Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,386 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div align="center">
|
| 2 |
+
<h1>π¨ LucidFlux:<br/>Caption-Free Universal Image Restoration with a Large-Scale Diffusion Transformer</h1>
|
| 3 |
+
|
| 4 |
+
###
|
| 5 |
+
[**π Website**](https://w2genai-lab.github.io/LucidFlux/) | [**π Technical Report**](https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/Technical_Report.pdf) | [**π§© Models**](https://huggingface.co/W2GenAI/LucidFlux)
|
| 6 |
+
</div>
|
| 7 |
+
|
| 8 |
+
---
|
| 9 |
+
<img width="1420" height="1116" alt="abs_image" src="https://github.com/user-attachments/assets/791c0c60-29a6-4497-86a9-5716049afe9a" />
|
| 10 |
+
|
| 11 |
+
---
|
| 12 |
+
## News & Updates
|
| 13 |
+
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
Let us know if this works!
|
| 17 |
+
|
| 18 |
+
## π₯ Authors
|
| 19 |
+
|
| 20 |
+
> [**Song Fei**](https://github.com/FeiSong123)<sup>1</sup>\*, [**Tian Ye**](https://owen718.github.io/)<sup>1</sup>\*β‘, [**Lei Zhu**](https://sites.google.com/site/indexlzhu/home)<sup>1,2</sup>β
|
| 21 |
+
>
|
| 22 |
+
> <sup>1</sup>The Hong Kong University of Science and Technology (Guangzhou)
|
| 23 |
+
> <sup>2</sup>The Hong Kong University of Science and Technology
|
| 24 |
+
>
|
| 25 |
+
> \*Equal Contribution, β‘Project Leader, β Corresponding Author
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## π What is LucidFlux?
|
| 30 |
+
LucidFlux is a framework designed to perform high-fidelity image restoration across a wide range of degradations without requiring textual captions. By combining a Flux-based DiT backbone with Light-weight Condition Module and SigLIP semantic alignment, LucidFlux enables caption-free guidance while preserving structural and semantic consistency, achieving superior restoration quality.
|
| 31 |
+
|
| 32 |
+
## π Performance Benchmarks
|
| 33 |
+
|
| 34 |
+
<div align="center">
|
| 35 |
+
|
| 36 |
+
### π Quantitative Results
|
| 37 |
+
|
| 38 |
+
<table>
|
| 39 |
+
<thead>
|
| 40 |
+
<tr>
|
| 41 |
+
<th>Benchmark</th>
|
| 42 |
+
<th>Metric</th>
|
| 43 |
+
<th>ResShift</th>
|
| 44 |
+
<th>StableSR</th>
|
| 45 |
+
<th>SinSR</th>
|
| 46 |
+
<th>SeeSR</th>
|
| 47 |
+
<th>DreamClear</th>
|
| 48 |
+
<th>SUPIR</th>
|
| 49 |
+
<th>LucidFlux<br/>(Ours)</th>
|
| 50 |
+
</tr>
|
| 51 |
+
</thead>
|
| 52 |
+
<tbody>
|
| 53 |
+
<tr>
|
| 54 |
+
<td rowspan="7" style="text-align:center; vertical-align:middle;">RealSR</td>
|
| 55 |
+
<td style="white-space: nowrap;">CLIP-IQA+ β</td>
|
| 56 |
+
<td>0.5005</td>
|
| 57 |
+
<td>0.4408</td>
|
| 58 |
+
<td>0.5416</td>
|
| 59 |
+
<td>0.6731</td>
|
| 60 |
+
<td>0.5331</td>
|
| 61 |
+
<td>0.5640</td>
|
| 62 |
+
<td><b>0.7074</b></td>
|
| 63 |
+
</tr>
|
| 64 |
+
<tr>
|
| 65 |
+
<td style="white-space: nowrap;">Q-Align β</td>
|
| 66 |
+
<td>3.1045</td>
|
| 67 |
+
<td>2.5087</td>
|
| 68 |
+
<td>3.3615</td>
|
| 69 |
+
<td>3.6073</td>
|
| 70 |
+
<td>3.0044</td>
|
| 71 |
+
<td>3.4682</td>
|
| 72 |
+
<td><b>3.7555</b></td>
|
| 73 |
+
</tr>
|
| 74 |
+
<tr>
|
| 75 |
+
<td style="white-space: nowrap;">MUSIQ β</td>
|
| 76 |
+
<td>49.50</td>
|
| 77 |
+
<td>39.98</td>
|
| 78 |
+
<td>57.95</td>
|
| 79 |
+
<td>67.57</td>
|
| 80 |
+
<td>49.48</td>
|
| 81 |
+
<td>55.68</td>
|
| 82 |
+
<td><b>70.20</b></td>
|
| 83 |
+
</tr>
|
| 84 |
+
<tr>
|
| 85 |
+
<td style="white-space: nowrap;">MANIQA β</td>
|
| 86 |
+
<td>0.2976</td>
|
| 87 |
+
<td>0.2356</td>
|
| 88 |
+
<td>0.3753</td>
|
| 89 |
+
<td>0.5087</td>
|
| 90 |
+
<td>0.3092</td>
|
| 91 |
+
<td>0.3426</td>
|
| 92 |
+
<td><b>0.5437</b></td>
|
| 93 |
+
</tr>
|
| 94 |
+
<tr>
|
| 95 |
+
<td style="white-space: nowrap;">NIMA β</td>
|
| 96 |
+
<td>4.7026</td>
|
| 97 |
+
<td>4.3639</td>
|
| 98 |
+
<td>4.8282</td>
|
| 99 |
+
<td>4.8957</td>
|
| 100 |
+
<td>4.4948</td>
|
| 101 |
+
<td>4.6401</td>
|
| 102 |
+
<td><b>5.1072</b></td>
|
| 103 |
+
</tr>
|
| 104 |
+
<tr>
|
| 105 |
+
<td style="white-space: nowrap;">CLIP-IQA β</td>
|
| 106 |
+
<td>0.5283</td>
|
| 107 |
+
<td>0.3521</td>
|
| 108 |
+
<td>0.6601</td>
|
| 109 |
+
<td><b>0.6993</b></td>
|
| 110 |
+
<td>0.5390</td>
|
| 111 |
+
<td>0.4857</td>
|
| 112 |
+
<td>0.6783</td>
|
| 113 |
+
</tr>
|
| 114 |
+
<tr>
|
| 115 |
+
<td style="white-space: nowrap;">NIQE β</td>
|
| 116 |
+
<td>9.0674</td>
|
| 117 |
+
<td>6.8733</td>
|
| 118 |
+
<td>6.4682</td>
|
| 119 |
+
<td>5.4594</td>
|
| 120 |
+
<td>5.2873</td>
|
| 121 |
+
<td>5.2819</td>
|
| 122 |
+
<td><b>4.2893</b></td>
|
| 123 |
+
</tr>
|
| 124 |
+
<tr>
|
| 125 |
+
<td rowspan="7" style="text-align:center; vertical-align:middle;">RealLQ250</td>
|
| 126 |
+
<td style="white-space: nowrap;">CLIP-IQA+ β</td>
|
| 127 |
+
<td>0.5529</td>
|
| 128 |
+
<td>0.5804</td>
|
| 129 |
+
<td>0.6054</td>
|
| 130 |
+
<td>0.7034</td>
|
| 131 |
+
<td>0.6810</td>
|
| 132 |
+
<td>0.6532</td>
|
| 133 |
+
<td><b>0.7406</b></td>
|
| 134 |
+
</tr>
|
| 135 |
+
<tr>
|
| 136 |
+
<td style="white-space: nowrap;">Q-Align β</td>
|
| 137 |
+
<td>3.6318</td>
|
| 138 |
+
<td>3.5586</td>
|
| 139 |
+
<td>3.7451</td>
|
| 140 |
+
<td>4.1423</td>
|
| 141 |
+
<td>4.0640</td>
|
| 142 |
+
<td>4.1347</td>
|
| 143 |
+
<td><b>4.3935</b></td>
|
| 144 |
+
</tr>
|
| 145 |
+
<tr>
|
| 146 |
+
<td style="white-space: nowrap;">MUSIQ β</td>
|
| 147 |
+
<td>59.50</td>
|
| 148 |
+
<td>57.25</td>
|
| 149 |
+
<td>65.45</td>
|
| 150 |
+
<td>70.38</td>
|
| 151 |
+
<td>67.08</td>
|
| 152 |
+
<td>65.81</td>
|
| 153 |
+
<td><b>73.01</b></td>
|
| 154 |
+
</tr>
|
| 155 |
+
<tr>
|
| 156 |
+
<td style="white-space: nowrap;">MANIQA β</td>
|
| 157 |
+
<td>0.3397</td>
|
| 158 |
+
<td>0.2937</td>
|
| 159 |
+
<td>0.4230</td>
|
| 160 |
+
<td>0.4895</td>
|
| 161 |
+
<td>0.4400</td>
|
| 162 |
+
<td>0.3826</td>
|
| 163 |
+
<td><b>0.5589</b></td>
|
| 164 |
+
</tr>
|
| 165 |
+
<tr>
|
| 166 |
+
<td style="white-space: nowrap;">NIMA β</td>
|
| 167 |
+
<td>5.0624</td>
|
| 168 |
+
<td>5.0538</td>
|
| 169 |
+
<td>5.2397</td>
|
| 170 |
+
<td>5.3146</td>
|
| 171 |
+
<td>5.2200</td>
|
| 172 |
+
<td>5.0806</td>
|
| 173 |
+
<td><b>5.4836</b></td>
|
| 174 |
+
</tr>
|
| 175 |
+
<tr>
|
| 176 |
+
<td style="white-space: nowrap;">CLIP-IQA β</td>
|
| 177 |
+
<td>0.6129</td>
|
| 178 |
+
<td>0.5160</td>
|
| 179 |
+
<td><b>0.7166</b></td>
|
| 180 |
+
<td>0.7063</td>
|
| 181 |
+
<td>0.6950</td>
|
| 182 |
+
<td>0.5767</td>
|
| 183 |
+
<td>0.7122</td>
|
| 184 |
+
</tr>
|
| 185 |
+
<tr>
|
| 186 |
+
<td style="white-space: nowrap;">NIQE β</td>
|
| 187 |
+
<td>6.6326</td>
|
| 188 |
+
<td>4.6236</td>
|
| 189 |
+
<td>5.4425</td>
|
| 190 |
+
<td>4.4383</td>
|
| 191 |
+
<td>3.8700</td>
|
| 192 |
+
<td><b>3.6591</b></td>
|
| 193 |
+
<td>3.6742</td>
|
| 194 |
+
</tr>
|
| 195 |
+
</tbody>
|
| 196 |
+
</table>
|
| 197 |
+
|
| 198 |
+
</div>
|
| 199 |
+
|
| 200 |
+
---
|
| 201 |
+
|
| 202 |
+
## π Gallery & Examples
|
| 203 |
+
|
| 204 |
+
<div align="center">
|
| 205 |
+
|
| 206 |
+
### π¨ LucidFlux Gallery
|
| 207 |
+
|
| 208 |
+
---
|
| 209 |
+
|
| 210 |
+
### π Comparison with Open-Source Methods
|
| 211 |
+
|
| 212 |
+
<table>
|
| 213 |
+
<tr align="center">
|
| 214 |
+
<td width="200"><b>LQ</b></td>
|
| 215 |
+
<td width="200"><b>SinSR</b></td>
|
| 216 |
+
<td width="200"><b>SeeSR</b></td>
|
| 217 |
+
<td width="200"><b>SUPIR</b></td>
|
| 218 |
+
<td width="200"><b>DreamClear</b></td>
|
| 219 |
+
<td width="200"><b>Ours</b></td>
|
| 220 |
+
</tr>
|
| 221 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/040.jpg" width="1200"></td></tr>
|
| 222 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/041.jpg" width="1200"></td></tr>
|
| 223 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/111.jpg" width="1200"></td></tr>
|
| 224 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/123.jpg" width="1200"></td></tr>
|
| 225 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/160.jpg" width="1200"></td></tr>
|
| 226 |
+
</table>
|
| 227 |
+
|
| 228 |
+
<details>
|
| 229 |
+
<summary>Show more examples</summary>
|
| 230 |
+
|
| 231 |
+
<table>
|
| 232 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/013.jpg" width="1200"></td></tr>
|
| 233 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/079.jpg" width="1200"></td></tr>
|
| 234 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/082.jpg" width="1200"></td></tr>
|
| 235 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/137.jpg" width="1200"></td></tr>
|
| 236 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/comparison/166.jpg" width="1200"></td></tr>
|
| 237 |
+
</table>
|
| 238 |
+
|
| 239 |
+
</details>
|
| 240 |
+
|
| 241 |
+
---
|
| 242 |
+
|
| 243 |
+
### πΌ Comparison with Commercial Models
|
| 244 |
+
|
| 245 |
+
<table>
|
| 246 |
+
<tr align="center">
|
| 247 |
+
<td width="200"><b>LQ</b></td>
|
| 248 |
+
<td width="200"><b>HYPIR</b></td>
|
| 249 |
+
<td width="200"><b>Topaz</b></td>
|
| 250 |
+
<td width="200"><b>Gemini-NanoBanana</b></td>
|
| 251 |
+
<td width="200"><b>GPT-4o</b></td>
|
| 252 |
+
<td width="200"><b>Ours</b></td>
|
| 253 |
+
</tr>
|
| 254 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_061.jpg" width="1200"></td></tr>
|
| 255 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_094.jpg" width="1200"></td></tr>
|
| 256 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_205.jpg" width="1200"></td></tr>
|
| 257 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_209.jpg" width="1200"></td></tr>
|
| 258 |
+
</table>
|
| 259 |
+
|
| 260 |
+
<details>
|
| 261 |
+
<summary>Show more examples</summary>
|
| 262 |
+
|
| 263 |
+
<table>
|
| 264 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_062.jpg" width="1200"></td></tr>
|
| 265 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_160.jpg" width="1200"></td></tr>
|
| 266 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_111.jpg" width="1200"></td></tr>
|
| 267 |
+
<tr align="center"><td colspan="6"><img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/commercial_comparison/commercial_123.jpg" width="1200"></td></tr>
|
| 268 |
+
</table>
|
| 269 |
+
|
| 270 |
+
</details>
|
| 271 |
+
</div>
|
| 272 |
+
|
| 273 |
+
---
|
| 274 |
+
|
| 275 |
+
## ποΈ Model Architecture
|
| 276 |
+
|
| 277 |
+
<div align="center">
|
| 278 |
+
<img src="https://raw.githubusercontent.com/W2GenAI-Lab/LucidFlux/main/images/framework/framework.png" alt="LucidFlux Framework Overview" width="1200"/>
|
| 279 |
+
<br>
|
| 280 |
+
<em><strong>Caption-Free Universal Image Restoration with a Large-Scale Diffusion Transformer</strong></em>
|
| 281 |
+
</div>
|
| 282 |
+
|
| 283 |
+
Our unified framework consists of **four critical components in the training workflow**:
|
| 284 |
+
|
| 285 |
+
**π€ Scaling Up Real-world High-Quality Data for Universal Image Restoration**
|
| 286 |
+
|
| 287 |
+
**π¨ Two Parallel Light-weight Condition Module Branches for Low-Quality Image Conditioning**
|
| 288 |
+
|
| 289 |
+
**π― Timestep and Layer-Adaptive Condition Injection**
|
| 290 |
+
|
| 291 |
+
**π Semantic Priors from Siglip for Caption-Free Semantic Alignment**
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
## π Quick Start
|
| 295 |
+
|
| 296 |
+
### π§ Installation
|
| 297 |
+
|
| 298 |
+
```bash
|
| 299 |
+
# Clone the repository
|
| 300 |
+
git clone https://github.com/W2GenAI-Lab/LucidFlux.git
|
| 301 |
+
cd LucidFlux
|
| 302 |
+
|
| 303 |
+
# Create conda environment
|
| 304 |
+
conda create -n lucidflux python=3.9
|
| 305 |
+
conda activate lucidflux
|
| 306 |
+
|
| 307 |
+
# Install dependencies
|
| 308 |
+
pip install -r requirements.txt
|
| 309 |
+
|
| 310 |
+
```
|
| 311 |
+
|
| 312 |
+
### Inference
|
| 313 |
+
- **Flux.1 dev** β [π€ FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
|
| 314 |
+
Then update the model path in the `configs` for `flux-dev` in `src/flux/util.py` to your local FLUX.1-dev model path.
|
| 315 |
+
|
| 316 |
+
- **T5** β [π€ T5](https://huggingface.co/XLabs-AI/xflux_text_encoders)
|
| 317 |
+
Then update the T5 path in the function `load_t5` in `src/flux/util.py` to your local T5 path.
|
| 318 |
+
|
| 319 |
+
- **CLIP** β [π€ CLIP](https://huggingface.co/openai/clip-vit-large-patch14)
|
| 320 |
+
Then update the CLIP path in the function `load_clip` in `src/flux/util.py` to your local CLIP path.
|
| 321 |
+
|
| 322 |
+
- **SigLIP** β [π€ siglip2-so400m-patch16-512](https://huggingface.co/google/siglip2-so400m-patch16-512)
|
| 323 |
+
Then set `siglip_ckpt` to the corresponding local path.
|
| 324 |
+
|
| 325 |
+
- **SwinIR** β [π€ SwinIR](https://huggingface.co/lxq007/DiffBIR/blob/main/general_swinir_v1.ckpt)
|
| 326 |
+
Then set `swin_ir_ckpt` to the corresponding local path.
|
| 327 |
+
|
| 328 |
+
- **LucidFlux** β [π€ LucidFlux](https://huggingface.co/W2GenAI/LucidFlux)
|
| 329 |
+
Then set `checkpoint` to the corresponding local path.
|
| 330 |
+
|
| 331 |
+
```bash
|
| 332 |
+
inference.sh
|
| 333 |
+
|
| 334 |
+
result_dir=ouput_images_folder
|
| 335 |
+
input_folder=input_images_folder
|
| 336 |
+
checkpoint_path=path/to/lucidflux.pth
|
| 337 |
+
swin_ir_ckpt=path/to/swinir.ckpt
|
| 338 |
+
siglip_ckpt=path/to/siglip.ckpt
|
| 339 |
+
|
| 340 |
+
mkdir -p ${result_dir}
|
| 341 |
+
echo "Processing checkpoint..."
|
| 342 |
+
python inference.py \
|
| 343 |
+
--checkpoint ${checkpoint_path} \
|
| 344 |
+
--swinir_pretrained ${swin_ir_ckpt} \
|
| 345 |
+
--control_image ${input_folder} \
|
| 346 |
+
--siglip_ckpt ${siglip_ckpt} \
|
| 347 |
+
--prompt "restore this image into high-quality, clean, high-resolution result" \
|
| 348 |
+
--output_dir ${result_dir}/ \
|
| 349 |
+
--width 1024 --height 1024 --num_steps 50 \
|
| 350 |
+
```
|
| 351 |
+
|
| 352 |
+
Finially ```bash inference.sh```. You can also obtain the results of LucidFlux on RealSR and RealLQ250 from Hugging Face: [**LucidFlux**](https://huggingface.co/W2GenAI/LucidFlux).
|
| 353 |
+
|
| 354 |
+
## πͺͺ License
|
| 355 |
+
|
| 356 |
+
The provided code and pre-trained weights are licensed under the [FLUX.1 \[dev\]](LICENSE).
|
| 357 |
+
|
| 358 |
+
## π Acknowledgments
|
| 359 |
+
|
| 360 |
+
- This code is based on [FLUX](https://github.com/black-forest-labs/flux). Some code are brought from [DreamClear](https://github.com/shallowdream204/DreamClear), [x-flux](https://github.com/XLabs-AI/x-flux). We thank the authors for their awesome work.
|
| 361 |
+
|
| 362 |
+
- ποΈ Thanks to our affiliated institutions for their support.
|
| 363 |
+
- π€ Special thanks to the open-source community for inspiration.
|
| 364 |
+
|
| 365 |
+
---
|
| 366 |
+
|
| 367 |
+
## π¬ Contact
|
| 368 |
+
|
| 369 |
+
For any questions or inquiries, please reach out to us:
|
| 370 |
+
|
| 371 |
+
- **Song Fei**: `[email protected]`
|
| 372 |
+
- **Tian Ye**: `[email protected]`
|
| 373 |
+
|
| 374 |
+
## π§βπ€βπ§ WeChat Group
|
| 375 |
+
<details>
|
| 376 |
+
<summary>ηΉε»ε±εΌδΊη»΄η οΌWeChat Group QR CodeοΌ</summary>
|
| 377 |
+
|
| 378 |
+
<br>
|
| 379 |
+
|
| 380 |
+
<img src="https://github.com/user-attachments/assets/047faa4e-da63-415c-97a0-8dbe8045a839"
|
| 381 |
+
alt="WeChat Group QR"
|
| 382 |
+
width="320">
|
| 383 |
+
</details>
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
</div>
|