--- license: apache-2.0 datasets: - Trendyol/Trendyol-Cybersecurity-Instruction-Tuning-Dataset - AlicanKiraz0/Cybersecurity-Dataset-Fenrir-v2.0 - AlicanKiraz0/Cybersecurity-Dataset-Heimdall-v1.1 base_model: - meta-llama/Llama-3.3-70B-Instruct ---
![Model Type](https://img.shields.io/badge/Model-Cybersecurity%20(Defensive%20First)-red) ![Base Model](https://img.shields.io/badge/Base-Llama--3.3--70B-blue) ![Params](https://img.shields.io/badge/Parameters-70B-lightgrey) ![Dataset](https://img.shields.io/badge/Dataset-v2%20(83,920%20rows)-informational) ![License](https://img.shields.io/badge/Weights-Llama%203.3%20License-yellow) ![Language](https://img.shields.io/badge/Language-English-orange)
# Trendyol/Trendyol-Cybersecurity-LLM-v2-70B-Q4_K_M (Llama‑3.3‑70B Finetuned) > v2-Max is a defense-focused, alignment-safe cybersecurity language model based on Llama-3.3-70B. It was trained via SFT from scratch on the v2 dataset and ranked near the top on CS-Eval in the EN and EN-ZH tracks. Developed by the Trendyol Group Security Team. **Developed Trendyol Group Security Team** - Alican Kiraz - İsmail Yavuz - Melih Yılmaz - Mertcan Kondur - Rıza Sabuncu - Özgün Kultekin We thank **Ahmet Gökhan Yalçın**, **Cenk Çivici**, **Nezir Alp**, **Yiğit Darçın** for all their support. --- ## 🏆 CS‑Eval Benchmark Results - **English:** **3rd place** - **English–Chinese:** **5th place** - **Comprehensive average:** **91.03** ![CS‑Eval](./cs-eval-v2.png) | Category | Score | |---|---:| | Fundamentals of System Security and Software Security | **91.33** | | Access Control and Identity Management | **90.23** | | Encryption Technology and Key Management | **92.70** | | Infrastructure Security | **91.85** | | AI and Network Security | **94.55** | | Vulnerability Management and Penetration Testing | **90.78** | | Threat Detection and Prevention | **92.44** | | Data Security and Privacy Protection | **90.48** | | Supply Chain Security | **93.69** | | Security Architecture Design | **87.80** | | Business Continuity & Emergency Response / Recovery | **85.00** | | Chinese Task | **91.07** | --- ## 🔁 Why v2-Max? **Differences: Old model (Qwen3-14B, “BaronLLM v2.0”) → New model (Llama-3.3-70B, “v2-Max”):** * **Base model leap:** 14B → **70B** (stronger reasoning, long-range context, and standards-compliant answers). * **Dataset:** v1.1 (**21,258**) → **v2.0 (**83,920**)** rows (≈4×); coverage includes **OWASP, MITRE ATT&CK, NIST CSF, CIS, ASD Essential 8**, modern identity (OAuth2/OIDC/SAML), **TLS**, **Cloud & DevSecOps**, **Cryptography**, and **AI Security**. * **Security gates:** adversarial refusal tests against jailbreak/prompt injection, static policy linting, content risk taxonomy; **refuse-or-report** strategies in system prompts. * **Orientation:** offensive examples were removed; **defensive, safe** outputs are preferred. --- ## 📚 v2 Dataset Summary (Alignment-Safe SFT) **Size:** **83,920** *system/user/assistant* triplets **License:** **Apache-2.0** **Language:** **English** **Split:** `train` (100%) **Format:** **Parquet** (columns: `system`, `user`, `assistant`) **Quality Gates:** Deduplication, PII scrubbing, hallucination screening, **adversarial refusal** tests, static policy linting, **risk taxonomy**, strict schema validations (stable row IDs). **Coverage (key topics):** * **OWASP Top 10**, **MITRE ATT&CK**, **NIST CSF**, **CIS Controls**, **ASD Essential 8** * Modern identity: **OAuth 2.0 / OIDC / SAML** * **SSL/TLS** practices and certificate hygiene * **Cloud & DevSecOps:** IAM, secrets management, CI/CD, container/K8s hardening, logging/SIEM, IR runbooks * **Cryptography** implementation hygiene * **AI Security** (prompt injection, data poisoning, model/embedding security, etc.) > The dataset is commercial-friendly: **Apache-2.0**. Harmful/exploitative content and high-risk materials such as raw shellcode were excluded during dataset construction; patterns for generating safe alternatives to harmful requests were included. --- ## ✨ Features * **Defense-Focused Reasoning:** Standards-aligned (OWASP/ATT&CK/NIST/CIS) recommendations with step-by-step explanations that include the “why/evidence.” * **Policy & Architecture Guides:** Identity/access, encryption, network segmentation, cloud control sets, data classification, and alert logic. * **IR & Threat Hunting Support:** Incident flow, triage checklists, safe log query patterns, playbook skeletons. * **Cloud & DevSecOps:** CI/CD security gates, IaC misconfiguration patterns, K8s hardening checklists. * **Refusal-by-Design:** Safe alternatives and compliance-aligned response patterns for exploitative/malicious prompts. > Note: This model is SFT-based; it has no tool use, web browsing, or access to an executable environment. In expert operations it is an **assistant**; it does not, by itself, constitute evidence. --- ## 🛠️ Quick Start ### Transformers (HF) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "Trendyol/Trendyol-Cybersecurity-LLM-v2-70B-Q4_K_M" tok = AutoTokenizer.from_pretrained(model_id, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) def generate(prompt, max_new_tokens=512, temperature=0.3, top_p=0.9): inputs = tok(prompt, return_tensors="pt").to(model.device) out = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=(temperature>0), temperature=temperature, top_p=top_p) return tok.decode(out[0], skip_special_tokens=True) print(generate("Map a PCI DSS v4.0 compliance checklist for a multi-account AWS environment.")) ``` ### vLLM ```bash vllm serve Trendyol/Trendyol-Cybersecurity-LLM-v2-70B-Q4_K_M --dtype bfloat16 ``` ### GGUF / llama.cpp > For practical single-machine use with a 70B model, **Q4_K_M** is recommended; higher-quality GGUF variants require much more memory. --- ## 🧪 Recommended Prompt Patterns | Goal | Template | Note | | --------------------- | ------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------- | | **Risk Assessment** | `ROLE: Security Architect\nCONTEXT: ...\nTASK: Produce a control-by-control gap analysis against NIST CSF v2.0...` | `temperature=0.2–0.4, top_p=0.9` | | **IR Playbook** | `Create a phase-by-phase incident response playbook for ransomware in hybrid (Azure+on-prem) AD.` | Ask for a validation checklist in the final step. | | **Identity Security** | `Propose hardened OAuth2/OIDC configs for a multi-tenant SPA+API.` | Request an "abuse cases" list at the end of the response. | | **Cloud Guardrails** | `Generate K8s hardening controls mapped to CIS + NSA/CISA.` | Include “rationale” and “validation” columns. | --- ## ⚖️ Intended Use, Limits, and Safety **Intended Use:** Enterprise **defense** consulting, architectural guidance, control mappings, IR/TI support outputs, training, and documentation. **Prohibited / Limitations:** * Unauthorized penetration testing, PoC exploit/payload generation, instructions that harm live systems. * Training or enriching outputs with personal data or confidential information. **Model Behavior:** * **Explicit refusal** for harmful requests + safe alternative suggestions. * Content policies are tested within the dataset (against jailbreak/prompt injection). **Disclaimer:** Model outputs should not be applied automatically without expert review; corporate policy and regulation take precedence. --- ## 🔍 Technical Notes * **Training Method:** SFT (instruction tuning) + system-prompt guardrails. * **Context Window:** Llama-3.3-70B’s default (same as Meta’s release). * **Languages:** Training language is English; EN-ZH evaluation is supported. * **Release:** Weights under the **Meta Llama 3.3 License**; dataset under **Apache-2.0**. --- ## 👥 Contributions & Contact * **Issues / Feedback:** HF or GitHub Issues * **Research Collaboration:** Trendyol Group Security Team * **Acknowledgments:** Trendyol Security Team, community contributors, and independent evaluators --- ## 🧾 Changelog * **2025-10-06 — v2-Max:** Migration to the Llama-3.3-70B base; **v2** dataset with **83,920** rows; alignment security gates; CS-Eval **EN #3 / EN-ZH #5**, average score **91.03**. ---