Update README.md
Browse files
README.md
CHANGED
|
@@ -14,4 +14,163 @@ tags:
|
|
| 14 |
- multimodal_embedding
|
| 15 |
- multilingual_embedding
|
| 16 |
- Text-to-Visual Document (T→VD) retrieval
|
| 17 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
- multimodal_embedding
|
| 15 |
- multilingual_embedding
|
| 16 |
- Text-to-Visual Document (T→VD) retrieval
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Nomic Embed Multimodal 3B: State-of-the-Art Visual Document Retrieval
|
| 20 |
+
|
| 21 |
+
`nomic-embed-multimodal-3b` is a dense state-of-the-art multimodal embedding model that excels at visual document retrieval tasks:
|
| 22 |
+
|
| 23 |
+
- **High Performance**: Achieves 58.8 NDCG@5 on Vidore-v2, outperforming all other similarly sized dense multimodal embedding models.
|
| 24 |
+
- **Unified Text-Image Encoding**: Directly encodes interleaved text and images without complex preprocessing
|
| 25 |
+
- **Advanced Architecture**: 3B parameter multimodal embedding model
|
| 26 |
+
- **Open Weights**: Model weights available for research use
|
| 27 |
+
|
| 28 |
+
## Performance
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
| Model | Avg. | ESG Restaurant Human | Econ Macro Multi. | AXA Multi. | MIT Bio | ESG Restaurant Synth. | ESG Restaurant Synth. Multi. | MIT Bio Multi. | AXA | Econ. Macro |
|
| 32 |
+
|-------|------|----------------------|-------------------|------------|---------|----------------------|----------------------------|---------------|-----|------------|
|
| 33 |
+
| [ColNomic Embed Multimodal 7B](https://huggingface.co/nomic-ai/colnomic-embed-multimodal-7b) | 62.7 | 73.9 | 54.7 | 61.3 | 66.1 | 57.3 | 56.7 | 64.2 | 68.3 | 61.6 |
|
| 34 |
+
| [ColNomic Embed Multimodal 3B](https://huggingface.co/nomic-ai/colnomic-embed-multimodal-3b) | 61.2 | 65.8 | 55.4 | 61.0 | 63.5 | 56.6 | 57.2 | 62.5 | 68.8 | 60.2 |
|
| 35 |
+
| T-Systems ColQwen2.5-3B | 59.9 | 72.1 | 51.2 | 60.0 | 65.3 | 51.7 | 53.3 | 61.7 | 69.3 | 54.8 |
|
| 36 |
+
| [Nomic Embed Multimodal 7B](https://huggingface.co/nomic-ai/nomic-embed-multimodal-7b) | 59.7 | 65.7 | 57.7 | 59.3 | 64.0 | 49.2 | 51.9 | 61.2 | 66.3 | 63.1 |
|
| 37 |
+
| GME Qwen2 7B | 59.0 | 65.8 | 56.2 | 55.4 | 64.0 | 54.3 | 56.7 | 55.1 | 60.7 | 62.9 |
|
| 38 |
+
| **Nomic Embed Multimodal 3B** | 58.8 | 59.8 | 57.5 | 58.8 | 62.5 | 49.4 | 49.4 | 58.6 | 69.6 | 63.5 |
|
| 39 |
+
| Llama Index vdr-2b-multi-v1 | 58.4 | 63.1 | 52.8 | 61.0 | 60.6 | 50.3 | 51.2 | 56.9 | 68.8 | 61.2 |
|
| 40 |
+
| Voyage Multimodal 3 | 55.0 | 56.1 | 55.0 | 59.5 | 56.4 | 47.2 | 46.2 | 51.5 | 64.1 | 58.8 |
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
## Getting Started
|
| 44 |
+
|
| 45 |
+
To use `nomic-embed-multimodal-3b`, please install `colpali` from source
|
| 46 |
+
|
| 47 |
+
```bash
|
| 48 |
+
pip install git+https://github.com/illuin-tech/colpali.git
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
import torch
|
| 54 |
+
from PIL import Image
|
| 55 |
+
from transformers.utils.import_utils import is_flash_attn_2_available
|
| 56 |
+
|
| 57 |
+
from colpali_engine.models import BiQwen2_5, BiQwen2_5_Processor
|
| 58 |
+
|
| 59 |
+
model_name = "nomic-ai/nomic-embed-multimodal-3b"
|
| 60 |
+
|
| 61 |
+
model = BiQwen2_5.from_pretrained(
|
| 62 |
+
model_name,
|
| 63 |
+
torch_dtype=torch.bfloat16,
|
| 64 |
+
device_map="cuda:0", # or "mps" if on Apple Silicon
|
| 65 |
+
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None,
|
| 66 |
+
).eval()
|
| 67 |
+
|
| 68 |
+
processor = BiQwen2_5_Processor.from_pretrained(model_name)
|
| 69 |
+
|
| 70 |
+
# Your inputs
|
| 71 |
+
images = [
|
| 72 |
+
Image.new("RGB", (128, 128), color="white"),
|
| 73 |
+
Image.new("RGB", (64, 32), color="black"),
|
| 74 |
+
]
|
| 75 |
+
queries = [
|
| 76 |
+
"What is the organizational structure for our R&D department?",
|
| 77 |
+
"Can you provide a breakdown of last year’s financial performance?",
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
# Process the inputs
|
| 81 |
+
batch_images = processor.process_images(images).to(model.device)
|
| 82 |
+
batch_queries = processor.process_queries(queries).to(model.device)
|
| 83 |
+
|
| 84 |
+
# Forward pass
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
image_embeddings = model(**batch_images)
|
| 87 |
+
query_embeddings = model(**batch_queries)
|
| 88 |
+
|
| 89 |
+
scores = processor.score(list(torch.unbind(query_embeddings)), list(torch.unbind(image_embeddings)))
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
## Model Architecture
|
| 93 |
+
|
| 94 |
+
- **Total Parameters**: 3B
|
| 95 |
+
- **Training Approach**: Fine-tuned from Qwen2.5-VL 3B Instruct
|
| 96 |
+
- **Architecture Type**: Vision-Language Model with unified text and image input processing
|
| 97 |
+
- **Key Innovations**:
|
| 98 |
+
- Same-source sampling to create harder in-batch negatives
|
| 99 |
+
- Hard negative mining with positive-aware techniques
|
| 100 |
+
|
| 101 |
+
## Integration with RAG Workflows
|
| 102 |
+
|
| 103 |
+
Nomic Embed Multimodal 3B seamlessly integrates with Retrieval Augmented Generation (RAG) workflows:
|
| 104 |
+
|
| 105 |
+
1. **Direct Document Embedding**: Skip OCR and complex processing by directly embedding document page images
|
| 106 |
+
2. **Faster Processing**: Eliminate preprocessing steps for quicker indexing
|
| 107 |
+
3. **More Complete Information**: Capture both textual and visual cues in a single embedding
|
| 108 |
+
4. **Simple Implementation**: Use the same API for both text and images
|
| 109 |
+
|
| 110 |
+
## Recommended Use Cases
|
| 111 |
+
|
| 112 |
+
The model excels at handling real-world document retrieval scenarios that challenge traditional text-only systems:
|
| 113 |
+
|
| 114 |
+
- **Research Papers**: Capture equations, diagrams, and tables
|
| 115 |
+
- **Technical Documentation**: Encode code blocks, flowcharts, and screenshots
|
| 116 |
+
- **Product Catalogs**: Represent images, specifications, and pricing tables
|
| 117 |
+
- **Financial Reports**: Embed charts, graphs, and numerical data
|
| 118 |
+
- **Visually Rich Content**: Where layout and visual information are important
|
| 119 |
+
- **Multilingual Documents**: Where visual context provides important cues
|
| 120 |
+
|
| 121 |
+
## Training Details
|
| 122 |
+
|
| 123 |
+
Nomic Embed Multimodal 3B was developed through several key innovations:
|
| 124 |
+
|
| 125 |
+
1. **Sampling From the Same Source**: Forcing sampling from the same dataset source creates harder in-batch negatives, preventing the model from learning dataset artifacts.
|
| 126 |
+
|
| 127 |
+
2. **Hard Negative Mining**: Using an initial model to retrieve top-k nearest neighbors for each query, then incorporating these hard negatives into training.
|
| 128 |
+
|
| 129 |
+
3. **Positive-aware Hard Negative Mining**: Reducing false negatives using techniques introduced in NV-Retriever.
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
## Limitations
|
| 133 |
+
|
| 134 |
+
- Performance may vary when processing documents with unconventional layouts or unusual visual elements
|
| 135 |
+
- While it handles multiple languages, performance is strongest on English content
|
| 136 |
+
- Processing very large or complex documents may require dividing them into smaller chunks
|
| 137 |
+
- Performance on documents with handwriting or heavily stylized fonts may be reduced
|
| 138 |
+
|
| 139 |
+
## Join the Nomic Community
|
| 140 |
+
|
| 141 |
+
- Nomic Embed Ecosystem: [https://www.nomic.ai/embed](https://www.nomic.ai/embed)
|
| 142 |
+
- Website: [https://nomic.ai](https://nomic.ai)
|
| 143 |
+
- Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
|
| 144 |
+
- Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
|
| 145 |
+
|
| 146 |
+
## Citation
|
| 147 |
+
|
| 148 |
+
If you find this model useful in your research or applications, please consider citing:
|
| 149 |
+
|
| 150 |
+
```bibtex
|
| 151 |
+
@misc{faysse2024colpaliefficientdocumentretrieval,
|
| 152 |
+
title={ColPali: Efficient Document Retrieval with Vision Language Models},
|
| 153 |
+
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
|
| 154 |
+
year={2024},
|
| 155 |
+
eprint={2407.01449},
|
| 156 |
+
archivePrefix={arXiv},
|
| 157 |
+
primaryClass={cs.IR},
|
| 158 |
+
url={https://arxiv.org/abs/2407.01449},
|
| 159 |
+
}
|
| 160 |
+
@misc{ma2024unifyingmultimodalretrievaldocument,
|
| 161 |
+
title={Unifying Multimodal Retrieval via Document Screenshot Embedding},
|
| 162 |
+
author={Xueguang Ma and Sheng-Chieh Lin and Minghan Li and Wenhu Chen and Jimmy Lin},
|
| 163 |
+
year={2024},
|
| 164 |
+
eprint={2406.11251},
|
| 165 |
+
archivePrefix={arXiv},
|
| 166 |
+
primaryClass={cs.IR},
|
| 167 |
+
url={https://arxiv.org/abs/2406.11251},
|
| 168 |
+
}
|
| 169 |
+
@misc{nomicembedmultimodal2025,
|
| 170 |
+
title={Nomic Embed Multimodal: Interleaved Text, Image, and Screenshots for Visual Document Retrieval},
|
| 171 |
+
author={Nomic Team},
|
| 172 |
+
year={2025},
|
| 173 |
+
publisher={Nomic AI},
|
| 174 |
+
url={https://nomic.ai/blog/posts/nomic-embed-multimodal},
|
| 175 |
+
}
|
| 176 |
+
```
|