--- license: mit datasets: - xl-zhao/PromptCoT-QwQ-Dataset language: - en base_model: xl-zhao/PromptCoT-QwQ-32B tags: - mlx --- # TendernessChen/PromptCoT-QwQ-32B-mlx-3Bit The Model [TendernessChen/PromptCoT-QwQ-32B-mlx-3Bit](https://huggingface.co/TendernessChen/PromptCoT-QwQ-32B-mlx-3Bit) was converted to MLX format from [xl-zhao/PromptCoT-QwQ-32B](https://huggingface.co/xl-zhao/PromptCoT-QwQ-32B) using mlx-lm version **0.22.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("TendernessChen/PromptCoT-QwQ-32B-mlx-3Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```