File size: 2,484 Bytes
151bb53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df0f6d
 
 
 
 
 
 
151bb53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- 'Thinking: Disabled'
- Forge
- code
- llama-cpp
- gguf-my-repo
datasets:
- prithivMLmods/Open-Omega-Forge-1M
language:
- en
base_model: prithivMLmods/Omega-Qwen2.5-Coder-3B
pipeline_tag: text-generation
library_name: transformers
---

# Triangle104/Omega-Qwen2.5-Coder-3B-Q5_K_S-GGUF
This model was converted to GGUF format from [`prithivMLmods/Omega-Qwen2.5-Coder-3B`](https://huggingface.co/prithivMLmods/Omega-Qwen2.5-Coder-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/Omega-Qwen2.5-Coder-3B) for more details on the model.

---

Omega-Qwen2.5-Coder-3B is a compact and high-efficiency code-focused model fine-tuned on Qwen2.5-Coder-3B-Instruct, using the symbolic-rich Open-Omega-Forge-1M dataset. Designed specifically for hard-coded tasks and deterministic computation, this model runs in a "thinking-disabled" mode—delivering precise, structured outputs with minimal hallucination, making it ideal for rigorous coding workflows and embedded logic applications.

Thinking: Disabled

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Omega-Qwen2.5-Coder-3B-Q5_K_S-GGUF --hf-file omega-qwen2.5-coder-3b-q5_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Omega-Qwen2.5-Coder-3B-Q5_K_S-GGUF --hf-file omega-qwen2.5-coder-3b-q5_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Omega-Qwen2.5-Coder-3B-Q5_K_S-GGUF --hf-file omega-qwen2.5-coder-3b-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Omega-Qwen2.5-Coder-3B-Q5_K_S-GGUF --hf-file omega-qwen2.5-coder-3b-q5_k_s.gguf -c 2048
```