | - | 0.8398 | | 1.0 | 769 | - | 0.8406 | | 1.0403 | 800 | - | 0.8412 | | 1.1704 | 900 | - | 0.8479 | | 1.3004 | 1000 | 0.4027 | 0.8525 | | 1.4304 | 1100 | - | 0.8521 | | 1.5605 | 1200 | - | 0.8549 | | 1.6905 | 1300 | - | 0.8591 | | 1.8205 | 1400 | - | 0.8619 | | 1.9506 | 1500 | 0.3793 | 0.8614 | | 2.0 | 1538 | - | 0.8627 | | 2.0806 | 1600 | - | 0.8623 | | 2.2107 | 1700 | - | 0.8641 | | 2.3407 | 1800 | - | 0.8598 | | 2.4707 | 1900 | - | 0.8655 | | 2.6008 | 2000 | 0.3534 | 0.8641 | | 2.7308 | 2100 | - | 0.8651 | | 2.8609 | 2200 | - | 0.8656 | | 2.9909 | 2300 | - | 0.8668 | | 3.0 | 2307 | - | 0.8660 | | 3.1209 | 2400 | - | 0.8678 | | 3.2510 | 2500 | 0.3387 | 0.8654 | | 3.3810 | 2600 | - | 0.8654 | | 3.5111 | 2700 | - | 0.8667 | | 3.6411 | 2800 | - | 0.8676 | | 3.7711 | 2900 | - | 0.8674 | | 3.9012 | 3000 | 0.3335 | 0.8704 | | 4.0 | 3076 | - | 0.8703 | | 4.0312 | 3100 | - | 0.8698 | | 4.1612 | 3200 | - | 0.8709 | ### Framework Versions - Python: 3.12.11 - Sentence Transformers: 5.1.2 - Transformers: 4.57.1 - PyTorch: 2.8.0+cu128 - Accelerate: 1.11.0 - Datasets: 4.2.0 - Tokenizers: 0.22.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```