File size: 2,675 Bytes
8808707 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
# π Overview
This repository contains optimized AI models for **XAIVA Kiosk Analysis System** - an intelligent workplace safety and compliance monitoring solution. The models are specifically designed for real-time analysis in industrial environments.
## π Model Collection
### π― Detection Models
- **`best_0327.engine`** (131MB)
- **Type**: Object Detection (TensorRT Optimized)
- **Purpose**: Safety equipment detection (caps, masks, gloves, boots, etc.)
- **Input**: RGB images
- **Output**: Bounding boxes with class predictions
### π€ Human Analysis Models
- **`yolo11n-seg.engine`** (10.2MB)
- **Type**: Instance Segmentation (TensorRT Optimized)
- **Purpose**: Person segmentation for workspace analysis
- **Architecture**: YOLOv11 Nano
- **Output**: Pixel-level person masks
- **`yolo11n-pose.engine`** (10.1MB)
- **Type**: Pose Estimation (TensorRT Optimized)
- **Purpose**: Human pose detection for safety compliance
- **Architecture**: YOLOv11 Nano
- **Output**: 17-point keypoint coordinates
### π Face Recognition Models
- **`facedet_fp16.trt`** (10.3MB)
- **Type**: Face Detection (TensorRT FP16)
- **Purpose**: Real-time face detection in workplace
- **Optimization**: Half-precision for speed
- **Output**: Face bounding boxes with landmarks
- **`adaface_ir101.trt`** (132MB)
- **Type**: Face Recognition (TensorRT Optimized)
- **Purpose**: Employee identification and access control
- **Architecture**: AdaFace with ResNet-101 backbone
- **Output**: 512-dimensional face embeddings
## π οΈ Usage
### Prerequisites
```bash
pip install torch torchvision
pip install ultralytics
pip install opencv-python
pip install tensorrt
```
## ποΈ System Requirements
- **GPU**: NVIDIA GPU with Compute Capability 6.0+
- **VRAM**: 8GB+ recommended
- **CUDA**: 11.0+
- **TensorRT**: 8.0+
- **Python**: 3.8+
## π Model Files
```
models/
βββ best_0327.engine # Main detection model
βββ yolo11n-seg.engine # Person segmentation
βββ yolo11n-pose.engine # Pose estimation
βββ facedet_fp16.trt # Face detection
βββ adaface_ir101.trt # Face recognition
```
## π§ Integration
These models are designed to work together as part of the XAIVA Kiosk system:
1. **Face Detection** β **Face Recognition** for employee identification
2. **Detection** β Safety equipment compliance checking
3. **Segmentation** β Workspace occupancy analysis
4. **Pose Estimation** β Safety posture monitoring
## π’ About XIILAB
Developed by [XIILAB](https://xiilab.com/main) - Advanced AI solutions for industrial automation and safety.
|