Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/Vamsi/T5_Paraphrase_Paws/README.md
README.md
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: "en"
|
| 3 |
+
tags:
|
| 4 |
+
- paraphrase-generation
|
| 5 |
+
- text-generation
|
| 6 |
+
- Conditional Generation
|
| 7 |
+
inference: false
|
| 8 |
+
---
|
| 9 |
+
β
|
| 10 |
+
# Paraphrase-Generation
|
| 11 |
+
β
|
| 12 |
+
## Model description
|
| 13 |
+
β
|
| 14 |
+
T5 Model for generating paraphrases of english sentences. Trained on the [Google PAWS](https://github.com/google-research-datasets/paws) dataset.
|
| 15 |
+
β
|
| 16 |
+
## How to use
|
| 17 |
+
β
|
| 18 |
+
PyTorch and TF models available
|
| 19 |
+
β
|
| 20 |
+
```python
|
| 21 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 22 |
+
β
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
| 24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
| 25 |
+
β
|
| 26 |
+
sentence = "This is something which i cannot understand at all"
|
| 27 |
+
|
| 28 |
+
text = "paraphrase: " + sentence + " </s>"
|
| 29 |
+
|
| 30 |
+
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
|
| 31 |
+
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
outputs = model.generate(
|
| 35 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
| 36 |
+
max_length=256,
|
| 37 |
+
do_sample=True,
|
| 38 |
+
top_k=120,
|
| 39 |
+
top_p=0.95,
|
| 40 |
+
early_stopping=True,
|
| 41 |
+
num_return_sequences=5
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
for output in outputs:
|
| 45 |
+
line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
| 46 |
+
print(line)
|
| 47 |
+
β
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
For more reference on training your own T5 model or using this model, do check out [Paraphrase Generation](https://github.com/Vamsi995/Paraphrase-Generator).
|