Upload README.md
Browse files
README.md
CHANGED
|
@@ -11,8 +11,34 @@ license: apache-2.0
|
|
| 11 |
model_creator: Mistral AI_
|
| 12 |
model_name: Mixtral 8X7B Instruct v0.1
|
| 13 |
model_type: mixtral
|
| 14 |
-
prompt_template: '[INST] {prompt} [/INST]
|
|
|
|
|
|
|
| 15 |
quantized_by: TheBloke
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
---
|
| 17 |
<!-- markdownlint-disable MD041 -->
|
| 18 |
|
|
@@ -40,15 +66,12 @@ quantized_by: TheBloke
|
|
| 40 |
<!-- description start -->
|
| 41 |
# Description
|
| 42 |
|
| 43 |
-
This repo contains
|
| 44 |
-
|
| 45 |
-
## Requires AutoGPTQ PR + transformers 4.36.0
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
Transformers support has just arrived also via two PRs - and is expected in main Transformers + Optimum tomorrow (Dec 12th).
|
| 52 |
|
| 53 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
| 54 |
|
|
@@ -56,7 +79,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
|
|
| 56 |
<!-- repositories-available start -->
|
| 57 |
## Repositories available
|
| 58 |
|
| 59 |
-
* AWQ
|
| 60 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ)
|
| 61 |
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF)
|
| 62 |
* [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
|
|
@@ -67,9 +90,22 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
|
|
| 67 |
|
| 68 |
```
|
| 69 |
[INST] {prompt} [/INST]
|
|
|
|
| 70 |
```
|
|
|
|
| 71 |
<!-- prompt-template end -->
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
<!-- README_GPTQ.md-provided-files start -->
|
| 74 |
## Provided files, and GPTQ parameters
|
| 75 |
|
|
@@ -174,7 +210,11 @@ Note that using Git with HF repos is strongly discouraged. It will be much slowe
|
|
| 174 |
<!-- README_GPTQ.md-text-generation-webui start -->
|
| 175 |
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
| 176 |
|
| 177 |
-
**
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
| 180 |
|
|
@@ -199,6 +239,87 @@ It is strongly recommended to use the text-generation-webui one-click-installers
|
|
| 199 |
|
| 200 |
<!-- README_GPTQ.md-text-generation-webui end -->
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
<!-- footer start -->
|
| 204 |
<!-- 200823 -->
|
|
|
|
| 11 |
model_creator: Mistral AI_
|
| 12 |
model_name: Mixtral 8X7B Instruct v0.1
|
| 13 |
model_type: mixtral
|
| 14 |
+
prompt_template: '[INST] {prompt} [/INST]
|
| 15 |
+
|
| 16 |
+
'
|
| 17 |
quantized_by: TheBloke
|
| 18 |
+
widget:
|
| 19 |
+
- output:
|
| 20 |
+
text: 'Arr, shiver me timbers! Ye have a llama on yer lawn, ye say? Well, that
|
| 21 |
+
be a new one for me! Here''s what I''d suggest, arr:
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
1. Firstly, ensure yer safety. Llamas may look gentle, but they can be protective
|
| 25 |
+
if they feel threatened.
|
| 26 |
+
|
| 27 |
+
2. Try to make the area less appealing to the llama. Remove any food sources
|
| 28 |
+
or water that might be attracting it.
|
| 29 |
+
|
| 30 |
+
3. Contact local animal control or a wildlife rescue organization. They be the
|
| 31 |
+
experts and can provide humane ways to remove the llama from yer property.
|
| 32 |
+
|
| 33 |
+
4. If ye have any experience with animals, you could try to gently herd the
|
| 34 |
+
llama towards a nearby field or open space. But be careful, arr!
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
Remember, arr, it be important to treat the llama with respect and care. It
|
| 38 |
+
be a creature just trying to survive, like the rest of us.'
|
| 39 |
+
text: '[INST] You are a pirate chatbot who always responds with Arr and pirate speak!
|
| 40 |
+
|
| 41 |
+
There''s a llama on my lawn, how can I get rid of him? [/INST]'
|
| 42 |
---
|
| 43 |
<!-- markdownlint-disable MD041 -->
|
| 44 |
|
|
|
|
| 66 |
<!-- description start -->
|
| 67 |
# Description
|
| 68 |
|
| 69 |
+
This repo contains GPTQ model files for [Mistral AI_'s Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
Mixtral GPTQs currently require:
|
| 72 |
+
* Transformers 4.36.0 or later
|
| 73 |
+
* either, AutoGPTQ 0.6 compiled from source, or
|
| 74 |
+
* Transformers 4.37.0.dev0 compiled from Github with: `pip3 install git+https://github.com/huggingface/transformers`
|
|
|
|
| 75 |
|
| 76 |
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
|
| 77 |
|
|
|
|
| 79 |
<!-- repositories-available start -->
|
| 80 |
## Repositories available
|
| 81 |
|
| 82 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-AWQ)
|
| 83 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ)
|
| 84 |
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF)
|
| 85 |
* [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
|
|
|
|
| 90 |
|
| 91 |
```
|
| 92 |
[INST] {prompt} [/INST]
|
| 93 |
+
|
| 94 |
```
|
| 95 |
+
|
| 96 |
<!-- prompt-template end -->
|
| 97 |
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
<!-- README_GPTQ.md-compatible clients start -->
|
| 101 |
+
## Known compatible clients / servers
|
| 102 |
+
|
| 103 |
+
GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
|
| 104 |
+
|
| 105 |
+
Mixtral GPTQs currently have special requirements - see Description above.
|
| 106 |
+
|
| 107 |
+
<!-- README_GPTQ.md-compatible clients end -->
|
| 108 |
+
|
| 109 |
<!-- README_GPTQ.md-provided-files start -->
|
| 110 |
## Provided files, and GPTQ parameters
|
| 111 |
|
|
|
|
| 210 |
<!-- README_GPTQ.md-text-generation-webui start -->
|
| 211 |
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
| 212 |
|
| 213 |
+
**NOTE**: Requires:
|
| 214 |
+
|
| 215 |
+
* Transformers 4.36.0, or Transformers 4.37.0.dev0 from Github
|
| 216 |
+
* Either AutoGPTQ 0.6 compiled from source and `Loader: AutoGPTQ`,
|
| 217 |
+
* or, `Loader: Transformers`, if you installed Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers`
|
| 218 |
|
| 219 |
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
| 220 |
|
|
|
|
| 239 |
|
| 240 |
<!-- README_GPTQ.md-text-generation-webui end -->
|
| 241 |
|
| 242 |
+
<!-- README_GPTQ.md-use-from-tgi start -->
|
| 243 |
+
## Serving this model from Text Generation Inference (TGI)
|
| 244 |
+
|
| 245 |
+
Not currently supported for Mixtral models.
|
| 246 |
+
|
| 247 |
+
<!-- README_GPTQ.md-use-from-tgi end -->
|
| 248 |
+
<!-- README_GPTQ.md-use-from-python start -->
|
| 249 |
+
## Python code example: inference from this GPTQ model
|
| 250 |
+
|
| 251 |
+
### Install the necessary packages
|
| 252 |
+
|
| 253 |
+
Requires: Transformers 4.37.0.dev0 from Github, Optimum 1.16.0 or later, and AutoGPTQ 0.5.1 or later.
|
| 254 |
+
|
| 255 |
+
```shell
|
| 256 |
+
pip3 install --upgrade "git+https://github.com/huggingface/transformers" optimum
|
| 257 |
+
# If using PyTorch 2.1 + CUDA 12.x:
|
| 258 |
+
pip3 install --upgrade auto-gptq
|
| 259 |
+
# or, if using PyTorch 2.1 + CUDA 11.x:
|
| 260 |
+
pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
|
| 264 |
+
|
| 265 |
+
```shell
|
| 266 |
+
pip3 uninstall -y auto-gptq
|
| 267 |
+
git clone https://github.com/PanQiWei/AutoGPTQ
|
| 268 |
+
cd AutoGPTQ
|
| 269 |
+
DISABLE_QIGEN=1 pip3 install .
|
| 270 |
+
```
|
| 271 |
+
|
| 272 |
+
### Example Python code
|
| 273 |
+
|
| 274 |
+
```python
|
| 275 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 276 |
+
|
| 277 |
+
model_name_or_path = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ"
|
| 278 |
+
# To use a different branch, change revision
|
| 279 |
+
# For example: revision="gptq-4bit-128g-actorder_True"
|
| 280 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
| 281 |
+
device_map="auto",
|
| 282 |
+
trust_remote_code=False,
|
| 283 |
+
revision="main")
|
| 284 |
+
|
| 285 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
| 286 |
+
|
| 287 |
+
prompt = "Write a story about llamas"
|
| 288 |
+
system_message = "You are a story writing assistant"
|
| 289 |
+
prompt_template=f'''[INST] {prompt} [/INST]
|
| 290 |
+
'''
|
| 291 |
+
|
| 292 |
+
print("\n\n*** Generate:")
|
| 293 |
+
|
| 294 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
| 295 |
+
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
| 296 |
+
print(tokenizer.decode(output[0]))
|
| 297 |
+
|
| 298 |
+
# Inference can also be done using transformers' pipeline
|
| 299 |
+
|
| 300 |
+
print("*** Pipeline:")
|
| 301 |
+
pipe = pipeline(
|
| 302 |
+
"text-generation",
|
| 303 |
+
model=model,
|
| 304 |
+
tokenizer=tokenizer,
|
| 305 |
+
max_new_tokens=512,
|
| 306 |
+
do_sample=True,
|
| 307 |
+
temperature=0.7,
|
| 308 |
+
top_p=0.95,
|
| 309 |
+
top_k=40,
|
| 310 |
+
repetition_penalty=1.1
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
| 314 |
+
```
|
| 315 |
+
<!-- README_GPTQ.md-use-from-python end -->
|
| 316 |
+
|
| 317 |
+
<!-- README_GPTQ.md-compatibility start -->
|
| 318 |
+
## Compatibility
|
| 319 |
+
|
| 320 |
+
The files provided are tested to work with AutoGPTQ 0.6 (compiled from source) and Transformers 4.37.0 (installed from Github).
|
| 321 |
+
|
| 322 |
+
<!-- README_GPTQ.md-compatibility end -->
|
| 323 |
|
| 324 |
<!-- footer start -->
|
| 325 |
<!-- 200823 -->
|